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Abstract— This letter studies the problem of cooperative
nearest-neighbor control of multi-agent systems where each
agent can only realize a finite set of control points. Under
the assumption that the underlying graph representing the
communication network between agents is connected and
the interior of the convex hull of all finite actions of each
agent contains the zero element, consensus or distance-based
formation problems can practically be stabilized by means of
nearest-neighbor control approach combined with the well-
known consensus control or distributed formation control
laws, respectively. Furthermore, we provide the convergence
bound for each corresponding error vector which can be
computed based on the information of individual agent’s
finite control points. Finally, we show Monte Carlo numerical
simulations that confirm our analysis.

I. INTRODUCTION

The consensus (rendezvous/agreement) and formation
control problems are two prototypical cooperative control
problems in multi-agent systems (MAS). For systems with
continuous input space, the problems of designing control
laws to achieve consensus or to maintain a formation
shape have been well-studied in the literature, for ex-
ample [1]–[5], among many others. However, practical
implementation of MAS’ control designs may have to
deal with physical constraints in the actuators, sensors
and mechanisms, or with information constraints in the
communication channel. Such constraints may be encoun-
tered due to the limitation of digital communication [6],
[7] or due to the limitation of the mechanical design
of the system such as the use of fixed set of discrete
actuation systems in Ocean Grazer wave energy converter
[8], [9]. Designs, analysis, and numerical implementation
of control laws for such networked systems have also
received considerable attention in the literature, see for
example [10]–[13].

The temporal and spatial discretization of inputs, states
and outputs of networked control systems are typically
done via quantization operator. There are three classes
of quantizers that are typically used in the literature,
namely, uniform, asymmetric, and logarithmic quantizers
[14]. The application and analysis of cooperative control
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with quantizers have been studied, for instance, in [10]–
[18]. However, when minimality requirement is imposed
on the number of control input points or on the number
of symbols in the communication channel, the design
and analysis tools using aforementioned quantizers can
no longer be used to address this problem. An example
of such case is mechanical systems with finite discrete
actuation points as in [8], [9].

In [19], [20], these quantization operators are consid-
ered as nearest-neighbor operators that map the input
value to the available points in a given discrete set U ,
which can have a finite or infinite number of members.
The authors study the use of U with minimal cardinality
such that the closed-loop systems are practically stable.
Particularly, it is shown that for a generic class of m-
dimensional passive systems having proper storage func-
tion and satisfying the nonlinear large-time initial-state
norm observablility condition1, it can be practically sta-
bilized using only m+2 control actions. As a comparison,
using the q-ary quantizers2 [12], [13], [22], where q input
values per input dimension are defined, the stabilization
of the systems requires U whose cardinality is qm (or
qm + 1 if the zero element is not in the range of the q-
ary quantizers).

In this letter, we present the application of nearest-
neighbor control to the cooperative control of multi-
agent systems. We study the combination of the nearest-
neighbor approach studied in [19], [20] and the stan-
dard distributed continuous control laws for multi agent-
cooperation as in [5], [10], [12]. Specifically, we study
nearest-neighbor distributed control for consensus and
distance-based formation control problems. We emphasize
that the notion of nearest-neighbor control is consistent
with the prior work in [19]-[20] and it is not related to the
notion of neighbors in the graph of multi-agent systems.
We show the practical stability property of the closed-
loop system where the usual consensus and distance-based
formation Lyapunov function are used in the analysis. We
present the upper bound of the practical stability of the
consensus or formation error that can be computed based
on the local bound from each individual Ui at each agent.

The rest of the letter is organized as follows. Some
notations and preliminaries on continuous consensus and
distance-based formation control design in addition to the

1We refer interested readers to [21] for a reference to the notion of
nonlinear norm observability.

2In this case, binary quantizer is given by q = 2 and ternary quantizer
corresponds to q = 3.
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relevant properties of the nearest-neighbor operator are
presented in Section II. In Section III, we present our main
results on the nearest-neighbor consensus and distance-
based formation control laws along with the upper bound
analysis on the practical stability of the error. In Section IV,
we show numerical analysis using Monte Carlo simulations
that show the validity of our main results. Finally, the letter
is concluded with conclusions in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

Notation: For a vector in Rn, or a matrix in Rm×n,
we denote the Euclidean norm and the corresponding
induced norm by ∥·∥. The direct sum of two vector spaces
is denoted by ⊕. The Kronecker product of two matrices
is denoted by ⊗. For a linear mapping T (x) = Ax , we
denote the kernel and image of T by Ker(A) and Im(A),
respectively. For any point c ∈ Rn, the set Bε(c) ⊂ Rn is
defined as, Bε(c) := {ξ ∈ Rn|∥ξ− c∥ ≤ ε}. For simplicity,
we write Bε(0) as Bε. Furthermore, we write Bε ⊆ Rn

as Bn
ε. The inner product of two vectors µ,ν ∈ Rm

is denoted by 〈µ,ν〉. For a given set S ⊂ Rm, and
a vector µ ∈ Rm, we let 〈µ,S 〉 := {〈µ,ν〉 |ν ∈ S }.
For a discrete set U , its cardinality is denoted by
card(U ). The convex hull of vertices from a discrete
set U is denoted by conv(U ). The interior of a set
S ⊂ Rn is denoted by int (S). For a countable set
S ⊂ Rm, the Voronoi cell of a point s ∈ S is defined
by VS (s) := {x ∈ Rm | ∥x − s∥ ≤ ∥x − v∥, ∀v ∈ S \ {s}}.
For a discontinuous map F : Rn → Rn, the Krasovskii
regularization of F is the set-valued map defined by
K (F(x)) :=
∩
δ>0 conv(F(x +Bδ)).

As discussed in the Introduction, we will study the
use of nearest neighbor control for solving two multi-
agent problems of consensus and formation control. In this
regards, we consider an undirected graph G = (V ,E ) for
describing the network topology, where V is the set of N
agents and E ⊂ V ×V is a set of M edges that define the
neighboring pairs. Moreover we assume that the graph G
is connected. For every edge k in G , we can associate one
node by a positive sign and the pairing node by a negative
sign. Correspondingly, the incidence matrix B ∈ RN×M can
be defined by

bi,k =

 +1 if node i has the positive sign in edge k
−1 if node i has the negative sign in edge k
0 otherwise

Using B, the Laplacian matrix L is given by L = BB⊤ whose
kernel, by the connectedness of G , is spanned by 1N .

A. Multi-Agent Consensus

For every agent i in G , it is described by

ẋ i = ui . (1)

where x i(t) ∈ Rm and ui(t) ∈ Rm denote the state and
input variables, respectively. The distributed consensus
control problem is related to the design of distributed

control law ui for each agent based on the information
from the neighboring agents so that all agents converge
to a consensus point. The well-known control law u =
−(L ⊗ Im)x solves this problem, where it can be shown
that by using the consensus Lyapunov function V (x) =
1
2 x⊤ (L ⊗ Im) x , limt→∞ ∥x i(t) − x̄∥ = 0 for all i and
x̄ = 1

N

∑
i x(0) ∈ Rm. We define the consensus manifold

E where all agents agree with each other by E := { x̄ ∈
RmN | x̄ = x̄1 = x̄2 = . . .= x̄N}.

The stability of the closed-loop system is, in fact, carried
out by introducing the relative position variable

zk =

¨
x i − x j if node i is the positive end of edge k,

x j − x i if node i is the negative end of edge k,
(2)

and we write its compact form as z = (B⊤ ⊗ Im)x .
The closed-loop system of the consensus problem is then
expressed as

ż = −(B⊤B ⊗ Im)z (3)

and the consensus Lyapunov function becomes V (z) =
1
2 z⊤z so that stability can then be shown by using LaSalle’s
invariance principle. That is, z→ 0 as t →∞.

The generalization of the result to the case, where
binary and ternary quantizers are used, can be found in
[12], [13], [22].

B. Distance-Based Multi-Agent Formation Control

Consider the same set of n agents as described in sec-
tion II-A. The distributed distance-based formation control
problem is, in principal, similar to the control design
for consensus problem. The main difference is that in
the asymptote, all agents must converge to a prescribed
infinitesimally rigid formation shape represented by the
framework (G = (V ,E ), x) and the given desired distance
between connected agents. The framework (G , x) is said
to be infinitesimally rigid if rank(R(z)) = mN − (m+ 1)m

2
where R(z) = D⊤z (B⊤ ⊗ Im) is the rigidity matrix and
Dz takes the form of the block-diagonal matrix Dz :=
diag (z) ∈ RMm×M with z being the relative position vector
as defined in section II-A [10], [23], [24]. For given
desired distance dk associated to the relative position zk,
k = 1, . . . , M , the well-known control law u= −(B⊗ Im)Dze
where e is the desired error vector defined by

e =
�∥z1∥2 − d2

1 , · · · , ∥zM∥2 − d2
M

�⊤
(4)

solves the distance-based distributed formation control
under the assumption that the given formation graph is
infinitesimally rigid.

The stability of above distributed formation control
problem can be analyzed by considering the dynamics of
the closed-loop autonomous multi-agent system given by

ż = (B⊤ ⊗ Im) ẋ = −(B⊤B ⊗ Im)Dze (5)

ė = D⊤z ż = −D⊤z (B⊤B ⊗ Im)Dze. (6)

Using the usual distance-based formation Lyapunov func-
tion J(e) = 1

4 〈e, e〉, the local exponential convergence of
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e to zero can be shown, which means that ∥zk(t)∥ → dk
locally and exponentially as t →∞.

C. Nearest-Neighbor Map

(A1) For a given set U := {0, u1, u2, . . . , up}, there exists
an index set I ⊂ {1, . . . , p} such that the set V :=
{ui}i∈I ⊂U defines the vertices of a convex polytope
satisfying, 0 ∈ int (conv (V )).

Lemma 1 ( [20, Lemma 1] ). Consider a discrete set U ⊂
Rm that satisfies (A1). Then, there exists δ > 0 such that

VU (0) ⊆ Bδ, (7)

where VU is the Voronoi cell of U as defined before. In other
words, the following implication holds for each η ∈ Rm

∥η∥> δ⇒ ∃ ui ∈U s.t. ∥η− ui∥< ∥η∥. (8)

We define the nearest-neighbor mapping ϕi : Rm ⇒ Ui
as

ϕi(η) := argmin
v∈Ui

{∥v −η∥} . (9)

Lemma 2. [20] Consider the nearest-neighbor mapping ϕi
given in (9) and a discrete set Ui := {0, u1, u2, . . . , up}
satisfying (A1). For a fixed y ∈ Rm, let ϕi(−y) = {u j} j∈J
for some index set J ⊂ {1, . . . , p}. Then the inequality

− ∥u j∥ · ∥y∥ ≤ 〈u j , y〉 ≤ −1
2
∥u j∥2 (10)

holds for all j ∈ J .

We refer to [20] for the proof of Lemma 2. By the
definition of ϕi , the inequality ∥u j + y∥2 ≤ ∥uk + y∥2
holds for j ∈ J and k ∈ {0, 1, . . . , p}. By noting that
∥u j + y∥2 = 〈u j + y, u j + y〉 = ∥u j∥2 + 2〈u j , y〉+ ∥y∥2 and
fixing uk = 0, we have that 〈u j , y〉 ≤ − 1

2∥u j∥2. Moreover
〈u j , y〉 ≥ −

u j



∥y∥. Hence, the inequality (10) holds for
every y ∈ Rm.

III. MAIN RESULTS

Prior to presenting the main results, we need the fol-
lowing technical lemma, which establishes the relationship
between a ball in the range of (B⊗ Im)z and a ball of the
same radius in z. It is used later to get an upperbound on
the practical stability of the consensus or formation error.

Lemma 3. Consider an undirected and connected graph G =
(V ,E ). Let x i ∈ Rm, i = 1, . . . , N , be the state variable of
the i-th agent as in (1) and define z = (B⊤ ⊗ Im)x ∈ RMm.
If both (B ⊗ Im)z ∈ BNm

δ
and z ∈ Im(B⊤ ⊗ Im) hold then

z ∈ BMm
δ

.

PROOF: Firstly, by defining the space Ω := Ker(B ⊗ Im)⊕�
Im(B⊤⊗ Im)∩BMm

δ

�
, if z ∈ Ω then (B⊗ Im)z ∈ Im(B⊗ Im)∩

BNm
m∥B∥δ (which is a superset ball that contains BNm

δ
). Since

z = (B⊤ ⊗ Im)x , it necessarily holds that z ∈ Im(B⊤ ⊗ Im).
Combining this with z ∈ Ω, ∥(B ⊗ Im)z∥ ≤ δ implies that
z ∈ Ω ∩ Im(B⊤ ⊗ Im). Since the non-zero elements of B
are either 1 or −1 and since the graph is connected, it
follows that for all z ∈ Ω ∩ Im(B⊤ ⊗ Im), we have ∥z∥ ≤

∥(B ⊗ Im)z∥ ≤ m∥B∥δ. Hence, for all z ∈ Ω∩ Im(B⊤ ⊗ Im),
if ∥(B ⊗ Im)z∥ ≤ δ then ∥z∥ ≤ δ. Moreover, by definition
Ker(B) ∩ Im(B⊤) = ;, so that z ∈ �Ker(B ⊗ Im) ∩ Im(B⊤ ⊗
Im)
� ⊕ �Im(B⊤ ⊗ Im) ∩ BMm

δ

�
= Im(B⊤ ⊗ Im) ∩ BMm

δ
. We

can now conclude that if both ∥(B ⊗ Im)z∥ ≤ δ and z ∈
Im(B⊤ ⊗ Im), then ∥z∥ ≤ δ. �

A. Consensus Protocol With Finite Set of Actions

In this subsection, we propose a nearest-neighbor input-
quantization approach for solving the practical consensus
problem. In this case, every agent i ∈ {1, . . . , n} is given by
a single-integrator dynamics (1) and its control input takes
value from a set of finite points Ui := {0, ui,1, ui,2, . . . , ui,pi

}
satisfying (A1) along with their respective quantity δi
satisfying (8). For this problem, we propose a nearest-
neighbor controller for consensus problem by assigning
ui = ϕi(−(L⊗ Im)x) with ϕi as in (9). The corresponding
closed-loop system can be written as

ẋ = Φ(−(L ⊗ Im)x) (11)

where Φ is understood agent-wise, i.e.

Φ(η) =
�
ϕ1(η1)⊤, · · · , ϕn(ηn)⊤

�⊤
. (12)

In the relative position coordinate, (11) can be rewritten
as

ż = (B⊤ ⊗ Im)Φ(−(B ⊗ Im)z). (13)

The stability of (13) is shown in the following proposition.

Proposition 1. For given sets of finite control points Ui :=
{0, ui,1, ui,2, . . . , ui,pi

}, i = 1, . . . , N , satisfying (A1) along
with their respective Voronoi cell upper bound δi satisfying
(8), consider the closed-loop MAS in (13), where Φ is as in
(12). Then for any initial condition z(0) = z0, z(t)→ Bδ as

t →∞ where δ =
N∑

i=1
δi .

PROOF: As pursued in [20], since Φ is a non-smooth
mapping, we can embed the differential equation (13) into
a regularized differential inclusion given by

ż ∈ (B⊤ ⊗ Im)K (Φ(−(B ⊗ Im)z)). (14)

Using the usual consensus Lyapunov function V (z) =
1
2 z⊤z, it follows that

V̇ (z) ∈ 〈(B ⊗ Im)z,K (Φ(−(B ⊗ Im)z))〉
=

n∑
i=1

〈(bi ⊗ Im)z,K (ϕi(−(bi ⊗ Im)z))〉

=
n∑

i=1

〈(bi ⊗ Im)z, conv(W c
i )〉,

where bi is the i-th row vector of the incidence matrix B
and W c

i := ϕi(−(bi⊗ Im)z). Following Lemma 2, it follows
that for every i ∈ {1, . . . , N}, we have that
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• if 0 ̸∈ W c
i , then

〈(bi ⊗ Im)z, conv(W c
i )〉

⊂ [−

umax
i



∥(bi ⊗ Im)z∥ ,−0.5


umin

i



2]
where


umax

i



 = max
wi∈W c

i

∥wi∥ and


umin

i



 = min
wi∈W c

i

∥wi∥;
or else

• if 0=W c
i , then 〈(bi ⊗ Im)z, conv(W c

i )〉= {0}.
Hence, for any given time t ≥ 0, whenever −(bi ⊗

Im)z(t) /∈ int(VUi
(0)) for some i, we have V̇ (z(t)) < 0,

i.e., the Lyapunov function V (z(t)) is strictly decreasing.
Otherwise V̇ (z(t)) = 0. This implies that all Krasovskii
solutions of (13) converge to the invariant set Ψ = {z| −
(bi ⊗ Im)z ∈ int(VUi

(0)), ∀i}. In the set Ψ, for each i =
1, . . . , N , it must be that ∥(bi ⊗ Im)z∥ ≤ δi . Thus

∥(B ⊗ Im)z∥ ≤
n∑

i=1

∥(bi ⊗ Im)z∥ ≤
n∑

i=1

δi = δ.

By using Lemma 3 and since ∥(B ⊗ Im)z∥ ≤ δ and z =
(B⊤ ⊗ Im)x , we can conclude that ∥z∥ ≤ δ.

It has been shown above that the relative position
coordinate z converges to a ball with size relative to the
finite sets of actions of all agents and the network topology.
Consequently, all agents represented by position x i , i =
1, . . . , N are said to reach consensus in the neighborhood
of the consensus manifold E. �

B. Distance-Based Formation With Finite Sets of Actions

Consider a set of n agents governed by the single
integrator dynamics, where each agent can take value only
from a given set of finite points Ui as in subsection III-
A. Given a desired distance vector d =

�
d1 · · · dM

�⊤
representing desired distance constraints that define the
desired formation shape, where for each k = 1, . . . , M ,
dk = di j is the desired distance between the ith and jth
agent in the formation. For this problem, we propose the
nearest-neighbor distance-based control law u = Φ(−(B ⊗
Im)Dze) with Φ be as in (12), Dz and e be as described
in subsection II-B. In this case, the closed-loop system
represented by (5) and (6) becomes

ż = (B⊤ ⊗ Im)Φ(−(B ⊗ Im)Dze) (15)

ė = D⊤z (B⊤ ⊗ Im)Φ(−(B ⊗ Im)Dze). (16)

The stability of above system is analyzed in the following
proposition.

Proposition 2. For given sets of finite control points Ui :=
{0, ui,1, ui,2, . . . , ui,pi

}, i = 1, . . . , N , satisfying (A1) along
with their respective Voronoi cell upper bound δi satisfying
(8), consider the closed-loop MAS (15) and (16) where Φ
is as in (12). Assume that the formation graph is infinites-
imally rigid. Then for any initial condition (z(0), e(0)) in
the neighborhood of the desired formation shape, there exists
δ̄ > 0 such that ż(t)→ 0, ė(t)→ 0 and e(t)→ Bδ̄.

PROOF: Similar to the proof of Proposition 1, since Φ is a
non-smooth mapping, we consider instead the regularized
differential inclusion of the closed-loop systems given by

ż ∈ (B⊤ ⊗ Im)K (Φ(−(B ⊗ Im)Dze)) (17)

ė ∈ D⊤z (B⊤ ⊗ Im)K (Φ(−(B ⊗ Im)Dze)). (18)

Using the usual distance-based formation Lyapunov
function J(e) = 1

4 〈e, e〉, it follows that

J̇(e) = 〈e, D⊤z (B⊤ ⊗ Im)Φ(−(B ⊗ Im)Dze)〉
= 〈(B ⊗ Im)Dze,Φ(−(B ⊗ Im)Dze)〉
∈ ¬(B ⊗ Im)Dze,K (Φ(−(B ⊗ Im)Dze))

¶
=

n∑
i=1

¬
(bi ⊗ Im)Dze, conv(W f

i )
¶
,

where W f
i := ϕi(−(bi⊗ Im)Dze). Following similar compu-

tation as before, for every i ∈ {1, . . . , N}, we have that

• if 0 ̸∈ W f
i , then

〈(bi ⊗ Im)Dze, conv(W f
i )〉

⊂ �−

umax
i



∥(bi ⊗ Im)Dze∥ ,−0.5


umin

i



2�
where


umax

i



 = max
wi∈W f

i

∥wi∥ and


umin

i



 = min
wi∈W f

i

∥wi∥;
else

• if {0}=W f
i , then 〈(bi ⊗ Im)Dze, conv(W f

i )〉= {0}.
Hence, at any given time t ≥ 0, whenever −(bi ⊗

Im)Dze /∈ int(VUi
(0)) for some i, we can conclude that the

Lyapunov function J(e(t)) is strictly decreasing. Otherwise
J̇(e(t)) = 0. By the radially unboundedness of J(e), this
means that as t → ∞, the error function e converges
to a ball Bce

for some ce > 0. Moreover, since ∥z∥ can
be written as a continuous function of e, namely ∥z∥ =Ç∑M

k=1 |ek + d2
k |, we also have that z ∈ Bcz

for some cz > 0.
The boundedness of e and z implies that all Krasovskii
solutions of the system (17) and (18) converge to the
invariant set Ψ = {(z, e)| − (bi ⊗ Im)Dze ∈ int(VUi

(0)), ∀i}
where the state (z, e) remains stationary.

For the rest of the proof, we analyze the bound of e
in the invariant set Ψ so that we can obtain the ball
size around the origin where the formation error state e
converges to. By the definition of Ψ above, it follows that

∥(bi ⊗ Im)Dze∥ ≤ δi ,

holds for all e ∈ Ψ and for all i = 1, . . . , n. Hence we have
that

∥(B ⊗ Im)Dze∥ ≤
n∑

i=1

∥(bi ⊗ Im)Dze∥ ≤
n∑

i=1

δi =: δ.

Using the same argumentation as in the proof of Propo-
sition 1, we can conclude using Lemma 3 that both
∥(B ⊗ Im)Dze∥ ≤ δ and Dze ∈ Im(B⊤ ⊗ Im) imply that
∥Dze∥ ≤ δ. Note that

∥Dze∥=qe⊤D⊤z Dze =
Æ

e⊤Dz̃e, (19)
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where z̃ = [ ∥z1∥2 ··· ∥zM∥2 ]⊤. We will now establish the local
practical stability of the closed-loop systems for the error
state e. Using the radially unbounded function J(e(t))
which is non-increasing as a function of t, ∥e(t)∥ ≤
∥e(0)∥ for all t ≥ 0. Let us initialize the agents in the
neighborhood of the desired formation shape, so that
∥e(0)∥<min{d2

i }= c1. Thus, in this case,

∥z(t)∥2 =
M∑

k=1

|ek(t) + d2
k | ≥

M∑
k=1

(d2
k − c1) = c2

2 > 0,

for all t ≥ 0 and for some c2 > 0. Combining this with
(19), we get ∥Dze∥ = pe⊤Dz̃e ≥ c2∥e∥. Hence we can
conclude that in the invariant set Ψ, we have ∥e∥ ≤
1
c2
∥Dze∥ ≤ δ

c2
. �

IV. NUMERICAL SIMULATIONS

In this section, we provide numerical analysis to the
proposed cooperative nearest-neighbor control of multi-
agent systems, for both the consensus problem, as well as,
the formation control problem.

For the numerical analysis, we perform Monte-Carlo
simulations with 1000 samples of simulation with the
following simulation setup: 1) for each simulation, the
number of agents are generated randomly between 3 to 7
agents; 2) the agents are initialized in equidistant circular
positions with prescribed rigid communication networks
and then placed on the 2-dimensional Euclidean space
with additional random numbers to the initial coordinates;
3) each agent can only realize motion in three distinct
directions in the direction of the vertices of an equilateral
triangle with fixed length or stay at their current position.
The set of actions realizable by each agent is described by

Ui =

δi

�
cos(θi) − sin(θi)
sin(θi) cos(θi)

�n�
0
0

�
,
�

sin(0)
cos(0)

�
,
h

sin( 2π
3 )

cos( 2π
3 )

i
,
h

sin( 4π
3 )

cos( 4π
3 )

io
where δi is the smallest upper-bound of Voronoi cell
satisfying Lemma 1 for each agent i = 1, . . . , N as in
[20, Example 2] and θi is the randomized rotation angle
within the interval [0, 2π); 4) for each simulation, the
corresponding δi of each agent is chosen randomly so that∑

i δi = 1, i.e. the maximum error bound is 1; and 5) the
results are processed to obtain the 95% confidence interval
statistics for the error vectors, which is the vector z for
the consensus problem and the vector e for the formation
control problem. We also analyze their minimum and
maximum trajectories.

Using the above simulation setup, the results are sum-
marized and presented in Figures 1–4. The motion ani-
mation of both cases can be seen in the following video
https://s.id/MAS-NNC. It can be seen from Fig-
ure 1 that by using the nearest-neighbor consensus control
as proposed in Proposition 1, the agents reach practical
consensus as expected. Furthermore, Fig. 2 shows that in
the steady-state, the norm of the error vector z is always
below 1 for all samples, which confirms the theoretical
result in Proposition 1.

Fig. 1. An example of consensus mechanism of a system with seven
agents communicating over a rigid network where series of actions are
chosen by means of nearest-neighbor consensus protocol. This example
is taken from one of the 1000 random simulations.

Fig. 2. Statistics of the norm of consensus error function z with 95%
confidence interval (blue area) and 100% data (red area).
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Fig. 3. An example of agent trajectories for nearest-neighbor formation
control taken from the 1000 random simulations.
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Fig. 4. Statistics of the norm of formation error function e with 95%
confidence interval (blue area) and 100% data (red area).

Similar to the consensus case, the nearest-neighbor
distance-based formation control as proposed in Proposi-
tion 2 also performs as expected. In the formation control
case, the desired distances between communicating agents
are set so that the positions of all agents are on a circle
with the radius of 1. To show the behaviour of the
closed-loop systems using the proposed nearest-neighbor
distributed control, a simulation result of a multi-agent
system with four agents (taken from the 1000 random
simulations) is shown in Fig. 3. In this plot, all agents con-
verge close to the desired formation shape. The statistical
plot of Monte Carlo simulations as given in Fig. 4 shows
that the norm of the formation error vector converges to a
ball that is smaller than the upper bound as computed in
Proposition 2. This means that all agents converge close
to desired formation shape for all simulations.

Notably, we can observe from the statistical plots in
Fig. 2 and Fig. 4 that there should be much tighter bounds
to the practical stability results as the bounds obtained
from the Monte Carlo simulations is significantly below of
the computed bound from Propositions 1 and 2.

V. CONCLUSION

In this letter, we proposed a nearest-neighbor-based
input-quantization procedure for multi agent coordination,
namely consensus and distance-based formation control
problems where agents can only realize finite set of control
points. We have provided rigorous analysis for our pro-
posal. Monte Carlo numerical simulations are presented
that confirm the practical stability analysis of both con-
sensus and formation control problems.
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