
Data Informativity for Lyapunov Equations

Ikumi Banno1, Shun-ichi Azuma2, Ryo Ariizumi3, Toru Asai1, and Jun-ichi Imura4

Abstract— Recently, the novel framework for data-driven
analysis and control, called data informativity, was proposed.
This notion represents whether the given data contain sufficient
information to solve a problem or not. However, data informa-
tivity for solving a Lyapunov equation has never been addressed
before. This letter characterizes the data informativity for the
Lyapunov equations in the form of AP + PA> = −Q, where
A and Q are square matrices and P is an unknown matrix.
First, we clarify the relationship between the unique solution
to the Lyapunov equation and the controllable subspace of a
system. Second, based on this result, we provide a necessary and
sufficient condition for the data informativity, which is charac-
terized by the possibility of a certain matrix decomposition of
Q, called the data-basis decomposition. Finally, we present a
direct data-driven method for solving the Lyapunov equation
based on our data informativity condition. This method has a
potential to compute the solution even if the data do not contain
sufficient information to identify the system.

I. INTRODUCTION

In the field of system analysis and control, direct data-
driven methods [1]–[12] have recently attracted attention,
which directly analyze/control the system from measurement
data bypassing the process of system identification [13].
The direct data-driven framework has a potential to ana-
lyze/control the system even when system identification can-
not be applied due to the insufficiency of the measurement
data. However, most of the above methods require rich data
that allow us to identify the system.

In 2020, the novel framework for data-driven analysis and
control, called data informativity, was proposed [1]. The data
informativity represents whether given data contain sufficient
information to solve a problem or not. So far, algebraic
conditions equivalent to the data informativity for several
problems have been derived, including system identification,
stability, observability, state feedback stabilization, and sub-
optimal LQR [1]–[4]. These results have revealed that some
problems can be solved even if we do not have sufficient
data to identify the system.
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Now, we are interested in solving the Lyapunov equations
AP+PA> = −Q (where A and Q are constant matrices and
P is an unknown matrix) without explicit information about
A, but with a state trajectory of the system ẋ(t) = Ax(t).
Solving this problem is important for the following reasons:
First, Lyapunov equations play a key role in analyzing and
designing dynamical systems, including stability, controlla-
bility, and observability analysis and stabilizing controller
design [14]. Second, a solution to this problem could provide
a unified framework for several data-driven tasks for the
system analysis and design. In this background, data-driven
methods for solving a Lyapunov equation have been already
presented in [5], [6], which require rich data that allow us
to identify the system. However, we still have a potential
to compute the solutions from the data even when the
system identification cannot be applied. Furthermore, data
informativity for solving the Lyapunov equation has never
been addressed.

Therefore, this letter characterizes the data informativity
for solving the Lyapunov equation. First, as a preliminary
step to the problem, we clarify the relationship between the
unique solution to the Lyapunov equation and the control-
lable subspaces of a system, which is characterized by a
matrix decomposition of Q. Second, by using this result, we
show that a dataset is informative for the Lyapunov equation
(i.e., the data contain sufficient information to uniquely
determine the solution to the Lyapunov equation) if and only
if a certain matrix decomposition of Q, called data-basis
decomposition, is possible. Finally, we present a data-driven
method for solving the Lyapunov equation based on our data
informativity condition.

This letter is organized as follows. In Section II, we
formulate the data informativity for the Lyapunov equa-
tion and the problem to be considered. The solution to
the Lyapunov equation is characterized in Section III. A
necessary and sufficient condition for our data informativity
is provided in Section IV. Section V presents a data-driven
method for solving the Lyapunov equation based on the data
informativity. This letter is concluded in Section VI.
Notation:

(i) Sets: Let R and R+ be the set of the real numbers and
positive real numbers, respectively. For n ∈ {1, 2, . . .},
Stab(n) ⊂ Rn×n represents the set of n× n Hurwitz
matrices. The cardinality of a set S is denoted by |S|.

(ii) Matrices: For (n,m) ∈ {1, 2, . . .}2, we use In ∈
Rn×n, 0n×m ∈ Rn×m, and 0n ∈ Rn to denote the
n× n identity matrix, the n×m zero matrix, and the
n × 1 zero vector. The image of a matrix A ∈ Rn×m

is written as Im(A).
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(iii) Vector spaces: The dimension of a vector space V is
written as dim(V). For a set S ⊆ Rn, we denote
the linear span of S by span(S) and the orthogonal
complement of S by

S⊥ := {x ∈ Rn | ∀y ∈ S x>y = 0}.

Note that both span(S) and S⊥ are vector subspaces
of Rn.

II. PROBLEM FORMULATIONS

Consider the linear system

ẋ(t) = Ax(t), (1)

where x(t) ∈ Rn is the state and A ∈ Stab(n) is a
Hurwitz matrix. Throughout this paper, the solution of (1)
with x(0) = x0 is written as x(t, x0).

Associated with the system, we focus on the Lyapunov
equation

AP + PA> = −Q, (2)

where Q ∈ Rn×n is a constant matrix (not necessarily
symmetric) and P ∈ Rn×n is an unknown matrix. As is
well-known, (2) has the unique solution

Φ(A,Q) :=

∫ ∞
0

eAtQeA
>t dt. (3)

if A ∈ Stab(n) [14].
We are interested in solving the Lyapunov equation (2)

without exact information about A, but with a state trajectory
of (1) on a certain time interval. In this letter, a dataset is
given as state trajectory data, i.e.,

DT :=
⋃

t∈[0,T )

{(t, x(t, x0))}, (4)

where T ∈ R+ ∪ {∞}.
This letter deals with the following question: Can we

uniquely determine the solution P to the Lyapunov equation
(2) only from the dataset DT ? To answer this question, we
introduce the notion of the data informativity. Let

Σ(DT ) := {Ã ∈ Stab(n) |
∀t ∈ [0, T ) ẋ(t, x0) = Ãx(t, x0)}.

This set is a collection of system matrices that is Hurwitz
and consistent to the given dataset DT . Notice that Σ(DT ) is
nonempty since we always have A ∈ Σ(DT ). Based on this
notation, the data informativity for the Lyapunov equation is
specified.

Definition 1: For the system (1), suppose that a dataset
DT in (4) is given. The dataset DT is said to be informative
for the Lyapunov equation (2) if

Φ(A1, Q) = Φ(A2, Q) (5)

holds for any (A1, A2) ∈ Σ(DT )×Σ(DT ). �

This notion represents whether the dataset DT has enough
information to uniquely determine the solution to the Lya-
punov equation (2). We emphasize that Definition 1 is
distinguished from the situation where the dataset has enough
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Fig. 1: The dataset DT in Example 1.

information to identify the system. In fact, the requirement
of Definition 1 could hold even if |Σ(DT )| > 1.

Example 1: Consider the system (1) with

A =

−2 0 1
2 −1.5 −1.5
0 0.5 −1.5

 ∈ Stab(3).

For this system, the dataset DT is given by x0 = [2 −5 1]>,
T = 1, and (4), as shown in Fig. 1.

Then, |Σ(DT )| > 1 holds but DT is informative for the
Lyapunov equation (2) with

Q =

 1 −1 −1
−4 7 1
2 −5 −1

 . (6)

The fact |Σ(DT )| > 1 can be verified from

Ã =

−3 −0.5 0.5
1 −2 −2
−1 0 −2

 ∈ Σ(DT ) (7)

and A 6= Ã. Moreover, one can prove that (5) holds for
any (A1, A2) ∈ Σ(DT ) × Σ(DT ). For example, we have
Φ(A,Q) = Φ(Ã,Q), where (A, Ã) ∈ Σ(DT )×Σ(DT ). �

Example 2: Consider the same system and dataset in
Example 1 and Q = I3. Then, DT is not informative for the
Lyapunov equation (2), which is shown as follows. Since

Φ(A, I3) =

0.3062 0.1250 0.1125
0.1250 0.5062 −0.0063
0.1125 −0.0063 0.3313

 ,
Φ(Ã, I3) =

 0.1697 −0.0154 0.0029
−0.0154 0.3620 −0.1197

0.0029 −0.1197 0.2486

 ,
we have Φ(A, I3) 6= Φ(Ã, I3). This implies that there exists
(A1, A2) ∈ Σ(DT )×Σ(DT ) such that (5) does not hold. �

In this letter, we are interested in an equivalent condition
for the dataset that uniquely determines the solution to the
Lyapunov equation (2). Therefore, we consider the following
problem concerning Definition 1.

Problem 1: Consider the system (1) and the Lyapunov
equation (2). Suppose that the dataset DT in (4) is given.
Determine whether DT is informative for the Lyapunov
equation (2). �
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III. CHARACTERIZATION OF SOLUTION TO
LYAPUNOV EQUATION

There is a close relationship between a unique solution to
the Lyapunov equation (2) and the controllable subspace of
the system

ẋ(t) = Ax(t) + bu(t). (8)

In this section, we address this relationship as a preliminary
to Problem 1.

Consider the system (8), where A ∈ Stab(n) is a Hurwitz
matrix and b ∈ Rn is a vector. For this system, we define
Mk(A, b) ∈ Rn×k by

Mk(A, b) :=
[
b Ab · · · Ak−1b

]
for k ∈ {1, 2, . . .}. The matrix Mn(A, b) is known as the
controllability matrix of the system (8). Then, let us introduce
the set Σc(A, b) ⊆ Rn×n by

Σc(A, b)

= {Ã ∈ Stab(n) |Mn+1(Ã, b) = Mn+1(A, b)} (9)

The set Σc(A, b) provides an equivalence class of the
Hurwitz matrices associated to the controllable subspaces of
(8).

The following theorem addresses the relationship between
Φ(A,Q) (i.e., the unique solution to the Lyapunov equation
(2)) and the equivalence class Σc(A, b).

Lemma 1: Consider the system (8) and the Lyapunov
equation (2). Then, (5) holds for any (A1, A2) ∈ Σc(A, b)×
Σc(A, b) if and only if there exists a matrix W ∈ Rn×n

such that
Q = Mn(A, b)WM>n (A, b) (10)

holds. �

Proof: See Appendix I.
Lemma 1 indicates that Φ(A,Q) = Φ(Ã,Q) holds for all

Ã ∈ Σc(A, b) if (10) holds for some W . In other words, a
solution P to (2) with (10) is uniquely determined only by
the knowledge of the controllable subspace of (8).

IV. INFORMATIVITY ANALYSIS

A. Solution to Data Informativity Problem

This section addresses Problem 1. In particular, we provide
a necessary and sufficient condition of the data informativity
for the Lyapunov equation (2), which is characterized by
the possibility of the matrix decomposition Q = X0WX>0 ,
called the data-basis decomposition.

A solution to Problem 1 is obtained by Lemma 1 and the
following two facts:

(I) The set Σ(DT ) is equal to Σc(A, x0).
(II) We can construct a matrix X0 from DT such that

Im(Mn(A, x0)) = Im(X0).
To formulate these facts, we first introduce several notions.

Let

X(DT ) := span

 ⋃
t∈[0,T )

{x(t, x0)}

 ⊆ Rn

be the minimum subspace containing the state trajectory
x(t, x0) on [0, T ). By using this set, the degree of DT and
a data-basis matrix of DT are defined as follows.

Definition 2: Let a dataset DT in (4) be given. Then,
deg(DT ) := dim(X(DT )) is called the degree of DT . �

Definition 3: Assume that deg(DT ) 6= 0. Then, the matrix
X0 ∈ Rn×deg(DT ) is called a data-basis matrix of DT if

Im(X0) = X(DT ) (11)

holds. �

Example 3: Consider the same system and dataset in
Example 1. Then, we have deg(DT ) = 2 because X(DT )
is a 2-dimensional plane in R3. On the other hand, we can
find that {x0, x(0.5, x0)} is a basis of X(DT ) and thus

X0 =
[
x0 x(0.5, x0)

]
=

 2 0.8221
−5 −1.6142

1 −0.0299

 (12)

is a data-basis matrix of DT . �

By using these notations, (I) and (II) are formalized by
the following theorem.

Lemma 2: Consider the system (1). Suppose that DT in
(4) is given. Assume that deg(DT ) 6= 0 and let X0 ∈
Rn×deg(DT ) be a data-basis matrix of DT . Then, the fol-
lowing relations hold:

(i) Σ(DT ) = Σc(A, x0).
(ii) Im(X0) = Im(Mn(A, x0)). �

Example 4: Consider the same system and dataset in
Example 1. Then, let us verify Lemma 2.

One can find that (i) holds for the datasetDT . For example,
Ã ∈ Σ(DT ) in (7) is an element of the equivalence class
Σc(A, x0) because we have

Mn+1(Ã, x0) = Mn+1(A, x0)

=

 2 −3 2 7
−5 10 −15 10
1 −4 11 −24

 . (13)

On the other hand, (ii) is checked by (12), (13), and a simple
calculation. �

Proof of Lemma 2: Let us prove (i). From Proposition 3
in [15], we obtain

Σ(DT ) = {Ã ∈ Stab(n) | (A− Ã)Aix0 = 0n

(i = 0, 1, . . . , n− 1)}.

Thus, we only show that

(A− Ã)Aix0 = 0 (14)

for each i = 0, 1, . . . , n− 1 is equivalent to Mn+1(Ã, x0) =
Mn+1(A, x0).

Let (14) holds for each i = 0, 1, . . . , n− 1. The equation
(14) with i = 0 provides Ax0 = Ãx0. By substituting this
relation into (14), we obtain Aix0 = Ãix0 for all i =
1, 2, . . . , n, which indicates Mn+1(Ã, x0) = Mn+1(A, x0).

By using a similar way, the converse result is shown. Let
Mn+1(Ã, x0) = Mn+1(A, x0). This provides Ax0 = Ãx0.
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This relation and Ai+1x0 = Ãi+1x0 derive (14). Hence, (i)
is proved.

Next, we give a proof of (ii). From (11), it is suffice to
show X(DT ) = Im(Mn(A, x0)). By using Lemma 16.6.2
in [14] and simple calculation, we have

X(DT ) =
⋃

t∈[0,T )

Im(eAtx0) =

 ⋂
t∈[0,T )

ker(x>0 e
A>t)

⊥
= Im(Mn(A, x0)).

Thus, (ii) is proved.
By using Lemma 1, Lemma 2, and the definition of data-

basis matrices, we eventually obtain a solution to Problem 1
as follows.

Theorem 1: Consider Problem 1. Let d := deg(DT ).
Then, the following statements hold:

(i) Suppose d 6= 0 and let a data-basis matrix X0 ∈ Rn×d

of DT be given. Then, DT is informative for the
Lyapunov equation (2) if and only if there exists a
matrix W ∈ Rd×d such that Q = X0WX>0 .

(ii) Suppose d = 0. Then, DT is informative for the
Lyapunov equation (2) if and only if Q = 0n×n. �

Theorem 1 indicates that the data informativity is char-
acterized by the possibility of the matrix decomposition in
the form of Q = X0WX>0 . This condition can be easily
checked because the decomposition can be regarded as a
linear matrix equation with the unknown W ∈ Rd×d. We
call this decomposition data-basis decomposition.

B. Examples

Consider the same system and dataset in Example 1 and
Q ∈ Rn×n in (6). Then, let us verify that DT is informative
for the Lyapunov equation (2) by using Theorem 1.

In this case, we can apply the data-basis decomposition
to Q. In fact, we can find that Q = X0WX>0 holds for
X0 ∈ R3×2 in (12) and

W =

[
0.9017 0.1153
−3.2866 3.8577

]
. (15)

Hence, the dataset DT is informative for the Lyapunov
equation (2).

Meanwhile, we can check the data informativity for other
cases. For example, DT is not informative for the Lyapunov
equation (2) with Q = I3. This is because there is no
feasible solution W ∈ R2×2 to the linear matrix equation
I3 = X0WX>0 for X0 in (12).

V. DATA-DRIVEN COMPUTATION
A. Solution to Data-driven Computation Problem

This section provides a data-driven method for solving
(2) based on our data informativity and the data-basis de-
composition of Q. A key idea of the proposed method is
constructing a generalized discrete-time Lyapunov equation
equivalent to the original Lyapunov equation (2) by using
the dataset DT .

Consider the following problem about a data-driven com-
putation of the solution to the Lyapunov equation (2).

Problem 2: Consider the situation in Problem 1. Assume
that A ∈ Stab(n) is unknown but DT is informative for the
Lyapunov equation (2). Then, calculate Φ(A,Q). �

A solution to Problem 2 is formulated as follows. For
given ti ∈ [0,∞) (i = 1, 2, . . . , d), let

X(t) :=
[
x(t+ t1, x0) x(t+ t2, x0) · · · x(t+ td, x0)

]
,

where d = deg(DT ). Note that X(t) (t ∈ [0, h]) can be
constructed from the dataset DT if

h+ ti < T (i = 1, 2, . . . , d) (16)

holds. Then, the following theorem is a solution to Prob-
lem 2.

Theorem 2: Consider Problem 2. Let d := deg(DT ).
Then, the following two statements hold.

(i) Suppose d 6= 0. Assume that X(0) is a data-basis
matrix of DT and W ∈ Rd×d is a matrix satisfying
Q = X(0)WX>(0). Let h ∈ R+ be a positive
number satisfying (16). Then, the generalized discrete-
time Lyapunov equation

X(h)V X>(h)−X(0)V X>(0)

= −
∫ h

0

X(t)WX>(t) dt (17)

has a unique solution V ∈ Rd×d and Φ(A,Q) =
X(0)V X>(0) holds.

(ii) Suppose d = 0. Then, Φ(A,Q) = 0n×n holds. �

Proof: The statement (ii) is directly derived from The-
orem 1 (ii) and (3). On the other hand, (i) is the consequence
of the following three facts.
(a) There exists a matrix Ṽ ∈ Rd×d satisfying

Φ(A,Q) = X(0)Ṽ X>(0). (18)

(b) The matrix Ṽ in (a) is a solution to (17).
(c) The solution V ∈ Rd×d to (17) is unique if it has at

least one solution.
The fact (a) is directly derived by Lemma 3 in Appendix I-

A. In the following, we show (b) and (c).
The fact (b) is proved as follows. Since A is Hurwitz, (2)

is equivalent to the discrete-time Lyapunov equation

eAhP (eAh)> − P = −
∫ h

0

eAtQ(eAt)> dt.

In this equation, we can replace
∫ h

0
eAtQ(eAt)>dt with∫ h

0
X(t)WX>(t)dt because

eAtQ(eAt)> = eAtX(0)WX>(0)(eAt)> = X(t)WX>(t),

where we use
eAtX(0) = X(t). (19)

Therefore, we obtain the following relation:

eAhΦ(A,Q)(eAh)> − Φ(A,Q) = −
∫ h

0

eAtQ(eAt)> dt.

(20)
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Moreover, we have

eAhΦ(A,Q)(eAh)> = eAhX(0)Ṽ X>(0)(eAh)>

= X(h)Ṽ X>(h) (21)

from (18) and (19). By substituting (18) and (21) into (20),
we eventually obtain the relation (17) with V = Ṽ , which
proves (b).

Next, we show (c). Let V1, V2 ∈ Rd×d be solutions to
(17). Then, we have

eAhX(0)(V1 − V2)X>(0)(eAh)>

−X(0)(V1 − V2)X>(0) = 0n×n. (22)

from (17) and (19). Since (22) is a variant of a discrete-time
Lyapunov equation and eAh is Schur, (22) implies X(0)(V1−
V2)X>(0) = 0n×n. This relation and the column full rank
property of X(0) provide V1 = V2. This proves (c).

These facts complete the proof.
Theorem 2 claims that the solution P to the Lyapunov

equation (2) is obtained by solving the generalized discrete-
time Lyapunov equation (17) constructed by the dataset DT .
Notice that Theorem 2 only assumes that the dataset DT

is informative for the Lyapunov equation (2). This indicates
that Theorem 2 might be applicable even when the previous
results in [5], [6] cannot be applied.

B. Examples

Consider the same system and dataset in Example 1 and
Q ∈ Rn×n in (6). Then, let us compute Φ(A,Q) by using
Theorem 2. Note that DT is informative for the Lyapunov
equation (2) from Section IV-B. The true value of Φ(A,Q)
is given by

Φ(A,Q) =

 0.3 −0.325 −0.375
−1.075 1.8 0.35
0.475 −1.15 0.2

 . (23)

By picking h = 0.4 and X(t) = [x(t, x0) x(t+ 0.5, x0)],
we have X(0) in the right-hand side of (12) and

X(h) =

 1.0027 0.3350
−2.0693 −0.5138

0.0639 −0.1562

 .
Moreover, we obtain W satisfying (15) and∫ h

0

X(t)WX>(t) dt =

 0.2280 −0.2499 −0.2061
−0.8485 1.4558 0.2412

0.3925 −0.9560 0.1710

 .
Therefore, solving (17) yields

V =

[
0.1805 0.1120
−0.7385 0.9001

]
and we eventually obtain Φ(A,Q) by

X(0)V X>(0) =

 0.3000 −0.3250 −0.2750
−1.0750 1.8000 0.3500

0.4750 −1.1500 0.2000

 .
This matrix is equal to the true value in (23). Hence,
the solution to the Lyapunov equation (2) is successfully

computed from the dataset DT . It is worth noting that the
proposed method is applicable even if DT is not informative
for system identification (see Example 1).

VI. CONCLUSIONS

This letter addresses the data informativity for the Lya-
punov equation (2). This notion represents a property
whether the solution to the Lyapunov equation is uniquely
determined by given data. First, we clarify the relationship
between the solution to the Lyapunov equation and the
controllable subspace of the system (8). Second, we show
that the data informativity for the Lyapunov equation (2) is
equivalent to the possibility of the data-basis decomposition
of Q. Finally, based on this result, we present a data-driven
method for solving the Lyapunov equation. This method has
a potential to compute the solution from given data even if
the data do not contain sufficient information to identify the
system.

In future work, we plan to consider data informativity
problems for other classes of Lyapunov equations, e.g.,
A>P + PA = −Q.

APPENDIX I
PROOF OF LEMMA 1

A. Proof of If Part

As a preliminary to the proof, we introduce the following
result.

Lemma 3: Let A ∈ Stab(n), b ∈ Rn, and Q ∈
Rn×n be given in a similar way to Lemma 1. Suppose
d = rank(Mn(A, b)) and let M̄ := Md(A, b) If Q =
M̄W̄M̄>, there exists a matrix V (W̄ , M̄) ∈ Rd×d satisfying
Φ(A,Q) = M̄V (W̄ , M̄)M̄>. �

Proof: This lemma is a variant of Theorem 1 in [16]
and is proved in a similar way to the original proof and the
following fact: There exists a coprime monic polynomial α
which has the degree d satisfying α(A)b = 0n. This fact
is derived from the linear dependence of the vectors Aib
(i = 0, 1, . . . , d).

By using Lemma 3, let us prove the if part of Lemma 1,
i.e., (5) holds for any (A1, A2) ∈ Σc(A, b)×Σc(A, b). From
(10) and Im(Mn(A, b)) = Im(M̄), there exists W̄ ∈ Rd×d

satisfying we have Q = M̄W̄M̄>. Therefore, Lemma 3 and
(9) provide (5) for all (A1, A2) ∈ Σc(A, b)×Σc(A, b). This
completes the proof.

B. Proof of Only-if Part

Let U ∈ Rn×n be a unitary matrix such that U =
[B1 B2], B1 ∈ Rn×d, B2 ∈ Rn×(n−d), and Im(B1) =
Im(Mn+1(A, b)). Then, the following facts prove the only if
part of Lemma 1.
(a) There exist F11 ∈ Stab(d) and F22 ∈ Stab(n − d)

satisfying (Ã1, Ã2) ∈ Σc(A, b)×Σc(A, b), where

Ã1 = U

[
F11 0d×(n−d)

0(n−d)×d F22

]
U>, (24)

Ã2 = U

[
F11 0d×(n−d)

0(n−d)×d F22 − In−d

]
U>.
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(b) If Φ(Ã1, Q) = Φ(Ã2, Q) holds, there exists W̃11 ∈
Rd×d satisfying Q = B1W̃11B

>
1 .

(c) The consequent of (b) is equivalent to the existence of
W ∈ Rd×d satisfying Q = BWB>.

The fact (c) is trivial. Therefore, we prove (a) and (b).
We first show (a). Let Fij ((i, j) ∈ {1, 2}2) be matrices

satisfying

A = U

[
F11 F12

F21 F22

]
U>. (25)

In (25), we have

F21 = 0(n−d)×n, (26)

which is derived as follows. Since Im(Mn+1(A, b)) is an
A-invariant subspace, B>2 AB1 = 0(n−d)×d holds. By sub-
stituting (25) into this relation, we obtain

B>2
[
B1 B2

] [F11 F12

F21 F22

] [
B>1
B>2

]
B1 = F21 = 0(n−d)×n,

where we use B>1 B1 = Id, B>2 B2 = In−d, and B>2 B1 =
0(n−d)×d. Moreover, the Hurwitz properties of F11 and F22

are inherited from that of A because of (25) and (26).
From (25) and (26), we can find that AB1, Ã1B1, and

Ã2B1 are all equal to B1F11, which implies Mn+1(A, b) =
Mn+1(Ã1, b) = Mn+1(Ã2, b). This relation and (Ã1, Ã2) ∈
Stab(n)× Stab(n) prove (a).

Next, we prove (b). In the following, let

Q = U

[
W̃11 W̃12

W̃21 W̃22

]
U>, (27)

and we show that W̃12, W̃21, and W̃22 are all equal to zero
matrices. From (24) and (27), Φ(Ã1, Q) is expressed as

Φ(Ã1, Q) =

∫ ∞
0

eÃ1tQeÃ
>
1 t dt

= U

∫ ∞
0

[
eF11tW̃11e

F>
11t eF11tW̃12e

F>
22t

eF22tW̃21e
F>

11t eF22tW̃22e
F>

22t

]
dt U>

= U

[
Φ(F11, W̃11) Ψ(F11, F22, W̃12)

Ψ(F22, F11, W̃21) Φ(F22, W̃22)

]
U>,

where
Ψ(F11, F22, W̃12) :=

∫ ∞
0

eF11tW̃12e
F>

22t dt. (28)

Thus, Φ(Ã1, Q) = Φ(Ã2, Q) implies the following three
equations:

Ψ(F11, F22, W̃12) = Ψ(F11, F22 − In−d, W̃12), (29)

Ψ(F22, F11, W̃21) = Ψ(F22 − In−d, F11, W̃21), (30)

Φ(F22, W̃22) = Φ(F22 − In−d, W̃22). (31)

From (28) and (29), Ψ(F11, F22, W̃12) is a solution to the
two Sylvester equations

F11P + PF>22 = −W̃12,

F11P + P (F22 − In−d)> = −W̃12.

By subtracting these two equations, we obtain the rela-
tion Ψ(F11, F22, W̃12) = 0d×(n−d), which implies W̃12 =

0d×(n−d) from (28). In addition, W̃21 = 0(n−d)×d and
W̃22 = 0(n−d)×(n−d) are derived by applying a similar
procedure to (30) and (31). These facts complete the proof.
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