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Abstract— Data-driven control can facilitate the rapid devel-
opment of controllers, offering an alternative to conventional
approaches. In order to maintain consistency between any
known underlying physical laws and a data-driven decision-
making process, preprocessing of raw data is necessary to
account for measurement noise and any inconsistencies it may
introduce. In this paper, we present a physics-based filter to
achieve this and demonstrate its effectiveness through practical
applications, using real-world datasets collected in a building on
the École Polytechnique Fédérale de Lausanne (EPFL) campus.
Two distinct use cases are explored: indoor temperature control
and demand response bidding.

I. INTRODUCTION

Data-driven control can improve the speed and quality of
controller design and deployment via an end-to-end solution
from I/O data to a functional controller. However, it is often
crucial to ensure that the data-driven control should respect
the known physical laws in order to make a meaningful
decision. However, due to measurement noise present in
the data, a direct use of raw data1 may lead to incorrect
conclusions or predictions. Such inconsistencies were spotted
by [1], where minor perturbations in the input were shown
to significantly deteriorate prediction accuracy [2].

The incorporation of physical laws in data-driven and
machine learning methods has been an active area of research
for decades. In fact, this idea has been used to solve
partial differential equations since the 1990s [3]. The idea
of incorporating a physical rule in a parametric model is
referred to as ”physics-guided” or ”physics-informed” in the
literature [4]. This can involve using the physical rule to
define the loss function and to confine the model’s parameters
to a subset that is consistent with known physical rules. Re-
searchers have applied this idea to various architectures, such
as enforcing a positive correlation between indoor tempera-
ture and heating power consumption in neural networks [5],
and using a similar approach in linear parametric models [6].
While the aforementioned methods are important, prepro-
cessing data can be a more direct approach to improve
consistency. The methods falling in this category are highly
related to robust optimization, where algorithms similar to
scenario approaches have been successfully employed in
natural language processing [7] and computer vision [8].
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1Raw data in this work indicates the data without preprocessing.

In this work, we propose a physics-based filter that is
tailored to data-driven control schemes based on Willems’
fundamental lemma [9]. Willems’ fundamental lemma offers
a direct characterization of the system responses of linear-
time-invariant (LTI) systems given an informative historical
dataset. Such a characterization has been used in data-driven
methods, and has been deployed in output prediction [10],
input reconstruction [11], [12], and in controller design [13],
[14], [15], [16], [17]. The main contribution lies in showing
that some a priori knowledge can be integrated into Willems’
fundamental lemma by robust optimization. The proposed
scheme remains a non-parametric prediction structure, which
differentiates it from other parametric schemes [5], [6].

In order to present the proposed method with a more
intuitive exposition, the idea presented in this paper will be
motivated and related to building applications. In the follow-
ing, the Willems’ fundamental lemma and its corresponding
prediction problem is reviewed in Section II, after which the
physics-based filter is investigated in Section III. The efficacy
of the proposed scheme is validated on an indoor temperature
control problem and a demand response bidding problem,
with data collected from a building on the EPFL campus.
Notation: In ∈ Rn×n denotes a n-by-n identity matrix, sim-
ilarly, we denote the zero matrix by O. 0 and 1 respectively
denotes a zero vector and a one vector. blkdiag(A1, . . . , An)
generates a block-diagonal matrix whose diagonal blocks are
A1, . . . , An accordingly. x := {xi}Ti=1 denotes a sequence
of size T indexed by i. xi denotes the measurement of x at
time i, and x1:L := [x⊤

1 , x
⊤
2 . . . x⊤

L ]
⊤ denotes a concatenated

sequence of xi ranging from x1 to xL, and we drop the index
to improve clarity if the intention is clear from the context.

II. PRELIMINARIES

Definition 1: A Hankel matrix of depth L associated with
a vector-valued signal sequence s := {si}Ti=1, si ∈ Rns is

HL(s) :=


s1 s2 . . . sT−L+1

s2 s3 . . . sT−L+2

...
...

...
sL sL+1 . . . sT

 .

A linear time-invariant (LTI) system is defined by xi+1 =
Axi + Bui , yi = Cxi + Dui, dubbed B(A,B,C,D). Its
order is nx with nu, ny denoting its input and output dimen-
sions respectively. An L-step trajectory generated by this sys-
tem is

[
u1:L y1:L

]
:=

[
u⊤
1 . . . u⊤

L y⊤1 . . . y⊤L
]⊤

.
The set of all possible L-step trajectories generated by
B(A,B,C,D) is denoted by BL(A,B,C,D). For the sake
of consistency, a datapoint coming from the historical dataset
is marked by boldface subscript d. Given a sequence of
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input-output measurements {ud,i, yd,i}i, we call the input
sequence persistently exciting of order L if HL(ud) is full
row rank. By building the following stacked Hankel matrix
HL(ud, yd) :=

[
HL(ud)

⊤ HL(yd)
⊤]⊤, we state Willems’

Fundamental Lemma as
Lemma 1: [9, Theorem 1] Consider a controllable lin-

ear system and assume {ud}Ti=1 is persistently exciting
of order L + nx. The condition colspan(HL(ud, yd)) =
BL(A,B,C,D) holds.

For the sake of consistency, L is reserved for the length
of the system responses. A data-driven control scheme has
been proposed in [13], [18], where Lemma 1 generates a
trajectory prediction. Before introducing the prediction, we
state the following assumption to simplify the presentation
of this paper:

Assumption 1: The output measurements y are contami-
nated by measurement noise, the input measurements u are
exact.
It is possible to consider noisy input measurements; please
refer to [16] for more details. Under Assumption 1, the
trajectory prediction problem is defined by:

ypred(upred) = HL,pred(yd)g (1a)

g ∈ argmin
gl,σl

1

2
∥σl∥2 +

1

2
g⊤l Eggl (1b)

s.t.

HL,init(yd)
HL,init(ud)
HL,pred(ud)

 gl =

yinit + σl

uinit

upred

 ,

where Eg is a user-defined positive definite penalty and
uinit, yinit are tinit-step sequences of the measured inputs
and outputs preceding the current point in time. Accord-
ingly, upred, ypred are the corresponding nh-step predictive
sequences viewed from the current time step. The matrix
HL(yd) is split into two sub-Hankel matrices:

HL(yd) =

[
HL,init(yd)
HL,pred(yd)

]
.

The matrix HL,init(yd) is of depth tinit and the depth of
HL,pred(yd) is the prediction horizon nh such that tinit +
nh = L. The matrices HL,init(ud), HL,pred(ud) are defined
similarly. The choice of tinit is made to ensure a unique
estimation of the initial state; please refer to [10] for more
details. This prediction problem (1) predicts nh-step output
trajectory ypred for any given predictive input sequence
upred, whose objective in (1b) minimizes a Wasserstein
distance upper bound; the interested readers are referred
to [16] for more details. Further, recalling the conditions
of Willems’ fundamental Lemma 1, this prediction problem
requires the following assumption:

Assumption 2: ud is persistently exciting of order L+nx.

III. MAIN RESULTS

A. Physics-based Filter

As discussed in Section I, the measurement noise pre-
sented in {yd} may lead to inconsistent output predictions
in (1). Hence, the data preprocessing scheme should modify
the data {yd} such that the prediction generated by (1) is

consistent with some prior physical rules. Here we focus on
the following two rules from building control applications:

• Temperature consistency: The indoor temperature is
positively correlated with the power consumption of the
heating, cooling and ventilation (HVAC) system. More
specifically, if the room is heated by control input upred,
the predicted indoor temperature must be higher than the
predicted temperature that is controlled by upred = 0.

• Bidding consistency: Demand response (DR) is a
method of managing power demand on the consumption
side [19]. If a building is to provide, for example,
secondary frequency control services, it tracks an area
generation control (AGC) signal provided by the trans-
mission system operator (TSO), while maintaining in-
door comfort. Intuitively speaking, the TSO manipulates
the building as a slow but large-capacity “battery”,
and as a result, a higher/lower power consumption
than its nominal value relatively “charge/discharge” the
“battery”. The “capacity” of the battery is accordingly
central to its flexibility in the context of DR, which
is reflected by the accumulative indoor temperature
relative to that operated by the nominal power con-
sumption. Note that the absolute power consumption is
still non-negative. The minimal physical rule to ensure
a reasonable bidding proposal is therefore the positive
correlation between the accumulated indoor temperature
and power consumption (i.e.

∑
i ypred,i ≥ 0,∀ upred ≥

0).
Drawing inspiration from the discussion above, we can

identify the essential components required to define a
physics-based filter:

• The convex set Y of trajectories that is aligned with the
physical rule, and ypred is consistent if ypred ∈ Y .

• The set of control inputs U and initial conditions
Uinit, Yinit where the physical rule is imposed.

Recall the aforementioned examples, their mathematical
components are defined by (see Remark 1 for more details):

• Temperature consistency:
Y = {y|y ≥ 0} , Yinit = 0, U = {u|u ≥ 0} , Uinit = 0 (2)
• Bidding consistency:
Y =

{
y
∣∣∣1⊤y ≥ 0

}
,Yinit = 0,U = {u|u ≥ 0} ,Uinit = 0 (3)

Accordingly, the physics-based filter is defined by the fol-
lowing robust optimization problem:

min
ỹd

∥ỹd − yd∥ (4a)

subject to: ∀ upred ∈ U , uinit ∈ Uinit, yinit ∈ Yinit

ypred = HL,pred(ỹd)g ∈ Y (4b)

g ∈ argmin
gl,σl

1

2
∥σl∥2 +

1

2
g⊤l Eggl

s.t.

HL,init(ỹd)
HL,init(ud)
HL,pred(ud)

 gl =

yinit + σl

uinit

upred

 . (4c)

This is a bi-level robust optimization problem, which min-
imizes the perturbation of the offline dataset {yd}. Particu-
larly, the post-processed output data {ỹd} will replace the
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raw data {yd} in the definition of the prediction problem.
The robust constraint enforces that, for any possible predic-
tive input sequence upred ∈ U , the corresponding output
sequence ypred should be consistent with the physical rule
in (4b). In the next section, we will show how to convert
this problem (4) into a numerically tractable form.

B. Single-level Reformulation

Regardless of the physical rule Y , solving a bi-level
optimization can be non-trivial. However, in this case, the
physics-based filter (4) can be reformulated into a single-
level optimization problem:

Lemma 2: The following single-level problem is equiva-
lent to the bi-level problem (4):

min
ỹd

∥ỹd − yd∥ (5a)

s.t. ∀ upred ∈ U , uinit ∈ Uinit, yinit ∈ Yinit

ypred = HL,pred(ỹd)g ∈ Y

M(ỹd)

[
g

κ(upred)

]
=

HL,init(ỹd)
⊤yinit

uinit

upred

 , (5b)

where κ(upred) is the dual variable of (4c) and

M(ỹd) :=

[
HL,init(ỹd)

⊤HL,init(ỹd) + Eg HL(ud)
⊤

HL(ud) O

]
. (6)

For a compact layout, we defer the proof of Lemma 2 to the
extended version due to its similarity to [16, Lemma 3].

Remark 1: The physical rules (2) and (3) are defined on
the transient response, which is linear with respect to upred

in LTI systems. In the rule of temperature consistency (2),
our a priori knowledge requires that if upred ≥ ũpred, their
corresponding transient responses satisfy ypred ≥ ỹpred. By
the superposition property, ypred − ỹpred is the transient
response of upred− ũpred, which summarizes the rule in (2).

Remark 2: Assumption 2 is not strong in building applica-
tions, the stochastic property of the process noise (e.g. solar
radiation and outdoor weather) will cause random fluctua-
tion in the closed-loop input trajectory, and the persistent
excitation condition is in turn satisfied.

C. Affine Physical Rules

Recall the physical rules mentioned in Section III-A,
we are particularly interested in affine physical rules, i.e.
Y = {y|Hy,predy ≤ hy,pred}, Yinit = {y|Hy,inity ≤
hy,init}, Uinit = {u|Hu,initu ≤ hu,init} and U =
{u|Hu,predu ≤ hu,pred}. A tractable reformulation for the
affine physical rule is stated in the following corollary.

Corollary 3: Consider an affine physical rule. The solu-
tion to the physics-based filter (5) is equivalent to the solution
to the following problem:
min

ν≥O, ỹd

∥ỹd − yd∥ (7)

s.t. hy,pred ≥ haug(ỹd)
⊤ν, Maug(ỹd)

⊤λ+Haugν = Hobj .

where x =
[
g⊤ κ⊤ y⊤init u⊤

init u⊤
pred

]⊤
,

Hobj(ỹd) :=
[
Hy,pred HL,pred(ỹd) O

]
Maug(ỹd) :=

[
M(ỹd) blkdiag(−HL,init(ỹd)

⊤,−I,−I)
]
,

Haug :=
[
O blkdiag(Hy,init, Hu,init, Hu,pred)

]
,

haug :=
[
h⊤
y,init h⊤

u,init h⊤
u,pred

]⊤
.

Proof: The physics-based filter under an affine physical
rule is defined by following robust optimization problem:
min
ỹd

∥ỹd − yd∥

s.t. hy,pred ≥ max
uinit,yinit

upred

Hy,pred HL,pred(ỹd)g

s.t



Hu,predupred ≤ hu,pred, Hu,inituinit ≤ hu,init

Hy,inityinit ≤ hy,init

M(ỹd)

[
g

κ

]
=

HL,init(ỹd)
⊤yinit

uinit

upred

 ,

which can be reformulated into the standard form of LP:
min
ỹd

∥ỹd − yd∥

s.t. hy,pred ≥ max
x

Hobj(ỹd)x

s.t. Maug(ỹd)x = 0, Haugx ≤ haug .

By duality of LP [20], the constraint is reformulated to
min
ỹd

∥ỹd − yd∥

s.t. hy,pred ≥ min
λ,ν

haug(ỹd)
⊤ν

s.t. Maug(ỹd)
⊤λ+Haugν = Hobj, ν ≥ O .

This is sufficient to summarize the proof.
Remark 3: As an optimization problem still must be

solved in the proposed scheme, one may question its benefit.
We summarize the scenarios in which proposed scheme is
advantageous to a parametric system identification approach:

• When the physical rules are defined based on the
I/O sequence, such as the passivity [21], the inde-
pendence/causality between I/O ports [22] and posi-
tive/negative correlation (e.g. rules in this work), using
the proposed scheme is more intuitive without convert-
ing the physical rule to its parametric correspondence.

• If a physical rule is defined by a multi-step I/O se-
quence, a parametric model may involve high-order
polynomials on its parameters that is not desirable for
numerical solvers. Consider a one dimensional case
with yi+1 = ayi + bui; the parametric form of the
bidding consistency is defined by a high-order poly-
nomial

∑nh−1
i=0 aib ≥ 0. Instead, the dual solved in the

proposed method remains bilinear (see Section III-D).

D. Numerical Details

The reformulated single-level problem (5) is still a non-
convex optimization due to the nonlinear equality con-
straint (5b), where the quadratic term H⊤

L,init(ỹd)HL,init(ỹd)
in the matrix M(ỹd) is numerically less desirable to most
optimization solvers. In order to improve the numerical
performance, we suggest reformulating the problem (5) as

min
ỹd

∥ỹd − yd∥ (8a)

s.t. ∀ upred ∈ U , uinit ∈ Uinit, yinit ∈ Yinit

ypred = HL,pred(ỹd)g ∈ Y
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Msch,1(ỹd)

σg
κ

 =
[
y⊤init 0⊤ u⊤

init u⊤
pred

]⊤
(8b)

where

Msch,1(ỹd) :=

 −I HL,init(ỹd) O
HL,init(ỹd)

⊤ Eg HL(ud)
⊤

O HL(ud) O

 .

The equivalence between (5b) and (8b) follows the Schur
complement (i.e. inverse Gaussian elimination) [23]. The
benefit of using (8b) instead of (5b) is that, the right-hand
side of (8b) is independent of ỹd and the left-hand side is
linear with respect to H⊤

L,init(ỹd) instead of quadratic. Even
though problem (8) is still non-convex due to the bilinearity
induced by the multiplication between HL,init(ỹd) and g
in (8b), there exist more efficient and reliable numerical
optimization algorithms tailored for bilinear problems, such
as the McCormick envelope [24] implemented in a recent
release of GUROBI 9.0 [25]. Based on our numerical exper-
iment, this reformulation can roughly gain 50% acceleration
in the solution time with the same initialization.

In addition to the benefits in numerical efficiency, the
reformulation given in (8b) is particularly valuable when
using the horizon splitting technique. As reported in [26],
horizon splitting can improve long-term prediction accuracy,
which is central to the bidding problem in DR. Under a
horizon splitting scheme, the predictor given by equation (1)
is recursively called to generate a long prediction trajectory
by concatenation. Without loss of generality, we explain it by
a special case where tinit = nh, and a prediction trajectory of
2nh-steps is generated. This prediction is obtained by solving
the following optimization problem

ypred,1 = HL,pred(yd)g1

g1 ∈ argmin
gl,σl

1

2
∥σl∥2 +

1

2
g⊤l Eggl

s.t.

HL,init(yd)
HL,init(ud)
HL,pred(ud)

 gl =

yinit + σl

uinit

upred,1

 (9a)

ypred,2 = HL,pred(yd)g2

g2 ∈ argmin
gl,σl

1

2
∥σl∥2 +

1

2
g⊤l Eggl

s.t.

HL,init(yd)
HL,init(ud)
HL,pred(ud)

 gl =

ypred,1 + σl

upred,1

upred,2

 (9b)

where the predictive input sequence upred of length 2nh

is partitioned into two nh-step sequences, i.e. upred =[
u⊤
pred,1 u⊤

pred,2

]⊤
. Similarly, we have ypred,1 and ypred,2.

The predictive component in (9a) composes the initialization
component in (9b). The formulation (8b) plays a crucial
role in enabling numerically efficient implementation. By
utilizing the single level-reformulation provided in Lemma 2,
the resulting physics-based filter is defined as follows:

min
ỹd

∥ỹd − yd∥

s.t ∀ upred ∈ U , uinit ∈ Uinit, yinit ∈ Yinit

ypred(upred) = HL,pred(ỹd)
[
g⊤1 g⊤2

]⊤ ∈ Y

Msch,2(ỹd)



σ1

g1
κ1

σ2

g2
κ2

 =



yinit
0

uinit

upred,1

0
0

upred,1

upred,2


where

Msch,2(ỹd) :=

 Msch,1(ỹd) O[
O −HL,pred(ỹd) O
O O O

]
Msch,1(ỹd)

 .

Although the data-driven predictor is recursively called
twice, the resulting optimization problem remains bilinear. In
general, by applying the inverse Schur complement technique
in (8b), the physics-based filter remains bilinear regardless of
the number of segments that the predictive trajectory is split
into. It is worth mentioning that the reformulation suggested
in this section is compatible with the robust counterpart
reformulation discussed in Section III-C.

IV. NUMERICAL RESULTS

The dynamics of buildings are generally slow and can
be effectively approximated using linear models, where the
use of Willems’ fundamental lemma is justified by real-
world experiments [16]. Though nonlinearity may be present,
particularly the bilinearity in valve position control, there
is a way to lift the nonlinear term and retain a linear
analysis in the controller design [27]. This section validates
the efficacy of the proposed method using real-world I/O
data collected from a building called the Polydome located
on the EPFL campus, which is a 600 m2 self-standing
building accommodating up to 200 people in a single lecture
hall. An AERMEC RTY-04 heat pump (HP) is used to
control the indoor climate. The dataset used in this study
covers 40 days from December 2021 to January 2022 (i.e.
the heating season) and includes indoor temperature as the
output variable, the HP’s electrical power consumption as the
controlled input, and outdoor temperature and solar radiation
as process disturbances (uncontrolled inputs) with a 15-
minute sampling time. Interested readers are refered to [16]
for more technical details. In the sequel, the proposed method
is validated by indoor temperature control and DR service.
All the optimization problems are solved by GUROBI with
Intel Core i7-1165G7 2.80 GHz processor. The solution time
for different case studies are reported in the extended version.
A. Case Study I: Temperature Consistency

When heating is provided, the temperature consistency (2)
is enforced by the filter (4). The Hankel matrices are con-
structed by 384 data points (i.e 4-day data for training) with
tinit = 6. For comparison, a parametric autoregressive ex-
ogenous (ARX) model is also considered where the physical
rule is enforced by forcing the ARX weights to be positive.

As the control input is determined based on the predictor,
we first run a comparison of prediction accuracy. The result
is presented in Table I, where different prediction horizons
are considered. Even though the filtered data gives a lower
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prediction performance than the raw data, this performance
loss results in more reasonable decisions during operation
with a predictive controller. In particular, consider the fol-
lowing predictive control problem:

min
upred

∥ypred − ref∥2

s.t. upred ∈ [0, 6 kW]

ypred by (4b)&(4c) or (9)
This controller tracks a reference temperature while con-
sidering indoor temperature constraints, and the open-loop
input sequences given by different predictors are shown
in Figure 1. The decision from the filtered-data controller
maintains a maximal input before the predicted temperature
reaches the reference, which is optimal regarding the turnpike
property of optimal control [28]. While such optimal decision
is also made by the parametric model, its low prediction
accuracy leads to an underestimate in temperature response.
This may also cause undesired chattering behaviour when
the building operates around the constraint. Using two con-
trollers defined by raw data as a comparison, their input
sequences are suboptimal as their inputs oscillate between
maximal input and null before raising the temperature to the
reference. Note that multiple steps in open-loop input might
be used in some specific applications, such as multi-building
coordination. The sub-optimality observed here could dete-
riorate the closed-loop performance. On top of the lack of
physical consistency, we believe that these two predictors
overfit, as our data is collected during the normal operation
of the building, and the patterns in the I/O sequences are
quite limited even though the persistent excitation condition
is satisfied.
TABLE I: Comparison of the mean absolute error (MAE) over
different prediction horizons

Prediction
steps

Hours
ahead

Filtered
no split

Raw
split

Raw
no split

Positive
ARX

6 1.5 0.235 0.226 0.226 0.303
12 4 0.326 0.301 0.299 0.433
18 4.5 0.440 0.392 0.388 0.589

“split”: horizon splitting with nh = tinit; “no split”: otherwise

B. Case Study II: Bidding Consistency

In this section, we consider the case where buildings
are used to provide DR services and hence bidding consis-
tency (3) is used. Due to a much longer prediction horizon
(i.e. 24 hours), a lower sampling time, 30 minutes, is used
to lower the computational cost. The Hankel matrices are
constructed by 384 data points (i.e. 8-day data) with tinit =
12, and the parametric model is dropped due to the lack of
convergence in its highly non-convex optimization problem.

Similar to the last part, the prediction performance is first
tested on the whole dataset with different prediction horizons
(see Table II). In accordance with [26], splitting improves
long-term prediction accuracy when we compare the results
in the last two columns. However, the predictor using filtered
data and splitting still gives a slightly lower prediction
accuracy in comparison with the predictor generated by raw
data with splitting.

These three data-driven predictors are respectively used to

solve the following bidding problem:
min

γ,Pbaseline
− γ (10a)

s.t. upred,i ∈ [0, 6 kW]

ypred,i ∈ [ymin, ymax] (10b)
upred,i = Pbaseline + γAGCi, i = 1, 2, . . . , Nscen

ypred,i by (4b)&(4c) or (9) ,
where a 24-hour-ahead prediction is made within this prob-
lem. More specifically, the input flexibility margin γ is
maximized with respect to the uncertain AGC signals, whose
uncertainty is handled by a scenario approach with Nscen

historical scenarios. Depending on the 24-hour open-loop
input decision upred, γ determines the primary remuneration
from the TSO. Hence, it should be planned and sent to the
TSO before the next operational day (i.e 24-hour-ahead).
Interested reader are referred to [29] for more technical
details. To keep a compact presentation, only the data-driven
predictors based on filtered/raw data with splitting are con-
sidered in this comparison. We test different comfort ranges
for the indoor temperature in Table III, whose initial indoor
climate and weather conditions were selected randomly from
the real-world dataset. When Problem (12) is infeasible, it is
relaxed to a soft-constrained problem by relaxing (12b) and
including its violation to the cost (12a) with a large penalty.
This is done to facilitate better comparison, particularly when
the temperature constraint is overly tight, such as [19, 20.5].
When the constraint is set to [19, 20.5], the problem should
be infeasible due to the limited power of the HVAC system
(i.e. γ ≈ 0 in the relaxed problem). Capturing such infeasibil-
ity is critical to avoid economic loss, and it is achieved by the
problem with filtered data. However, due to the inconsistency
presented in the raw data, the problem remains feasible when
the raw data is directly used. To better visualize how the
physical inconsistency takes effect, we plot the control policy
at different temperature constraints in Figure 2. As indicated
by Figure 2 (b) and Table III, a larger average heating input
is applied in the case of y ∈ [19, 20.5] than that in the case of
y ∈ [19, 22.5]. However, it predicts a lower average indoor
temperature, which is inconsistent with the enforced physical
rule. Hence, the γ bid based on raw data is an overestimate,
and may cause indoor discomfort or economic loss in the
following operational day.
TABLE II: Comparison of the MAE over different prediction steps
by three methods.

Prediction
steps

Hours
ahead

Filtered
split

Raw
split

Filtered
no split

Raw
no split

12 6 0.367 0.344 0.367 0.344
24 12 0.496 0.476 0.588 0.494
36 18 0.572 0.509 0.739 0.620
48 24 0.608 0.526 0.917 0.780

“split”: horizon splitting with nh = tinit; “no split”: otherwise
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