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Abstract— We consider the problems of system invertibil-
ity and input reconstruction for linear time-invariant (LTI)
systems using only measured data. The two problems are
connected in the sense that input reconstruction is possible
provided that the system is left invertible. To verify the latter
property without model knowledge, we leverage behavioral
systems theory and develop two data-driven algorithms: one
based on input/state/output data and the other based only
on input/output data. We then consider the problem of input
reconstruction for both noise-free and noisy data settings. In
the case of noisy data, a statistical approach is leveraged to
formulate the problem as a maximum likelihood estimation
(MLE) problem. The proposed approaches are finally illustrated
with numerical examples that show: exact input reconstruction
in the noise-free setting; and the better performance of the
MLE-based approach compared to the standard least-norm
solution.

Index Terms— System invertibility, input reconstruction,
maximum likelihood estimation, behavioral systems theory.

I. INTRODUCTION

In recent years there has been an increasing interest in
developing methods that enable classic analysis and design
control problems to be tackled without having access to a
model of the system, but instead directly using data. This
is particularly advantageous when dealing with complex
systems for which models are not easy to obtain either from
first principles or system identification. A powerful result in
support of these so-called direct data-driven methods has
been without any doubt the fundamental lemma developed
by Willems and co-workers [1] in the context of behavioral
systems theory, see [2] for a recent survey. Building on
this framework, this paper considers the problems of system
invertibility and input reconstruction for discrete-time linear
time-invariant (LTI) systems based on measured data, for
both noise-free and noisy cases.

In the model-based setting, the problem of system invert-
ibility and input reconstruction may be traced back to the
seminal contributions by Sain and Massey [3], and Silverman
[4]. It has been since then an active area of research, which
has found several applications, see, for example, [5] and
references therein. Recent works considered the problem of
initial state and input reconstruction [6] and simultaneous
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input reconstruction and state estimation [7]. Strong invert-
ibility of linear systems has been studied in [8], whereas
the problem of input reconstruction for switched systems is
studied in [9].

Differently from the previously mentioned papers, all
based on model knowledge, we are interested in developing
efficient algorithms for these tasks which only make use of
measured data. That is, the main goal is that of reconstructing
the input trajectory for a given output trajectory and initial
conditions based on past measured input/output data. The
key observation we leverage is that the data-driven input
reconstruction problem can be seen as an inverse of the
problem of data-driven simulation [10], which consists of
computing the output trajectory for a given input trajectory
and initial conditions based on past measured input/output
data. It is known that input reconstruction can be achieved
only if the system is left invertible. Therefore, we also
develop data-driven criteria to verify the left invertibility of
the system. If this system is positive, we show that input
reconstruction can be achieved with a minimum delay only,
which is known as the inherent delay of the system [3].

Prior work has considered partially related problems in
the data-based setting. Data-driven state observers have been
considered in [11], [12] and the problem of data-driven
input reconstruction has been studied in [13], [14]. However,
papers [13], [14] assume that the system is left invertible and
do not provide theoretical guarantees on how to verify such
property based on measured data. In fact, it will be shown
here that [13, Condition (7)], which is assumed for input
reconstruction, can be guaranteed by the left invertibility of
the system (see Remark 5). Furthermore, this problem has
not been studied yet when working with noisy data.

The work has two main contributions. First, for the case
of noise-free data, we prove novel data-based tests and
algorithms based on behavioral systems theory to verify
the left invertibility of an LTI system and to reconstruct
the input trajectory from a given output trajectory. Namely,
Algorithm 1 and Algorithm 2 deal with the problem of left
invertibility when input/state/output and input/output data are
available, respectively. Algorithm 3 instead solves exactly
the input reconstruction problem. Second, we develop a
statistical framework inspired by the signal matrix model
(SMM) proposed in [15] to handle the case where the output
is corrupted by additive noise. The resulting method provides
a maximum likelihood input reconstruction estimate. Numer-
ical tests show a better performance in average accuracy
and dispersion of the estimate when compared to standard
heuristics that do not leverage any distributional information
of the noise.
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Notation and Preliminaries. The set of real k × m
matrices is denoted by Rk×m. The transpose and the Moore-
Penrose pseudo-inverse of A ∈ Rk×m are denoted by A⊤

and A†, respectively. The (i, j)-th entry of any matrix A
is denoted by (A)i,j . The identity matrix of dimension
k/appropriate is denoted by Ik/I and the zero matrix of
appropriate dimensions is denoted by 0. The normal-rank
of a polynomial matrix or a matrix transfer function in z
is defined as the maximal rank over all possible values of
z. The symbol Λ(A,B) := {λ ∈ C | det(A − λB) = 0}
denotes the set of generalized eigenvalues (GEVs) of a pair
of square matrices (A,B). We define

col(A1, A2, . . . , Ar) :=
[
A⊤

1 A⊤
2 . . . A⊤

r

]⊤
.

with the tacit assumption that the matrices have the same
number of columns. With zd we denote an offline (data)
trajectory of length T defined as

zd :=
(
zd(k), zd(k + 1), . . . , zd(k + T − 1)

)
∈ (Rq)T .

Associated with it, we also define two shifted trajectories

z+d :=
(
zd(k + 1), zd(k + 2), . . . , zd(k + T − 1)

)
,

z−d :=
(
zd(k), zd(k + 1), . . . , zd(k + T − 2)

)
.

Further, we denote a generic trajectory of length L as
z|[k,k+L−1] := col(z(k), z(k + 1), . . . , z(k + L− 1)).

Definition 1: A q-variate time series zd is persistently
exciting of order L ∈ N if the Hankel matrix with L-block
rows defined as

HL(zd) =

 zd(k) zd(k + 1) · · · zd(k + T − L)
zd(k + 1) zd(k + 2) · · · zd(k + T − L + 1)

...
...

. . .
...

zd(k + L − 1) zd(k + L) · · · zd(k + T − 1)


has full row rank, i.e., its rank is qL.

II. BACKGROUND

A. Model-Based System Invertibility

Consider the discrete-time linear time-invariant system

x(k + 1) = Ax(k) +Bu(k), (1a)
y(k) = Cx(k) +Du(k). (1b)

Here, at each time instant k, x(k) ∈ Rn is the state vector,
u(k) ∈ Rm is the control input vector, and y(k) ∈ Rp is
the output vector. Matrices A,B,C,D are of appropriate
dimensions. We assume that the system is minimal. The
p×m matrix transfer function of the system is given by

G(z) = C(zI −A)−1B +D.

Definition 2: [3, Definition 4] Let τ ≥ 0 be a finite
integer. We say G is τ -delay left invertible if it has a τ -
delay left inverse, i.e., there exists Ĝ such that Ĝ(z)G(z) =
z−τIm. Furthermore, we say G is left invertible if there exists
a nonnegative integer κ such that G is κ-delay left invertible.

It can be seen that if G has a τ -delay left inverse, then
it has a τ1-delay left inverse for all τ1 > τ . The smallest τ
for which G has a left inverse is called the inherent delay

of the left invertible system G [3], which we denote by τ0.
Note that τ0 ≤ n [3, Corollary 1]. Related to system (1), we
define the following matrices

Oτ =


C
CA
CA2

...
CAτ

 , Tτ =


D 0 · · · 0
CB D · · · 0
CAB CB · · · 0

...
...

. . .
...

CAτ−1B CAτ−2B · · · D

 .

Also, T0 = D and T−1 = 0. We recall the following result.
Theorem 3: The following statements are equivalent:
i) ∃ τ ≥ 0 such that system (1) is τ -delay left invertible.

ii) normal-rank
[
A− λI B

C D

]
= n+m.

iii) normal-rankG(z) = m.
iv) ∃ τ ≥ 0 such that rank Tτ − rank Tτ−1 = m.
v) ∃ a matrix Q and ∃ τ ≥ 0 such that QTτ =

[
Im 0

]
.

Proof of the above theorem can be easily obtained by lever-
aging [3, Theorem 2], [6, Theorem 1], and [7, Proposition 2].

Remark 1: For left invertibility, p ≥ m is necessary.

B. Data-Driven Simulation

To begin with, we recall the fundamental lemma.
Lemma 4: [1, Theorem 1] Assume that system (1) is

controllable and, given L ∈ N with L > n, the observed
trajectory col(ud, yd) is such that ud is persistently exciting
of order L + n. Then col(u|[k,k+L−1], y|[k,k+L−1]) is a
trajectory of system (1) if and only if there exists g ∈
RT−L+1 such that[

HL(ud)
HL(yd)

]
g =

[
u|[k,k+L−1]

y|[k,k+L−1]

]
.

The problem of data-driven simulation can then be stated
as follows [10]. Given an observed input/output trajectory
col(ud, yd), initial condition col(uini, yini) of length Tini, and
input trajectory u|[k,k+L−1] := col(u(k), u(k+1), . . . , u(k+
L − 1)): compute the output trajectory y|[k,k+L−1]. Note
that, using Lemma 4, the concatenation col(uini, yini) ∧
col(u, y)|[k,k+L−1] =: col(ū|N , ȳ|N ) is a trajectory of the
system if and only if there exists g such that[

HN (ud)
HN (yd)

]
g =

[
ū|N
ȳ|N

]
, (2)

where N = L + Tini. Defining col(Up, Uf ) :=
HN (ud) and col(Yp, Yf ) := HN (yd), (2) is equivalent to

Up

Yp

Uf

Yf

 g =


uini
yini

u|[k,k+L−1]

y|[k,k+L−1]


mTini
pTini
mL
pL

. (3)

To solve the problem of simulation, we compute g from
the first three block equations of (3), and then from the
fourth block equation, we compute the output trajectory as
y|[k,k+L−1] = Yfg [10, Algorithm 1]. In view of this, it
would be tempting to say that we can compute the input
trajectory as u|[k,k+L−1] = Ufg, where g is computed
by the other three block equations col(Up, Yp, Yf )g =
col(uini, yini, y|[k,k+L−1]). However, we observe on passing
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here, deferring a proof of it to the technical part later, that this
is incorrect. This is because (3) is just a feasibility condition
for the realization of input/output data and cannot be seen as
an inversion test. We can only reconstruct the inputs provided
that the system is left invertible. Thus, we aim to develop
data-driven criteria for the left invertibility of an LTI system
(see Section III) and retrieve the inputs that have led to the
outputs based on (noisy) measured data (see Section IV).

III. DATA-DRIVEN CRITERIA FOR LEFT INVERTIBILITY

In this section, we provide data-driven algorithms for the
left invertibility of the system. First, we consider the case
where we have access to the input/state/output data, and then
the scenario where we have only input/output data.

A. Input/State/Output Data Case
Assumption 1: The matrix col(H1(x

−
d ),H1(u

−
d )) has full

row rank.
The above assumption is equivalent to the identifiability of
system (1) [16, Proposition 6]. Moreover, it can be enforced
if the system is controllable and ud is persistently exciting
of order n+ 1 [1, Corollary 2 (ii)].

Theorem 5: Let Assumption 1 hold. Then, system (1) is
left invertible if and only if

normal-rank
[
H1(x

+
d )− λH1(x

−
d )

H1(y
−
d )

]
= n+m. (4)

Proof: Note that[
H1(x

+
d )− λH1(x

−
d )

H1(y
−
d )

]
=

[
AH1(x

−
d ) +BH1(u

−
d )− λH1(x

−
d )

CH1(x
−
d ) +DH1(x

−
d )

]
=

[
A− λI B

C D

] [
H1(x

−
d )

H1(u
−
d )

]
.

Since the matrix col(H1(x
−
d ),H1(u

−
d )) has full row rank,

(4) holds if and only if Theorem 3 ii) holds.
Note that if Assumption 1 does not hold, condition (4)
provides only a sufficient test for the left invertibility. Also,
because H1(x

+
d )−λH1(x

−
d ) is not a square matrix, it is not

straightforward how to verify (4) for left invertibility of the
system. In fact, if H1(x

+
d )−λH1(x

−
d ) were a square matrix,

it was sufficient to pick a λ that was not the generalized
eigenvalue of the matrix pair

(
H1(x

+
d ),H1(x

−
d )

)
. Neverthe-

less, similar to [17, Algorithm 1], the following algorithm is
proposed to verify the left invertibility (4) for system (1).

Algorithm 1: Data-driven left invertibility test.
Input: Observed data ud, xd, and yd.
Output: The system is left invertible/not left invertible.

1: Perform the SVD: U⊤H1(x
−
d )V = [ S 0

0 0 ], and let r =
rankH1(x

−
d ).

2: Partition the matrix H1(x
+
d ) as U⊤H1(x

+
d )V =[

H11 H12

H21 H22

]
, where H11 ∈ Rr×r and partition H1(y

−
d )

conformably as H1(y
−
d )V =

[
Y11 Y12

]
.

3: Compute the GEVs of the matrix pair (H11, S).

4: Compute the rank of Hλ1
=

[
H11−λ1S H12

H21 H22

Y11 Y12

]
for some

λ1 ̸∈ Λ(H11, S).

5: If rankHλ1
= n+m, then the system is left invertible.

Otherwise, it is not left invertible.

B. Input/Output Data Case

Assumption 2: rankHL1(col(ud, yd)) = n + mL1, for
L1 > n.
This assumption is conceptually similar to Assumption 1, but
gives an identifiability condition based on input/output data
[18, Theorem 4]. It is interesting to note that if the system
is controllable and the inputs ud are persistently exciting of
order n+ L1, then Assumption 2 holds [19, Theorem 2].

Following Theorem 3 iv), we will now provide an algo-
rithm to verify the τ -delay left invertibility of the system
based on input/output measurements. The basic idea is to
compute the Toeplitz matrix Tτ based on input/output data
and then use Theorem 3 iv). Note that the entries of Tτ are
the matrix impulse responses of the system. These matrix
impulse responses can be computed iteratively based on
input/output measurements, following [20, Algorithm 5].
Note that this algorithm works under the assumptions of
Lemma 4. Recently, it has been shown that Lemma 4 holds if
and only if Assumption 2 is satisfied [18, Theorem 4]. The
preceding discussion can be put together in the following
algorithm.

Algorithm 2: τ -delay left invertibility test from in-
put/output data.
Input: Observed data ud, yd, and delay τ .
Output: The system is τ -delay left invertible/not τ -delay left
invertible.

1: Build the Toeplitz matrix Tτ by computing the matrix
impulse responses of the system iteratively based on
only observed data ud, yd by using [20, Algorithm 5].

2: Compute rank Tτ − rank Tτ−1 =: γ.
3: If γ = m, the system is τ -delay left invertible. Other-

wise, it is not τ -delay left invertible.
Remark 2: The delay τ is usually unknown in practice.

Furthermore, to reduce the computations, it is desirable to
have a minimal bound for the delay. The smallest possible
delay is thus defined as [5, Page 30]

τ∗ := min{τ ≥ 0 | rank Tτ − rank Tτ−1 = m}.

Conditions under which τ∗ is finite are given in [5, Propo-
sition 6]. Note that τ∗ is always less than or equal to the
system order n.

Remark 3: Tests to verify the right invertibility of LTI
systems (see, for example, [3, Section V]) based on measured
data can be developed analogously. This represents novel
results as to the best of the authors’ knowledge there are no
data-driven tests to verify this property, which is required
to solve, for example, the output matching problem [10,
Section 5], and is typically only assumed.

IV. DATA-DRIVEN INPUT RECONSTRUCTION

A. Noise-free data

It can be seen, from system (1), that

y|[k,k+τ ] = Oτx(k) + Tτu|[k,k+τ ]. (5)
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If system (1) is τ -delay left invertible, there exists a matrix
Q such that QTτ =

[
Im 0

]
(see Theorem 3 v)). Pre-

multiplying both sides of (5) by Q, we have

u(k) = −QOτx(k) +Qy|[k,k+τ ]. (6)

From (6), it can be seen that to compute the input at
timestamp k, we not only need the output at timestamp k
but also at timestamps k+ 1, k+ 2, . . . , k+ τ together with
the state at timestamp k. Here, the state sequence can be
obtained iteratively as follows

x(k + 1) = (A−BQOτ )x(k) +BQy|[k,k+τ ]. (7)

System (7)-(6) can be seen as the state-space model of the
τ -delay left-inverse of system (1). Thus, if we know the
system matrices A,B,C,D, initial conditions, and measured
outputs, we can reconstruct the control inputs. However,
here we are interested in reconstructing the inputs for given
outputs based on measured past input/output data and initial
conditions. In the following, we formally state the problem
of data-driven input reconstruction.

Problem 1: Given an observed input/output trajectory
col(ud, yd), initial condition col(uini, yini) of length Tini, and
output trajectory y|[k,k+L−1+τ ]; reconstruct the unique input
trajectory u|[k,k+L−1].
We now provide necessary and sufficient conditions under
which the above problem has a solution.

Theorem 6: Let Assumption 2 hold for L1 = L+Tini+τ .
Then, Problem 1 has a solution if and only if system (1) is
τ -delay left invertible.

Proof: Let system (1) be τ -delay left invertible.
From Assumption 2, the concatenation col(uini, yini) ∧
col(u, y)|[k,k+L−1+τ ] =: col(ū|L1 , ȳ|L1) is a trajectory of
the system if and only if there exists g such that[

HL1
(ud)

HL1
(yd)

]
g =

[
ū|[k,k+L−1+τ ]

ȳ|[k,k+L−1+τ ]

]
, (8)

with L1 = L + Tini + τ . Define col(Up, Ufτ ) :=
HL1(ud) and col(Yp, Yfτ ) := HL1(yd), (8) becomes

Up

Yp

Yfτ

Ufτ

 g =


uini
yini

y|[k,k+L−1+τ ]

u|[k,k+L−1+τ ]


mTini
pTini

p(L+ τ)
m(L+ τ)

. (9)

In view of (6), because we can compute inputs of length L
for a given output of length L+τ , the following relation can
be derived from (9) by deleting the last mτ rows,

Up

Yp

Yfτ

Uf

 g =


uini
yini

y|[k,k+L−1+τ ]

u|[k,k+L−1]


mTini
pTini

p(L+ τ)
mL

. (10)

We now compute a solution for g from the first three block
equations and use that g to compute the input trajectory from
the fourth block equation u|[k,k+L−1] = Ufg.

Note that any solution g is of the form g =
V†ζ + ker(V), where V := col(Up, Yp, Yfτ ) and ζ :=
col(uini, yini, y|[k,k+L−1+τ ]). Thus, to prove the uniqueness

of the input trajectory u|[k,k+L−1], we need to show that
ker(V) ⊆ ker(Uf ). From the invertibility assumption, we
have u(k) = Qy|[k,k+τ ]−QOτx(k), where x(k) is uniquely
determined by past input/output data, as the system is ob-
servable [10, Lemma 1]. Thus, row-sp(Uf ) ⊆ row-sp(V).
Hence, ker(V) ⊆ ker(Uf ).

Conversely, suppose that Problem 1 has a solution. Then,
ker(V) ⊆ ker(Uf ), which implies row-sp(Uf ) ⊆ row-sp(V).
Hence, system (1) is τ -delay left-invertible.

Remark 4: It is assumed in [13, Condition (7)] that
ker(V) ⊆ ker(Uf ) to devise the input reconstruction method
from outputs (IRO). It can be seen from the above proof that
this condition holds under the left invertibility of the system.
See also [14, Lemma 3].
Based on Theorem 6, we now provide an algorithm for input
reconstruction.

Algorithm 3: Data-driven input reconstruction.
Input: Observed data ud, yd, initial conditions uini, yini, output
trajectory y|[k,k+L−1+τ ].
Output: Reconstructed control input trajectory u|[k,k+L−1].

1: Compute a solution for g fromUp

Yp

Yfτ

 g =

 uini
yini

y|[k,k+L−1+τ ]

 . (11)

2: Compute
u|[k,k+L−1] = Ufg.

Remark 5: Similar to [20, Algorithm 5], Algorithm 3
can be modified to compute the control input iteratively.
Moreover, if the system is both left and right invertible and
matrix D has full row rank, then τ = 0 and Algorithm 3
reduces to the output matching algorithm [10, Algorithm 5].

B. Noisy data

In the previous section, we assumed that the measured
signals were exact (noise-free). In this section, we relax this
assumption and we consider the case where all the output
trajectories (data, initial conditions, and future) are subject
to additive Gaussian noise, that is,

ỹd = yd + νd, ỹini = yini + νini, ỹs = ys + νs,

νd ∼ N (0, σ2I), νini, νs ∼ N (0, σ2
pI),

(12)

where ys := y|[k,k+L−1+τ ]. In this case, (6) is not satisfied,
Theorem 6 does not hold, and Algorithm 3 does not return
a unique control input trajectory u|[k,k+L−1] =: us.

To address this, we build here on the recently proposed
statistical framework for data-driven simulation and control
known as signal matrix model (SMM) [15]. In the setting
of Section II-B, SMM tackles the issue that with noisy
data (3) is no longer exactly satisfied by modeling g as
a hyperparameter of the future output trajectory estimation
problem. That is, the vector g is chosen such that Yfg
maximizes the conditional probability of observing the out-
put y|[k,k+L−1] given the available data. We extend here
SMM to the input reconstruction problem, by formulating
a maximum likelihood estimation (MLE) problem whereby
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g maximizes the conditional probability that the input Ufg
has generated the true output ys. The framework is modified
as follows. Given the data trajectory ud, ỹd, initial conditions
uini, ỹini, output trajectory ỹs, the maximum likelihood input
reconstruction problem can be cast, by using known formulas
for Gaussian distribution [15, Eqs. (27)–(30)], as

min
g∈G

log det(Σy) +

[
Ypg − ỹini
Yfτ g − ỹs

]⊤
Σ−1

y

[
Ypg − ỹini
Yfτ g − ỹs

]
, (13)

where G =
{
g ∈ RT−L1+1 | Upg = uini

}
,

(Σy)i,j = σ2

T−L1+1−|i−j|∑
k=1

gkgk+|i−j| +

{
σ2
p, i = j

0, otherwise
.

Note that, differently than in the noise-free case (cf. Algo-
rithm 3), here the identity (11) is relaxed as the constraint
g ∈ G only involves noise-free variables. Compared to [15,
Eq. (30)], the key difference is the presence of

[
Yfτ g − ỹs

]
̸=

0, which comes from the noisy output. By neglecting the
off-diagonal terms in Σy (these terms are zero when Page
matrices are used in place of Hankel [21]), (13) becomes

min
g∈G

L1 log
(
σ2∥g∥22 + σ2

p

)
+

1

σ2∥g∥22 + σ2
p

∥Ypg − ỹini∥22

+
1

σ2∥g∥22 + σ2
p

∥Yfτ g − ỹs∥22, (14)

whose solution is used to reconstruct the input as us = Ufg.
Alternatively, one can employ a convex, possibly suboptimal,
relaxation. An option inspired by [15, Eq. (33)] is the fol-
lowing quadratic program obtained by linearizing (in ∥g∥22)
the first term around a value of g (arbitrary) and fixing the
denominator in the last two terms at the same value of g

min
g∈G

L1σ
2∥g∥22 + ∥Ypg − ỹini∥22 + ∥Yfτ g − ỹs∥22. (15)

The signal us has (modulo the numerical approximations
discussed above and similarly employed in [15]) the statis-
tical interpretation of being the input which has the highest
(conditional) probability to have generated the response ys.

V. NUMERICAL EXPERIMENTS

We consider the following benchmark system [22]

G(z) =
0.1159(z3 + 0.5z)

z4 − 2.2z3 + 2.42z2 − 1.87z + 0.7225
. (16)

We consider Gaussian distributed random inputs with zero
mean and unit variance of length T = 100 to excite the
system and generate the required data, previously denoted
by col(ud, yd). Based on this, we verify, using Algorithm 2,
that the system is left invertible with τ = 1. The next step
is then to compute the input trajectory for a given output
trajectory ys. As an example, we want to reconstruct the input
trajectory of length L = 30 for a given output trajectory of
length L+τ = 31. We thus generate an output trajectory ys of
length 31 by considering again Gaussian distributed random
input trajectory us of length 31 with zero mean and unit
variance. In the noise-free case, we apply Algorithm 3 and
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Fig. 1. Average relative percentage errors of LN and MLE.

verify that the reconstructed input trajectory exactly matches
the true input trajectory, as expected from Theorem 6.

We then consider, for the same simulation setup, the noisy
scenario and we compare the proposed statistical approach
(MLE) with the least-norm (LN) solution, which is an
empirical way used in the literature to address data-driven
simulation problems with noisy data [23]. This approach
consists of reconstructing the input as us = Ufg, where g is
obtained here by solving

min
g

∥g∥22 subject to (11). (17)

We consider for the noise model (12) different values of
variance σ2

p = σ2. For each noise level, we perform M =
100 Monte Carlo runs and for each run, we compute the
relative (rel.) error defined as ∥us−ûs∥2

∥us∥2
, where ûs denote the

estimated input trajectory. The results are shown through
average relative percentage error (avg. rel. % err.) plot in
Fig. 1 and the box plots in Fig. 2, showing the error metric for
different noise levels. A marked performance improvement
is obtained with SMM both in terms of average accuracy and
dispersion.

Moreover, the comparison with the input reconstruction
obtained with the LN approach is reported in Table I in terms
of percentage mean and variance of the error metric and
shows again a clear improvement achieved using the maxi-
mum likelihood approach. To empirically test the sensitivity
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Fig. 2. Box plots (left: LN, right: MLE) for error vectors of 100 Monte
Carlo runs.
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TABLE I
MEAN (M) AND VARIANCE (V) OF THE INPUT RECONSTRUCTION ERROR

σ2 LN-m [%] MLE-m [%] LN-v MLE-v
0.005 98.8 79.4 0.0567 0.0112
0.01 108.6 84.1 0.0800 0.0139
0.02 108.3 86.0 0.0476 0.0102
0.04 118.4 91.6 0.0543 0.0105
0.06 120.8 95.2 0.0547 0.0097

of the statistical approach to the right assumption on the
noise distribution, we also perform numerical experiments,
where the noise contaminating the case is sampled according
to a different distribution, e.g., uniform instead of Gaussian
(but with the same first and second order statistics). We found
that the previous results are only marginally altered.

To further investigate the performance of the MLE-based
input reconstruction, we analyze the discretized version of
the mass-spring-damper system from the literature [5, Ex-
ample 3.5.2] using a sampling time of 1 s

A =

[
0.1250 0.0229 0.0694 0.0954
0.0229 0.1478 0.0954 0.1647
−0.4336 −0.2600 −0.0919 −0.1071
−0.2600 −0.6936 −0.1071 −0.1990

]
,

B =

[
0.0852
0.0829
0.0694
0.0954

]
, C = [ 1 0 0 0

0 0 1 0 ] , and D = [ 00 ] .

The delay τ = 1 is obtained by using Algorithm 2. The
results, obtained using the same data-generating setup, are
shown through avg. rel. percentage err. plot in Fig. 3. They
confirmed the observations made in relation to system (16).
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Fig. 3. Average relative percentage errors of LN and MLE.

VI. CONCLUSIONS

The work is concerned with the development of a data-
driven approach based on behavioral system theory to infer
the invertibility of an LTI system and to reconstruct the
inputs for given outputs. Precisely, novel data-based tests are
proposed to verify the system invertibility property and, if
this holds, exactly reconstruct the input for given noise-free
measurements of outputs. The more realistic scenario, where
data are contaminated by noise is also tackled using a maxi-
mum likelihood estimation approach that consistently shows
in simulation better performance compared to a least-norm
approach. Interesting future directions include: leveraging
these results to design an online fault detection and isolation

scheme based on data; determining confidence regions on the
reconstructed input in the case of noisy data by leveraging
the statistical approach pursued here; and extending these
results to nonlinear systems.
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