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Abstract— Using biofeedback in medical therapies has proven
to be effective for adapting patient behaviors while keeping
the patients engaged and motivated in an exercise session.
This paper considers general problems in personalized exer-
cise sessions where the input is opportune biofeedback and
the session goal is to maximize a particular exercise effect.
Due to the individual differences between patients and their
physiological signals, however, personalized patient models also
need to be identified. With the two objectives: 1) maximize
a training effect with minimal control effort, and 2) identify
the individualized patient model, we have a typical exploration
vs. exploration trade-off. Control problems of this form are
called dual control problems. In this paper, we formulate a
dual control problem for a personalized exercise session and
test the approach against classical optimal control and optimal
experimental design approaches in an illustrative example of
performing Kegel exercises where the control and identification
goals conflict with each other.

I. INTRODUCTION

The recent abundance of physiological data from easy-
to-use medical devices has led to a surge in the use of
biofeedback in therapy and physical exercise. Non-invasive,
psycho-physiological sensors may provide real-time infor-
mation to monitor and influence users’ behavior, and thus
perform biofeedback actions that can range from adapting
the visual, tactile, or auditory environment of the user [1].
This approach has become an effective tool in the treatment
of stress and anxiety-related disorders [2] as well as chronic
pain [3], irritable bowel syndrome [4], and incontinence [5].
Recently, biofeedback has been adopted in personalizing
training for aerobic fitness [6]. Physical exercising with the
aid of biofeedback devices has the unique advantage of being
a non-pharmaceutical intervention for enabling individuals to
control their bodies in a non-invasive and low-risk way.

On the other hand, biofeedback by itself is not guaranteed
to yield results in medical therapies and exercising, since
improving one’s condition is often achieved only after consis-
tent commitment. The inconsistency of feedback to affirm the
results of the treatment often leads to high therapy dropout
rates and irregular exercising; in these cases, the exercising
effect is effectively lost. Moreover, for those executing the
exercises incorrectly, often no feedback is available to rectify
their behavior. In essence, there seems to be a need for
improving the efficacy of providing feedback both during an
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exercising session (to aid the user to adapt their own behavior
within an individual session and to monitor the effectiveness
of that single exercising session), and across the exercising
season (to aid the user focus towards long-term goals and to
monitor the combined effect of the time series of sessions).

Due to the stark individual differences between patients
and physiological signals, the successful incorporation of
biofeedback within and across exercise sessions requires
a personalized patient model. Such individualized models
shall then be able to account for the fact that, in time,
exercising sessions may evolve, daily form may change, and
sensor placement may vary. Such models shall moreover be
identified typically with a minimal amount of samples. This
highlights then a typical exploration vs. exploitation trade-
off: design a series of exercising sessions whose medical
effect is maximal within the shortest period of time, vs. col-
lecting data maximally useful for model learning purposes.

Contribution: We propose a model structure that may
aid in designing in-session and across-sessions biofeedback
actions, and for which it is possible to frame the explo-
ration vs. exploitation problem above as a Dual Control
(DC) problem. We thus propose a model-based exercising
sessions-design methodology for tackling such a trade-off
between achieving a desired exercising effect and identifying
the system to aid in the design of more efficient and effective
exercise sessions.

Structure of the manuscript: We first formalize the
structure of the proposed model and define the aims of
the exercising session design as an optimal input design.
We follow this by formalizing the sides of the trade-off
above as two separate Optimal Control (OC) and Optimal
Experimental Design (OED) problems. Next, we bring the
two problems together and define a general cost function of
interest where the trade-off is captured by a specific weight.
Finally, we demonstrate the effect of trading off between the
two objectives in a numerical example of a validated Kegel
exercise model.

Notation: We use uppercase letters for random variables
and the corresponding lowercase letters for realizations.

II. EXERCISE SESSION DYNAMICS

a) Model structure: The majority of systems in
medicine and biology often exhibit highly nonlinear and
complex dynamical behavior. During exercise sessions, vari-
ables such as sensor placement, daily form, and concentration
can cause time-variant behavior. Linear time-invariant mod-
els are commonly used in medical and biological systems,
but non-linearities may be important in some cases, requiring
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linearizable or explicit non-linear system considerations. No-
tably, updating the system parameters is crucial to obtaining
the best model for each exercise session.

Different therapies may focus on different parts of the
body, and thus focus on models that may be different
since serving different needs. We assume that the particular
model of interest is within the class of discrete-time systems
writable as

xk+1 = f(xk, uk, θ) + wk, (1)
yk = h(xk, uk, θ) + vk, (2)
zk = φ(xk, uk) , (3)

where xk ∈ Rnx are the states of the system (e.g., status
of specific muscles), uk ∈ U ⊂ Rnu are the constrained
inputs (e.g., intensity of the physical activity), and yk ∈ Rny

are the measurements (e.g., heart rate, exerted muscular
force). In addition, we assume the designer to have identified
an exercising effect variable, denoted here as zk ∈ Rnz

(e.g., some physical endurance index). zk is assumed to
be a non-measured output equal to a deterministic function
of the current states and inputs. θ ∈ Θ ⊂ Rnθ is the
vector of (unknown) system parameters. Accordingly, the
function f : Rnx × Rnu × Rnθ → Rnx is the state
transition function, h : Rnx × Rnu × Rnθ → Rny is the
measurement function; where the structure is known for both;
and φ : Rnx × Rnu → Rnz is the function defining the
exercising effect z. We assume the system to be stochastic
with process uncertainty wk ∼ N (0, Q) due to the initial
condition uncertainty and the propagation of uncertainty
from the parameter estimation. Similarly, vk ∼ N (0, R)
is the measurement uncertainty. We assume here additive
independent and identically distributed (i.i.d) Gaussian noise,
which is legitimate for certain applications, but it should
be carefully evaluated based on the specific physiological
signals under consideration, see e.g. [7], [8].

We thus assume that the designer works with a specific
instance of the model defined by (1)–(3), referred to in the
remainder of the paper as the exercising session system.
We show later how this may be used to design biofeedback
actions to adapt the user’s actions for a specific instance of
the model, making it applicable for physiotherapy purposes.

b) System dynamics: We assume the initial value X0

follows a known probability distribution, and at the be-
ginning of each exercising session, the system parameters
θ are unknown. Also, at any time, some data manage-
ment system has collected the information up to and in-
cluding time k. We denote this information via D0:k =
(X0, U0, . . . , Uk−1, Y1, Y2, . . . , Yk) with D0 = X0 and di-
mension nD0:k

.
c) Aim: Find an algorithm to recursively estimate,

given D0:k−1, the inputs that maximize the current exercising
effect zk. Thus find the control policy sequence U0:N−1 =
(U0, U1, . . . , UN−1) for N ≥ 1 such that Uk+1 = µk(D0:k),
where µk : RnD0:k → U .

Such an algorithm has to include the two ingredients
of identifying the system and maximizing the exercising

effect with minimal control effort, which correspond to two
classical paradigms in the control literature, i.e., OC and
OED:

Paradigm 1 (OC) Design a minimal (control) effort u that
leads to a session that maximizes the exercising effect z.

Paradigm 2 (OED) Design a maximally informative effort
u that leads to a session for which the estimated exercising
effect, ẑ, may be inferred as statistically accurate as possible.

In the remainder of the paper we proceed as follows:
detail our specific OC problem in Sec. III, formalize our
type of OED problem in Sec. IV, and formulate in Sec. V a
method to combine the two approaches into a single trading-
off problem.

III. DESIGNING AN EXERCISE SESSION AS AN OPTIMAL
CONTROL PROBLEM

To formulate a session design problem as an optimal
control one given model (1)-(3), one may consider a general
formulation of the loss function as

E

[
GN (ZN ) +

N−1∑
i=k

Gi(Zi, Ui)

]
=: E[H(Zk, Uk:N−1)]

(4)
where Gi : Rnz × Rnu → R are the stage cost functionals,
GN : Rnz → R is the terminal cost functional, and the
expected loss is chosen to be a sensible criterion of interest
since exercising effects Zk are stochastic variables.

An optimal control approach would then be finding the
admissible control strategy for system (1)–(3) minimizing
(4). We can use Lemma 3.2 in [9], where we can condition
on the information collected until the decision process, i.e.,

min
Uk:N−1(D0:k)

E

[
GN (ZN ) +

N−1∑
i=k

Gi(Zi, Ui)

]

= min
uk:N−1

E

[
GN (ZN ) +

N−1∑
i=k

Gi(Zi, ui)

∣∣∣∣∣D0:k = d0:k

]
= V (d0:k, k) .

(5)

Since the dimension of D0:k increases with k, and since that
conditional expectation may become numerically intractable,
we can simplify (5) by conditioning on our best state
estimate given the data D0:k instead. Thus, letting x̂k|k =
E [Xk|D0:k = d0:k] and ẑk = E

[
φ(Xk, Uk)|Xk = x̂k|k

]
,

we consider the new objective

W (x̂k|k, k) = (6)

min
uk:N−1

E

[
GN (ZN ) +

N−1∑
i=k

Gi(φ(Xi, ui), ui)

∣∣∣∣∣Xk = x̂k|k

]
.

From computational perspectives, x̂k|k has a constant dimen-
sion as k increases. We note that it is not necessary to restrict
x̂k|k to be a specific type of filter.

Remark In [9], it is shown for Linear Quadratic Gaussian
(LQG) problems, that x̂k|k is a sufficient statistic given the
data D0:k, i.e., V (D0:k, k) = W (x̂k|k, k); however, equality
does not hold generally.
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IV. DESIGNING AN OPTIMAL EXPERIMENTAL DESIGN
FOR AN EXERCISING SESSION

If one wishes to be able to compute estimates ẑ as
precisely as possible, one may wish to promote data in-
formativity by means of OED techniques. This means that,
given an appropriate model structure and measurement data,
y0:N , one wishes to ensure low uncertainty about some Key
Performance Indicator (KPI). Given our model choice, we
consider the classical case of additive, normally distributed,
uncorrelated measurement error, for which the maximum
likelihood estimate

θ̂ML =argmax
θ

pY |θ(y1:N |x̂0:N , u0:N−1, θ)

= argmin
θ

N

2
log(2π) +

1

2
log |R|+ 1

2

N∑
k=1

e⊤k R
−1ek ,

(7)

where ek = yk − h(xk, uk, θ) and pY |θ is the conditional
probability density function (pdf) of the measurements given
the parameters, is of statistical relevance [10].

A. Information matrix and optimality criteria

Given the parametric estimation problem of estimating θ
in (1)-(2), we consider the classical focus on the optimal,
unbiased estimate with minimal covariance. In other words,
letting θ∗ be the (assumed existing) true parameters vector
and M

(
θ̂, u

)
be the Fisher Information Matrix (FIM)

M
(
θ̂, u

)
= E

[
L⊤L

∣∣
θ=θ̂

]
, L :=

∂ log pY |θ(y1:N |θ)
∂θ

,

(8)
the Cramer-Rao inequality [10]

E
[(

θ̂ − θ∗
)⊤ (

θ̂ − θ∗
)]

≥ M
(
θ̂, u

)−1

, (9)

follows, stating that the covariance of the estimation er-
ror cannot be smaller (in a positive definite sense) than
the inverse of the FIM. To achieve the lower limit – the
minimum variance unbiased estimator – several optimality
criteria based on the FIM have been proposed, including the
so-called A-criteria given by the trace ΦA

(
M

(
θ̂, u

))
=

tr

(
M

(
θ̂, u

)−1
)

, the D-criteria, given by the determinate

ΦD

(
M

(
θ̂, u

))
= det

(
M

(
θ̂, u

)−1
)

, and the modified

E-criteria as ΦmE

(
M

(
θ̂, u

))
=

λmax

(
M(θ̂,u)

−1
)

λmin

(
M(θ̂,u)

−1
) , where

λmax and λmin are the maximum and minimum eigenvalues
of the inverse of the FIM, respectively.

B. Computing the Fisher information matrix in practice

As noticed in [11] the criteria above may suffer from
issues due to variable scaling, leading to poor estimates of
parameters with larger values. We thus propose to consider
solving the scaled OED variant

min
u0:N−1

Φ
(

diag
(
θ̂
)
M

(
θ̂, u

)
diag

(
θ̂
))

. (10)

Moreover from (7) it follows that (8) can be written as

M
(
θ̂, u

)
=

N−1∑
k=0

[(
dhk

dθ

)⊤

R−1

(
dhk

dθ

)]∣∣∣∣∣
θ=θ̂

, (11)

where hk = h(xk, uk, θ). It is then possible to define the
sensitivities of the states and outputs as

sk =
dxk

dθ

∣∣∣∣
θ=θ̂

,
dhk

dθ
=

∂h

∂x

dxk

dθ

∣∣∣∣
θ=θ̂

+
∂h

∂θ

∣∣∣∣
θ=θ̂

. (12)

Considering then that

d

dθ
xk+1 =

d

dθ
f(xk, uk, θ) , (13)

and the chain rule it follows that

sk+1 =
∂f

∂x
sk +

∂f

∂θ
. (14)

We note that these sensitivities shall be used not just for
computing both FIM, but also the sensitivity of the loss of
optimality in the following section IV-C.

C. An adapted OED approach, specific for model (1)–(3)
Standard OED formulations aim to design inputs that

maximize the accuracy of parameter estimators. Our most
relevant estimand is, though, a function of the states, i.e., the
exercising effect z. Given this specific focus, we adapt the
standard OED formulation. With respect to the existing lit-
erature, the proposed approach has contact points with [12],
where authors formulate a weighted A-criteria approach
for simultaneously solving (offline) an experimental design
and trajectory tracking problem. The α weight in [12] is,
though, tailored specifically for trajectory tracking. Our work
connects also with [13], proposing a weighted G-criterion for
a dual Nonlinear Model Predictive Control (NMPC) problem,
and presenting a statistical method for tuning the parameter
α specifically for NMPC formulations. [12] and [13] are
meaningful approaches, but not appropriate for a setup (as
the one we consider) where a) no trajectory for the wished
exercise effect is defined, but rather a terminal maximization
of the effect, and b) high model uncertainty is expected,
something that may render NMPC formulations too sensitive
to such modeling errors and thus perform poorly. The dual
control approach is yet to be applied to an exercise session
dynamical systems of our formulation.

In our approach, we form a loss of optimality for the OC
problem in (6), which is specific for the exercise session
system in (1)–(3) where we focus on the exercise effect z.

Consider then the proposed optimal control problem in
Section III, focusing on finding u∗

k:N−1 (e.g., the current
intensity of a suggested physical activity) that solves (6).
However, since the parameters defining model (1)–(3) are
only estimates, (6) is actually solved using θ̂ and not the
(assumed existing) true parameters. This leads to a hypo-
thetical loss of optimality, i.e.,

∆Hk

(
θ̂
)
= H

(
Zk, u

∗, θ̂
)
−H (Zk, u

∗, θ∗) . (15)

From intuitive standpoints, we let the proposed OED ap-
proach try to minimize the expected loss with respect to the
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state estimates, i.e., E
[
∆Hk

(
θ̂
)]

. Then, Taylor-expanding

this expectation around the unknown true parameters θ̂ = θ∗

yields

E
[
∆Hk

(
θ̂
)]

≈ E

∆Hk (θ
∗) +

d∆Hk

(
θ̂
)

dθ̂

∣∣∣∣∣∣
θ̂=θ∗

dθ

+
1

2
dθ⊤

d2∆Hk

(
θ̂
)

dθ̂2

∣∣∣∣∣∣
θ̂=θ∗

dθ

 .

(16)

The first term in (16) is H (Zk, u
∗, θ∗) −H (Zk, u

∗, θ∗) =
0. As for the second term, first-order optimality conditions
(assuming smoothness of such cost and optima that belong to

the interior of the domain) require
dH(Zk,u

∗,θ̂)
dθ̂

∣∣∣∣
θ̂=θ∗

= 0 .

Here we can use (15) to compute the sensitivity of the loss

dH(Zk, u
∗, θ)

dθ
=
dGN (ZN )

dθ
+

N∑
i=k

dGi(Zi, u
∗
i )

dθ

=

N∑
i=k

dGi(φ(Xi, u
∗
i , θ), u

∗
i )

dθ

=

N−1∑
i=k

∂Gi

∂φ

∂φ

∂X

dXi

dθ
=

N−1∑
i=k

∂Gi

∂φ

∂φ

∂X
Si ,

(17)

where Si are the sensitivities of the states. We will denote
the sensitivities of the loss in (17) as ∇θHk(θ). Since traces
have the cyclic property and are equal to the scalar if applied
to a scalar, the Expected Loss of Optimality (ELO) is

E
[
∆H

(
θ̂
)]

≈

≈ E
[
1

2

(
θ̂ − θ∗

)⊤
∇θH0 (θ

∗)
⊤ ∇θH0 (θ

∗)
(
θ̂ − θ∗

)]
= E

[
1

2
tr

((
θ̂ − θ∗

)⊤
∇θH0 (θ

∗)
⊤ ∇θH0 (θ

∗)
(
θ̂ − θ∗

))]
= tr

(
∇θH0 (θ

∗)E
[(

θ̂ − θ∗
)(

θ̂ − θ∗
)⊤

]
∇θH0 (θ

∗)
⊤
)

.

(18)

Since the true parameter values are unknown, we suggest
using the approximation ∇θH0 (θ

∗) ≈ ∇θH0

(
θ̂
)

and in-
equality (9) to formulate the approximate ELO

E
[
∆H

(
θ̂
)]

≈ tr

(
∇θH0

(
θ̂
)
M̃(θ̂, u)−1∇θH0

(
θ̂
)⊤

)
.

(19)

This leads to the possibility of finding the sought inputs via
the optimization problem

min
u0:N−1

tr

(
∇θH0

(
θ̂
)
M̃(θ̂, u)−1∇θH0

(
θ̂
)⊤

)
. (20)

Remark The modified OED problem in (20) is a scaled
version of the A-criteria in the standard OED problem.

V. COMBINING THE OPTIMAL CONTROL AND OPTIMAL
EXPERIMENTAL DESIGN APPROACHES

We now combine the formulations in Sections III and IV
into an approach that trades off the two Paradigms 1 and 2
by means of an optimization problem that combines the OC
cost in (6) and the associated loss of optimality in (19), i.e.,

Wb

(
x0|0, 0 ; α

)
=

= min
u0:N−1

E

[
GN (ZN ) +

N−1∑
i=0

Gi(Zi, ui)

∣∣∣∣∣ X0 = x0|0

]

+ αtr

(
∇θH0

(
θ̂
)
M̃(θ̂, u)−1∇θH0

(
θ̂
)⊤

)
.

(21)

with α, a trade-off factor between the two paradigms.
This formulation can then be laddered to formulate dif-

ferent exercise design algorithms. For instance, Algorithm 1
exemplifies how to use information from a certain physical
exercise session to do a batch design of the next one.

Algorithm 1 Batch-designing a physical exercising session

1: Assume the input output data
(
u−
0:N−1, y

−
1:N

)
from a

previous exercising session is available
2: Compute the maximum likelihood estimate θ̂− of the

model before starting the next session via (7), and the
corresponding state estimates x̂−

1:N =
{
x̂−
k|k

}
k=1,...,N

via any filter of choice (e.g., an EKF)
3: Compute the corresponding sensitivities of the states

ŝ−
1:N via (12)

4: Compute the loss sensitivities ∇θH0

(
θ̂−

)
using

u−
0:N−1 in (17)

5: Solve the dual optimization problem in (21) given the
state estimates x̂−

1:N and obtain the new exercising input
profile u∗

0:N−1

The presented algorithm works for any general, possibly
nonlinear, system of the form in (1)–(3); importantly, for
systems where some exercise effect, rather than the actual
states themselves, is of interest. We continue by applying the
proposed algorithm, Algorithm 1, to a case study of interest
where the exercise session system is an affine-input system.

Remark In Algorithm 1 we propose to use an Extended
Kalman Filter (EKF) for state estimation. For noise that is
not i.i.d Gaussian noise and for highly nonlinear systems,
one could use a sigma-point or particle filter.

VI. A CASE STUDY – DESIGNING KEGEL EXERCISES

We test the capabilities of our approach via simulations
where we use the pelvic floor muscles model in [14] for
modeling the dynamics of fatiguing in Kegel exercising. The
proposed compartmental model is an extension of the work
in [15] and involves active muscles ma, fatigued muscles
mf , and resting muscles mr, where the total number of
muscular units is M . Note that the underlying true system
is considered to be the more complex model derived in [16]
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where cramping muscles mc are additionally used to capture
a particular dynamic often observed when people perform
Kegel exercises, which is a more realistic situation where the
underlying system is more complex than the proposed model.
We consider here, however, the original model in [14],
where the discrete-time, time-invariant, control-affine system
is given by

mf
k+1 = ϕfamf

k + (1− ϕaf)ma
k

ma
k+1 = ϕafma

k + (1− ϕfa)mf
k + ϕramr

kuk

− ϕarma
k(1− uk)

mr
k+1 = M −ma

k+1 −mf
k+1

yk = ma
k + wk .

(22)

Here the input uk, called the brain force, is a normalized
amount of effort (i.e., relative to some pre-defined maximum)
exerted by the person performing the exercises at time k.
Moreover, wk ∼ N (0, 0.25), ϕfa is the recovery rate from
a fatigued to an active state, ϕaf is the fatiguing rate, ϕar is
the rate of relaxation, and ϕra is the activating rate from a
rested state to an active state. We should note that the model
in [14] is only validated for maximum effort or no effort, i.e.,
one or zero. However, Hill-type models are commonly used
in biomechanics to model muscular contractions, where the
normalized excitation input u can range between zero and
one [15]. For notation, we will use mk =

[
mf

k ma
k

]⊤
. To

be able to use OED for parameter identification, we need to
have an identifiable model. From [14], for known M = 1,
ϕ =

[
ϕfa ϕaf ϕar ϕra

]⊤
are identifiable.

A. Defining a suitable exercising effect z

Our approach focuses on a generic exercising effect, a
variable that is missing in the original model formulation.
We thus augment (22) with the discounted accumulated
output zk =

∑k
t=0 γ

kyk, a medically relevant extra state that
intuitively corresponds to how much the person has been
active during the physical exercising session (the discount
γ = 0.999 having been added for stability reasons). We then
consider the augmented system with xk =

[
mk ȳk

]⊤
as

xk+1 =

 ϕfa (1− ϕaf) 0
(1− ϕfa) ϕaf − ϕar 0

0 T (1− Tγ)

xk

+

 0
ϕra(M −mf

k −ma
k) + ϕarma

k

0

uk + w̄k

=A(ϕ)xk + B(ϕ, xk)uk + w̄k ,

(23)

where T is the length of the discretization period and x0 =[
0 0 0

]⊤
. Moreover, the new measurements model is

yk = ma
k =

[
0 1 0

]
xk + vk = Cxk + vk . (24)

The exercising effect is thus given by

zk = ȳk =
[
0 0 1

]
xk = Exk , (25)

while the state sensitivities may be computed via

sk+1 =
∂f(xk, uk, ϕ)

∂x
sk +

∂f(xk, uk, ϕ)

∂ϕ

=A(ϕ)sk +

 mf
k −ma

k 0 0
−mf

k ma
k b23 b24

0 0 0 0

 ,

(26)

where b23 = ma
k(1− uk), b24 = (M −ma

k −mf
k)uk.

B. Control Problem Setup

To maximize the exercising effect and penalize the control
effort (in this case the overall physical demand required to
the person), we consider the LQG cost

W (x0, 0) = min
u0:N−1

E
[
− Z⊤

NGNZN

+

N−1∑
i=0

−φ(Xi, ui, θ)
⊤Gzφ(Xi, ui, θ) + u⊤

i Guui

]
,

(27)

with GN ≻ 0, Gz ≻ 0, Gu ≻ 0, and where the fact that the
expectation is conditioned on the estimated states is omitted
for brevity. Moreover, the sensitivities of the loss (17) for
the exercising effect in (25) are

∇θH0(θ) =

N−1∑
i=0

−Gz(EXi)
⊤ESi (28)

and the FIM in (11) is

M(θ, u) =

N−1∑
i=0

(
∂h

∂X

dXi

dθ

)⊤

R−1

(
∂h

∂X

dXi

dθ

)

=

N−1∑
i=0

(CSi)
⊤R−1(CSi) .

(29)

From the ingredients above one may then build the final
scaled cost Wb

(
x0|0, 0 ; α

)
as in (21).

C. Simulation Results

Our goal is to compare the results one obtains by varying
α in Wb

(
x0|0, 0 ; α

)
, i.e., investigate which exploration

vs. exploitation trade-offs may emerge in the design of
personalized physical exercise sessions via the proposed
methodology with GN = Gz = 10 and Gu = 1 in (27).

We thus use a discretization period length of T = 0.1
seconds for a session length of two minutes, and compare
simulation results for the following situations over 10 runs:

1) performing a pure OC without any OED objective,
2) performing a standard OED with the A-criteria for the

first half of the experiment to re-estimate the parameters,
followed by performing OC for the last half of the
experiment with the new parameter update,

3) performing the DC problem in (21) with α = 0.1, 1, 10,
to test different levels of tradeoffs.

Table I presents a selection of results from the simulations:
the terminal exercise effect, the final ELO, the total cost, the
control effort, and the estimation error. Moreover, Figure 1
illustrates the difference in the exercise effect over the
optimal exercising session for the different control scenarios.
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TABLE I
A COMPARISON OF THE DIFFERENT CONTROL SCHEMES FOR THE ACHIEVED EXERCISE EFFECT, FINAL ELO, THE TOTAL COST, THE CONTROL EFFORT,

AND THE ESTIMATION ERROR. THE VALUES ARE GIVEN AS MEANS AND STANDARD DEVIATIONS OVER THE TEN RUNS.

Control type final exercise effect final ELO total cost control effort estimation error

1) OC (without noise) 19.57 (1.49) 3.34 (1.14) −6.11 (0.218) 3.38 (0.769) 9.27 (3.12)
2) 1

2
OED 1

2
OC 20.08 (2.31) 7.21 (16.02) −6.07 (0.400) 4.16 (0.695) 8.36 (3.25)

3.1) DC α = 0.1 12.79 (2.26) 0.866 (0.321) −1.44 (1.74) 2.10 (0.16) 3.26 (1.92)
3.2) DC α = 1 9.31 (1.00) 0.338 (0.073) 1.34 (1.39) 1.85 (0.549) 1.40 (0.578)
3.3) DC α = 10 8.11 (2.29) 0.219 (0.184) 29.08 (65.53) 2.72 (1.06) 0.766 (0.732)
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Fig. 1. The exercise effect z over the simulation period for the different
control scenarios. Only one run was chosen from each control scenario for
illustrative purposes.

The OC and half OED / half OC scenarios have the best
overall exercising effect but have high associated control
efforts (i.e., demands to the person that is exercising) and
ELO. The different DC trade-offs act as expected, where
the control effort is higher for a higher weight α on the
informativity of the data, additionally yielding estimation
error and a lower loss of optimality. The trade-off α acts also
as an excitement variable since the OED aspect pushes the
input to be more exciting leading to less predictable inputs
and more engaging biofeedback for the user.

VII. CONCLUSION

We presented a dual control (simultaneous OC and OED)
method for the design of physical exercising sessions suitable
when the goal is to simultaneously estimate a personalized
model of the exerciser while maximizing the medical effect
the sessions are having on the person. The strategy considers
that in medical settings one may define the overall exercising
effect as a specific KPI. We thus provided the theoretical
background for solving OC and OED problems on such a
KPI, based on investigating the sensitivity of the loss in
the OC problem as opposed to the sensitivity of the output.
We have then been proposing to include a weight α in the
problem formulation, that can be used to trade-off between
these two factors as wished. We then applied the technique
to a case study for Kegel exercises where we considered
the unique objective of maximizing accumulated muscle
activation, thereby addressing a previously unexplored aspect
of exercise science.

The formulated approach considers, for now, batch offline
designs. Using recursive parameter identification and a re-
ceding horizon control, one may easily make the strategy for
computing the inputs recursively. The problem of adapting
α in time, i.e., prioritizing OC versus OED more and more
throughout the experiments, is a non-trivial extension. In

other words, an adaptive α may intuitively prioritize the OED
when the person starts their therapy, improve the quality of
the parameter estimates, and later in the treatments prioritize
maximizing their effect.

We also note that the current formulation has no con-
straints on unrealistic control inputs. Physical exercise is
indeed constrained by biological factors (e.g., how fast one
may run and recovery times). In other words, the approach
does not account for what physiotherapists may consider
optimal from a medical perspective. Another extension may,
thus, enable users and physiotherapy constraints to influence
how much the control can excite the system.
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