
Combinatorial Optimization Approach to Client Scheduling for
Federated Learning

Tomohito Omori1 and Kenji Kashima1, Senior Member, IEEE

Abstract— For machine learning in situations where data
is scattered and cannot be aggregated, federated learning, in
which aggregators and agents send and receive model param-
eters, is one of the most promising methods. The scheduling
problem of deciding which agents to communicate with has
been studied in various ways, but it is not easy to solve due
to its combinatorial optimization nature. In this letter, we
attempt to solve this scheduling problem using combinatorial
optimization theory. Specifically, we propose an efficient exact
solution method based on dynamic programming and a greedy
method whose superiority is confirmed by numerical examples.
We also discuss the applicability of the proposed methods to a
more dynamic and uncertain environment.

I. INTRODUCTION

In recent years, there have been many situations where
system models are learned from data. In addition, it is
often impossible to consolidate data on a single machine
due to privacy and computing resources. In these situations,
federated learning is a method of finding the optimal model
parameters for the entire data by building a centralized
network and sending and receiving only the estimated model
parameters, rather than sending the data to a central server
[1]. Various studies have been conducted on federated learn-
ing [2], including one that formulated the client scheduling
problem and discussed convergence [3] and how to imple-
ment federated learning on mobile devices [4]–[6].

Given the recent strong interest in data-driven control,
there is no doubt that federated learning can be applied to
many problems in the control community; See, e.g., Exam-
ple 1. Such federated learning in dynamical and uncertain
environment requires more efficient scheduling algorithms.
The main feature of this letter is to propose an approach
based on combinatorial optimization theory [7] for this
purpose. Specifically, we give an efficient exact solution and
a greedy method for the client scheduling problem in [8].
The proposed method outperforms conventional methods in
terms of computational complexity and accuracy and can also
be deployed in a more realistic federated learning problem
setting.

This letter is organized as follows: Section II provides
an overview of the federated learning and client scheduling
problem and shows that the problem is NP-hard. In Section
III, we consider the scheduling problem as a Knapsack prob-
lem and propose an efficient exact solution using dynamic

1T. Omori and K. Kashima are with the Graduate
School of Informatics, Kyoto University, Kyoto, Japan
omori.tomohito.58z@st.kyoto-u.ac.jp;
kk@i.kyoto-u.ac.jp This work was supported by JSPS KAKENHI
Grant Number JP21H04875.

programming. In Section IV, we propose a greedy algorithm
whose superiority is confirmed by numerical examples. In
Section V, we summarize this letter and discuss the appli-
cability of the obtained result to federated learning in an
uncertain environment.
Notation For integers k, l, let

[k, l] :=

{
{k, k + 1, . . . , l} if k ≤ l

∅ otherwise.

For a vector c and an integer k, let c(k) be a k-th element
of c. For an ordered set I := ⟨i1, . . . , im⟩, Ij (resp. jI) is
the j-letter prefix (resp. (m− j + 1)-letter suffix) of I , i.e.,

Ij := ⟨i1, . . . , ij⟩ (1)
jI := ⟨ij , . . . , im⟩ (2)

and I0 = m+1I = ⟨⟩. For two ordered sets I1 = ⟨i1, . . . , ia⟩,
I2 = ⟨j1, . . . , jb⟩ with I1∩I2 = ∅, let I1⊕I2 be the ordered
set ⟨i1, . . . , ia, j1, . . . , jb⟩.

II. PRELIMINARIES: CLIENT SCHEDULING FOR
FEDERATED LEARNING

A. Federated Learning

Suppose there is an aggregator that serves as the central
server, multiple agents communicate with it, and each agent
stores a data set. The objective is to learn the model pa-
rameters from the data without collecting the data in the
aggregator.

Example 1: Suppose a vendor offers the same system to
its agents, which is expressed as the FIR model

yk =

N−1∑
l=0

wluk−l + dk, (3)

where yk is the output, uk is the input, dk is the white noise,
and wl (common among agents) is the coefficients. Suppose
that the agent i has input time series {ui,k}Di

k=1, output time
series {yi,k}Di

k=1. Our goal is to identify the common system
parameter w suitable for all data ∪ni=1({ui,k}Di

k=1, {yi,k}
Di

k=1)
by minimizing the loss function (log-likelihood)

F (w) :=
1

Dall

n∑
i=1

DiFi(w), Dall :=

n∑
i=1

Di,

where

Fi(w) :=
1

2Di

Di∑
k=N

∥yi,k − w⊤ui,k−N+1:k∥2.

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 328

Algorithm 1 Federated Learning

Require: τ , κ
Ensure: wf

1: Initialize wf , w(1) to the same value
2: for t = 1 to τ do
3: Set w̃i ← w(t) as agent i’s initial value
4: for k = 1 to κ do
5: w̃i ← w̃i − η∇Fi(w̃i) for all agent i
6: end for
7: Set w(t + 1) ← 1

Dall

∑n
i=1 Diw̃i as aggregator’s next

value
8: wf ← argminw∈{wf ,w(t)} F (w)
9: end for

However, this optimization must be done without direct data
sharing of {ui,k}, {yi,k} between the agent and vendor. □

The learning algorithm is as in Algorithm 1. Learning
consists of τ iterations. In the t-th iteration, the aggregator
sends the estimated model parameter w(t) to all agents. Each
agent takes w(t) as its initial value and updates it κ times
in gradient steps to make Fi(w) smaller. Afterward, each
agent sends the updated estimated model parameters w̃i to
the aggregator. The aggregator takes these estimated model
parameters and uses their weighted average over the number
of data as the estimated model parameters w(t+1) in the next
iteration. After repeating this iteration τ times, the estimated
parameter wf is the one with the minor overall loss function
F (w(t)) among the estimated parameters w(t) stored in the
aggregator so far and is output as the parameter estimated
by the training.

B. Client scheduling

In prior work [8], when the computation time of the agent
and the communication speed between the agent and the
aggregator were different from each other, they formulated
the problem of which agents to collect data from and in
which order, instead of collecting data from the entire agent,
in the part where the aggregator receives w̃i from each
agent. Specifically, given the computation time c(i) for agent
i, the time u(i) required to send model parameters to the
aggregator, and the number of data Di stored in agent i in
advance, the problem is formulated in such a way that the
data collection time H(I) does not exceed T . The problem
is finding the order I to collect the data from the agents so
that the time to collect the data H(I) is at most T .

Problem 1: Given D ∈ Zn
≥0, u, c ∈ Rn

≥0, and T ∈ R≥0,

maximize
I

∑
i∈I

Di

subject to H(I) ≤ T,

where H(⟨⟩) := 0, and

H(Ik) := max(H(Ik−1), c(ik)) + u(ik). (4)

△
The expression (4) reflects that if data is to be collected from
agent i1, . . . , ik in this order, it is necessary to collect from

agent ik that data from agent i1, . . . , ik−1 has already been
collected, and only after agent ik is calculated. The previous
study treated this problem as a Submodular Cost Submodular
Knapsack problem (SCSK), i.e.

max g(X) s.t. f(X) ≤ b,X ⊆ {1, . . . , n} (5)

where f and g are monotone non-decreasing submodular
functions, and proposed an approximate solution using the
greedy method.

C. NP-hardness
In the previous study [8], Problem 1 is explained as a

particular case of the SCSK problem, which is generally
NP-hard [7, p.410]. Indeed, the max k-cover problem [9],
an example of the SCSK problem, is known to be NP-
hard. However, not all SCSK problems are NP-hard; see the
problem with f(X) = g(X) = |X| in the equation (5),
which is also an example of SCSK problem and is clearly
solvable in polynomial time. In view of this, we rigorously
prove the NP-hardness.

Theorem 1: Problem 1 is NP-hard.
Proof: This can be proved by polynomial reduction [7,

p.396, p.412] from the Knapsack problem [7, p.471]. The
Knapsack problem is written by

maximize
S⊆[1,n]

∑
i∈S

δi

subject to
∑
i∈S

υi ≤ T
(6)

for given δ, υ ∈ Zn
≥0 and T ∈ Z≥0. This means that any

optimal solution of Problem 1 with T = T , c(i) = 0, u(i) =
υi, Di = δi can be viewed as an optimal solution of the
Knapsack problem (6) by regarding it as an unordered set.
In other words, Problem 1 involves the Knapsack problem
as a special case. Therefore, since the Knapsack problem is
NP-hard, Problem 1 is also NP-hard.

Therefore, we can say that when P ̸= NP, it is impossible
to obtain an exact solution in polynomial time with an agent
number n. A naı̈ve dynamic programming approach to
Problem 1 requires O(n!T) time1, which is too large for
large-scale problems. In the next section, we will propose
algorithms of the 1st order with respect to n.

III. DYNAMIC PROGRAMMING FOR KNAPSACK PROBLEM

A. Problem conversion via schedule sorting
Problem 1 looks different from the Knapsack problem

because the constraints include a max function. We change
the constraints to linear and transform the problem so that
it is easier to see how to apply the solution method used in
the Knapsack problem.

Problem 2: Given D ∈ Zn
≥0, u, c ∈ Rn

≥0, and T ∈ R≥0,

maximize
I

∑
i∈I

Di

subject to
∑
i∈jI

u(i) ≤ T − c(ij) (∀j ∈ [1, |I|]).
(7)

1For example, calculate the maximum amount d̀(S, t) of data that can be
computed by t when the entire agent set is S.

329

△
This problem is equivalent to Problem 1 in the following

sense:
Theorem 2: Problems 1 and 2 have the same feasible

solution set, that is,

H(I) ≤ T ⇔
∑
i∈jI

u(i) ≤ T − c(ij) (∀j ∈ [1, |I|]).

□
Proof: (⇐ direction) Note that H(⟨⟩) = 0 ≤ c(i1).

This implies we can take the largest index k ∈ [0, |I| − 1]
such that H(Ik) ≤ c(ik+1). Then,

H(I) = c(ik+1)+

|I|∑
j=k+1

u(ij) = c(ik+1)+
∑

i∈k+1I

u(i) ≤ T,

which shows the desired result.
(⇒ direction) By definition, we have

H(Ik−1) + u(ik) ≤ H(Ik), c(ik) + u(ik) ≤ H(Ik),

for all k in [1, |I|]. Using this repeatedly, it follows that∑
i∈jI

u(i) + c(ij) ≤ H(Ij) +
∑

i∈j+1I

u(i)

≤ H(I |I|) = H(I) ≤ T

for all j in [1, |I|].
The following theorem plays a key role to apply the

solution of the Knapsack problem to Problem 2.
Theorem 3: Let I be any feasible solution of Problem 2.

Then, the ordered set obtained by reordering I in ascending
order of c(i) is also feasible for Problem 2. □

Proof: Let I be a feasible solution that is not in
ascending order in c(i), that is, ∃k s.t. c(ik) ≥ c(ik+1).
We first show that the ordered set Ĩ := ⟨̃i1, . . . , ĩ|I|⟩ :=
⟨i1, . . . , ik−1, ik+1, ik, ik+2, . . . , i|I|⟩ is a feasible solution.
In other words, we show that∑

π∈jI

u(i) ≤ T − c(ij) (∀j ∈ [1, |I|])

⇒
∑
i∈j̃ Ĩ

u(i) ≤ T − c(̃ij̃) (∀j̃ ∈ [1, |I|]).
(8)

For j̃ /∈ {k, k + 1}, this is trivial since∑
i∈j̃I

u(i) =
∑
i∈j̃ Ĩ

u(i), c(ij̃) = c(̃ij̃).

For j̃ = k, k + 1,

c(ik) = max(c(̃ik), c(̃ik+1)),
∑

i∈k+1Ĩ

u(i) ≤
∑
i∈kĨ

u(i)

can be used to obtain∑
i∈kĨ

u(i) + c(̃ik) ≤
∑
i∈kI

u(i) + c(ik) ≤ T, (9)

∑
i∈k+1Ĩ

u(i) + c(̃ik+1) ≤
∑
i∈kI

u(i) + c(ik) ≤ T. (10)

This completes the proof of (8).

Repeatedly swapping ik and ik+1 such that c(ik) >
c(ik+1), we obtain a feasible solution sorted in ascending
order by c(i) like a bubble sort.

Theorem 3 shows that it is sufficient to consider only
the schedules in ascending order of c(i). For notational
simplicity, we assume that c ∈ Rn

≥0 is descending, i.e.,

c(i) ≥ c(j) if i ≤ j,

in the remaining of Section III. This assumption is not
restrictive because we only need to relabel i accordingly.
Under this assumption, once an agent set to communicate
with is determined, the order can be determined in the
descending order of i, which leads to the following:

Problem 3: Given D ∈ Zn
≥0, u ∈ Rn

≥0, descending c ∈
Rn

≥0, and T ∈ R≥0,

maximize
S⊆[1,n]

∑
i∈S

Di

subject to
∑

i∈S,i≤j

u(i) ≤ T − c(j) (∀j ∈ S).
(11)

△
This problem is equivalent to Problem 2 in the following

sense:
Corollary 1: Let S be any optimal solution of Problem 3.

Then, the ordered set I obtained by ordering2 S in ascending
order of c(i) is an optimal solution for Problem 2. □

Since the decision variable is now an unordered set, we can
use dynamic programming, which is used as a strict solution
method for the Knapsack problem; See Subsections III-B and
III-C. Furthermore, a greedy method exploiting this property
produces better results than previous studies; See Subsection
IV-A.

B. Upload time-based algorithm

In this section, we consider Problem 3 as a Knapsack
problem. The standard method for the Knapsack problem
[7, p.412, p.475] motivates us to consider the following:

Problem 4: Let D ∈ Zn
≥0, u ∈ Rn

≥0, descending c ∈ Rn
≥0,

and T ∈ R≥0 be given. Then, for an integer k ∈ [0, n] and
a nonnegative real number y ≤ T ,

maximize
S⊆[1,k]

∑
i∈S

Di

subject to
∑

i∈S,i≤j

u(i) ≤ T − c(j) (∀j ∈ S),∑
i∈S

u(i) = y.

(12)

△
Let P (k, y) be Problem 4 and d(k, y) be its optimal value.
Problem 4 differs from Problem 3 in two ways: the sum of
upload times is fixed to y, and the entire agent set is limited
to [1, k]. The optimal value of Problem 3 is equal to

max{d(n, y) | 0 ≤ y ≤ T}. (13)

2I = ⟨i1, . . . , i|I|⟩ with {i1, . . . , i|I|} = S and c(ij) ≤ c(ik)(∀j, k ∈
[1, |I|], j < k).

330

Also, since [1, k − 1] ⊂ [1, k], we have

d(k, y) ≥ d(k − 1, y) (∀k ≥ 1, y). (14)

Since the constraint in Problem 2 affects only the suffix
of the decision variable, we schedule from the end, i.e., in
the descending order of c. Under this strategy, whether we
can add an agent k to a feasible set S depends only on∑

i∈S u(i), which leads to the following:
Theorem 4: Under notation above, d(k, y) satisfies

d(k, y) =

max(d(k − 1, y), d(k − 1, y − u(k)) +Dk)

if u(k) ≤ y ≤ T − c(k),

d(k − 1, y)

otherwise,
(15)

where

d(0, y) =

{
0 if y = 0,

−∞ otherwise.

□
Proof: Suppose u(k) ≤ y ≤ T − c(k). Then, for any

optimal solution S̃ to P (k−1, y−u(k)), S̃∪{k} is a feasible
solution to P (k, y) because

∑
i∈S̃∪{k} u(i) ≤ T−c(k) holds.

This fact combined with (14) yields that d(k, y) is larger than
or equal to the right side of (15).

Next, we show d(k, y) is not larger than the right side
of (15) by contradiction. Let S̃ be an optimal solution of
problem P (k, y). If k /∈ S̃, then S̃ is feasible for problem
P̄ (k − 1, y). This contradicts the premise d(k, y) > d(k −
1, y). If k ∈ S̃, then u(k) ≤ y ≤ T − c(k) holds and S̃ \{k}
is feasible for problem P (k−1, y−u(k)). This means d(k−
1, y − u(k)) ≥ d(k, y) −Dk, which is also a contradiction.
This completes the proof.

This theorem shows that d(k, y) can be obtained by
dynamic programming.

For implementation, we impose the following:
Assumption 1: Under the notation above, time-related

variables c(i), u(i), T are integer-valued.
Then, we can obtain d(k, y) and an optimal solution of
Problem 4 by dynamic programming as summarized in
Algorithm 2, which also solves Problem 3 by virtue of (13).
The computational complexity of this algorithm is O(nT).

C. Data amount-based algorithm

In this section, we provide another way of dynamic
programming where Assumption 1 is not required.

Problem 5: Let D ∈ Zn
≥0, u ∈ Rn

≥0, descending c ∈ Rn
≥0,

and T ∈ R≥0 be given. Then, for integers k ∈ [0, n] and
z ∈ [0, Dall],

minimize
S⊆[1:k]

∑
i∈S

u(i)

subject to
∑

i∈S,i≤j

u(i) ≤ T − c(j) (∀j ∈ S),∑
i∈S

Di = z.

(16)

Algorithm 2 Upload time-based algorithm

Require: D ∈ Zn
≥0, u ∈ Zn

≥0, descending c ∈ Zn
≥0, T ∈

Z≥0

Ensure: the optimal value d∗ and optimal solution I∗

1: d(0, 0)← 0
2: d(0, y)← −∞ (1 ≤ ∀y ≤ T)
3: for k = 1 to n do
4: for y = 0 to T do
5: if u(k) ≤ y and y + c(k) ≤ T then
6: d(k, y)← max(d(k− 1, y), d(k− 1, y−u(k))+

Dk)
7: else
8: d(k, y)← d(k − 1, y)
9: end if

10: end for
11: end for
12: d∗ ← maxj(d(n, j))
13: I∗ ← ⟨⟩
14: y ← argmaxj(d(n, j))
15: for k = n down to 1 do
16: if d(k − 1, y) ̸= d(k, y) then
17: y ← y − u(k)
18: I∗ ← I∗ ⊕ ⟨k⟩
19: end if
20: end for

△
Let P̄ (k, z) be Problem 5 and d̄(k, z) be its optimal value.

Comparing Problems 4 and 5, the objective function and a
constraint are interchanged so that

d(k, y) = max
z∈[0,Dall]

{z | d̄(k, z) ≤ y}. (17)

The optimal value of Problem 3 is equal to

z∗ := max{z | d̄(n, z) ≤ T} (18)

and any optimal solution to P̄ (n, z∗) gives an optimal
solution to Problem 3. We also have

d̄(k, z) ≤ d̄(k − 1, z) (∀k ≥ 1, z). (19)

Problem 5 can also be solved using dynamic programming
based on the following:

Theorem 5: Under notation above, d̄(k, z) satisfies

d̄(k, z) =

min(d̄(k − 1, z), d̄(k − 1, z −Dk) + u(k))

if d̄(k − 1, z −Dk) + u(k) + c(k) ≤ T,

d̄(k − 1, z)

otherwise
(20)

where

d̄(0, z) =

{
0 if z = 0,

∞ otherwise.

□
Proof: This theorem can be shown in the same way as

Theorem 4. Suppose d̄(k − 1, z −Dk) + u(k) + c(k) ≤ T .

331

Algorithm 3 Data amount-based algorithm

Require: D ∈ Zn
≥0, u ∈ Rn

≥0, descending c ∈ Rn
≥0, T ∈

R≥0

Ensure: the optimal value d̄∗ and an optimal solution I∗

1: d̄(0, 0)← 0
2: d̄(0, z)←∞ (1 ≤ ∀z ≤ Dall)
3: for k = 1 to n do
4: for z = 0 to Dall do
5: if d̄(k − 1, z −Dk) + u(k) + c(k) ≤ T then
6: d̄(k, z) ← min(d̄(k − 1, z), d̄(k − 1, z − Dk) +

u(k))
7: else
8: d̄(k, z)← d̄(k − 1, z)
9: end if

10: end for
11: end for
12: d̄∗ ← maxj(d̄(n, j))
13: I∗ ← ⟨⟩
14: z ← argmaxj(d̄(n, j))
15: for k = n down to 1 do
16: if d̄(k − 1, z) ̸= d̄(k, z) then
17: z ← z − u(k)
18: I∗ ← I∗ ⊕ ⟨k⟩
19: end if
20: end for

Then, for any optimal solution S̃ to P̄ (k−1, z−Dk), S̃∪{k}
is a feasible solution to P̄ (x, y) because

∑
i∈S̃∪{k} u(i) ≤

T − c(k) holds. This fact combined with (19) yields that
d̄(k, z) is less than or equal to the right side of (20).

Next, we show d̄(k, z) is not less than the right side of (20)
by contradiction. Let S̃ be an optimal solution of problem
P̄ (k, z). If k /∈ S̃, then S̃ is feasible for problem P̄ (k −
1, z). This means contradicts the premise d̄(k, z) < d̄(k −
1, z). If k ∈ S̃, then d̄(k − 1, z − Dk) + u(k) + c(k) ≤ T
holds and S̃ \ {k} is feasible for problem P̄ (k− 1, z−Dk).
Consequenty d̄(k − 1, z − Dk) ≤ d̄(k, z) − u(k), which is
also a contradiction. This completes the proof.

Therefore, the optimal value d̄(k, z) and an optimal solu-
tion of Problem 5 can be obtained by dynamic programming
as summarized in Algorithm 3, which also solves Problem 3
by (18). The computational complexity of this algorithm is
O(nDall).

Remark 1: Note that, differently from Algorithm 2, As-
sumption 1 is unnecessary for implementing Algorithm 3.
The essential reason for this is that Di is integer-valued.
Conversely, Algorithm 2 is applicable to the cases with non-
integer valued Di, e.g., where the value Di of agent i is
quantified in ways other than by its data amount, as long as
Assumption 1 is satisfied.

IV. IMPROVEMENT OF GREEDY ALGORITHM

A. Greedy algorithm for Knapsac problem

A well-known approximate solution for the Knapsack
Problem (6) is a greedy method that sorts vi

wi
in descending

Algorithm 4 Proposed greedy approximation algorithm

Require: D ∈ Zn
≥0, u, c ∈ Rn

≥0, T ∈ R≥0

Ensure: S
1: W ← [1, n]
2: while W ̸= ∅ do
3: i← arg max

i∈W

Di

u(i)

4: if S ∪ {i} is feasible to Problem 3 then
5: S ← S ∪ {i}
6: end if
7: W ←W \ {i}
8: end while

order and chooses greedily. If we use this method for Prob-
lem 2, it becomes like Algorithm 4. This method greedily
selects agents in descending order of Di

u(i) . That is, if the
solution is feasible when adding it, we include it (if it
violates a constraint, we move on to the second largest
candidate). It should be emphasized that each examination
can be efficiently implemented as follows:

Theorem 6: In Line 4 of Algorithm 4, it can be deter-
mined by O(log n) whether S ∪ {i} is a feasible solution
for Problem 2. Consequently, the overall computational com-
plexity of Algorithm 4 is O(n log n).

Proof: Due to page limitations, we offer only an outline
of the proof. Assume that c is descending. The feasibility
can be checked by max{Ci} ≤ T , owing to recording

Ci:=

{∑
j∈S,j≤i ui (i /∈ S),

ci +
∑

j∈S,j≤i ui (i ∈ S).

When add an agent i to a set S, we just update that Ci ←
Ci + ui + ci and Cj ← Cj + ui (i < ∀j). It is known
that for a given sequence of length n (e.g., {Ci}i), finding
its maximum and adding a common value (e.g., ui) to a
consecutive subsequence (e.g., {Cj}j>i) can be implemented
in O(log n) time by using an appropriate data structure such
as Segment Tree [10, p.430].

This theorem shows that Algorithm 4 is superior to SCSK-
based greedy algorithm in [8] regarding computational com-
plexity, whose order is O(n2). The accuracy will be demon-
strated in the next subsection.

B. Numerical example

In this section, we exhibit a numerical experiment. We
conducted 50 experiments where we took the number of
agents n = 200, the time limit T = 3000,

c(i) = caDi + αcb, u(i) = uaDi.

The random variables Di ∼ Uni(1, 100)Z, ca ∼
Uni(24, 27)R, cb ∼ Uni(1, 2)R and ua obeying the ex-
ponential distribution with the mean 0.6 were generated
independently for each experiment3. The scale parameter α
of the computational overhead is α = 0.1, 50, 400.

3Uni(a, b)S denotes the uniform distribution over the set {c ∈ S|a ≤
c ≤ b}.

332

0.1 50 400
,

0

0.2

0.4

0.6

0.8

1
Proposed
SCSK

Fig. 1: DSCSK/D
∗ and Dgreedy/D

∗ for α = 0.1, 50, 400.

Let us denote the solution obtained by the dynamic
programming (Algorithm 3) by IDP, the proposed greedy
method (Algorithm 4) by Igreedy, and the conventional
SCSK-based greedy algorithm by ISCSK. Note that D∗ :=∑

i∈IDP
Di is equal to the optimal value of Problem 1. Figure

1 shows DSCSK :=
∑

i∈ISCSK
Di and Dgreedy :=

∑
i∈Igreedy

Di

divided by D∗. We observe that the proposed method, which
obtained nearly optimal values, was confirmed to have higher
performance than the conventional method. In this setting,
the larger α is, the larger the difference.

V. CONCLUSION

A. Summary

In this letter, based on combinatorial optimization theory,
we proposed efficient exact and greedy methods for the client
scheduling problem for federated learning. Their superiority
was confirmed by numerical examples. Since this is only the
first step in our combinatorial optimization approach to net-
work control system design, there are many interesting topics
to be tackled. As a direct application of the contributions
of this letter, we are currently working on a more realistic
federated learning setting, which will be briefly discussed in
the next subsection, and multi-agent reinforcement learning.

In the system control field, many interesting problems have
been formulated as combinatorial optimization problems in
recent years, such as the leader selection problem in multi-
agent systems [11]–[13]. Our work suggests that the active
use of combinatorial optimization theory is promising to go
beyond greedy methods utilizing submodularity [14], [15] or
transformation into convex problems [16], [17].

B. Client rescheduling in an uncertain environment

We have so far assumed that the calculation and upload
times are known accurately in advance. In practice, however,
the calculation and upload times estimated in advance may
be inaccurate.

Example 2: Suppose there are three agents, each with
upload times of u(1) = 5, u(2) = 10, and u(3) = 15, with
computation times of c(1) = 5, c(2) = 10, and c(3) = 15
and the number of data D1 = 10, D2 = 15, and D3 = 20.
When the time limit is T = 40, the optimal data collection
plan is the order ⟨1, 2, 3⟩, which motivates us first to upload

the data of the agent 1. What if the upload took 20 instead
of u(1) = 5? Collecting data in the remaining order ⟨2, 3⟩
violates the time limit. In this case, we should consider how
best to collect data in the remaining time. That is, it is better
to collect data from only agent 3. □

As in this example, consider that the time taken after
receiving data from agent i is not the estimated time u(i).
In the existing result, we must reschedule from scratch to
find the best solution when we encounter a situation like
this. On the other hand, if data collection planning is done
using dynamic programming in Subsection III-B or III-C,
efficient rescheduling can be done using d(x, y) obtained as
a byproduct. This will be presented in a future publication.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentral-
ized data,” in Artificial Intelligence and Statistics. PMLR, 2017, pp.
1273–1282.

[2] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[3] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge
computing systems,” IEEE Journal on Selected Areas in Communica-
tions, vol. 37, no. 6, pp. 1205–1221, 2019.

[4] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, B. McMahan et al.,
“Towards federated learning at scale: System design,” Proceedings of
Machine Learning and Systems, vol. 1, pp. 374–388, 2019.

[5] T. Nishio and R. Yonetani, “Client selection for federated learning with
heterogeneous resources in mobile edge,” in 2019 IEEE International
Conference on Communications (ICC). IEEE, 2019, pp. 1–7.

[6] H. H. Yang, Z. Liu, T. Q. Quek, and H. V. Poor, “Scheduling policies
for federated learning in wireless networks,” IEEE Transactions on
Communications, vol. 68, no. 1, pp. 317–333, 2019.

[7] B. Korte and J. Vygen, Combinatorial Optimization, 6th ed. Springer,
2018.

[8] L. Ye and V. Gupta, “Client scheduling for federated learning over
wireless networks: A submodular optimization approach,” in 60th
IEEE Conference on Decision and Control (CDC). IEEE, 2021,
pp. 63–68.

[9] U. Feige, “A threshold of lnn for approximating set cover,” Journal
of the ACM (JACM), vol. 45, no. 4, pp. 634–652, 1998.

[10] H. Samet, Foundations of Multidimensional and Metric Data Struc-
tures. Morgan Kaufmann, 2006.

[11] W. Yang, X. Wang, and H. Shi, “Optimal control nodes selection for
consensus in multi-agent systems,” IFAC Proceedings, vol. 47, no. 3,
pp. 11 697–11 702, 2014.

[12] A. Clark, L. Bushnell, and R. Poovendran, “On leader selection for
performance and controllability in multi-agent systems,” in 51st IEEE
Conference on Decision and Control (CDC). IEEE, 2012, pp. 86–93.

[13] F. Pasqualetti, S. Zampieri, and F. Bullo, “Controllability metrics,
limitations and algorithms for complex networks,” IEEE Transactions
on Control of Network Systems, vol. 1, no. 1, pp. 40–52, 2014.

[14] T. H. Summers, F. L. Cortesi, and J. Lygeros, “On submodularity and
controllability in complex dynamical networks,” IEEE Transactions
on Control of Network Systems, vol. 3, no. 1, pp. 91–101, 2015.

[15] A. Clark, B. Alomair, L. Bushnell, and R. Poovendran, Submodularity
in Dynamics and Control of Networked Systems. Springer, 2016.

[16] T. Ikeda and K. Kashima, “Sparsity-constrained controllability max-
imization with application to time-varying control node selection,”
IEEE Control Systems Letters, vol. 2, no. 3, pp. 321–326, 2018.

[17] ——, “On sparse optimal control for general linear systems,” IEEE
Transactions on Automatic Control, vol. 64, no. 5, pp. 2077–2083,
2019.

333

