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A hybrid redesign for robust stabilization without unit input

Riccardo Ballaben, Uros Sutulovic, Davide Invernizzi, and Luca Zaccarian

Abstract— We propose a redesign strategy to avoid an ar-
bitrary value of the input signal. With a hybrid architecture
based on a switching logic with two modes we obtain robust
global asymptotic stability and ensure that the input never takes
the unwanted value, while preserving the nominal closed-loop
behaviour in a neighbourhood of the origin. In the case where
the minimization problem is too computationally expensive, we
provide a simpler, albeit more conservative, way to determine
the scaling factor. We then present a nonlinear generalization
to a fairly general class of input-affine nonlinear systems.
Numerical examples are used to illustrate the theoretical results.

I. INTRODUCTION

Controlling linear systems in the presence of input sat-
uration has been extensively studied in the literature (see,
e.g., [10], [13] and references therein). Less attention has
been devoted to the robust stabilization problem with reverse
input saturation constraints, such as avoiding a specific input
value. Among the few existing works, [1] addresses the case
of avoiding an unwanted value of an m-dimensional control
input. Recently, [14], [2] considered reverse polytopic input
constraints for linear systems based on hybrid switching.

A relevant case study where unwanted input values should
be avoided is the stabilization problem for underactuated
UAVs where the attitude dynamics is fully actuated but
the position dynamics is not, and the control force can
be applied only along certain directions of the airframe.
Changing the attitude of the platform to align the delivered
force along the direction needed for position control requires
specifying a reference attitude that becomes singular in free-
falling conditions [6], [7], when the commanded thrust is
zero. Existing designs either impose conservative saturation
bounds on the control force [6] or modify the reference atti-
tude in the neighborhood of the singularity [9]. The former
solution imposes performance limitations since aggressive
maneuvers, such as flips to push the UAV downward with
a large thrust, are discarded by design. Instead, the latter
solution precludes achieving a global stability result. Another
potential application example is spacecraft stabilization by
means of control moment gyros, where the gimbal-locking
condition is problematic. Avoiding certain input values could
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resolve the associated singularity issue instead of modifying
the gimbal rates allocation algorithm when passing through
singularities, which locally perturbs the torque commanded
by the attitude controller [12].

An important challenge is to obtain robust stabilization,
despite the inevitably discontinuous action associated with
this goal. In this work we focus on single input control sys-
tems that we hybridly redesign preserving robust closed-loop
stability. A more general problem is solved with hybrid tools
in [14], [2], which deal with multivariable linear systems
and where the set of input values to be avoided is given by
the union of a finite number of closed polytopes. While we
address the simpler problem considered in [1] for single input
systems, our redesign allows for a natural extension covering
a large class of input-affine nonlinear systems. The proposed
schemes guarantee uniform semiglobal dwell-time of the
switching instants and robustness to small perturbations.

This work is organized as follows. In Section II we solve
the problem for the linear case, and Section III applies our
solution to a class of input-affine nonlinear systems.

Notation. R (R-(,R>q) denotes the set of (positive,
nonnegative) real numbers, R" denotes the n-dimensional
Euclidean space and R " the set of m X n real matrices.
I denotes the identity matrix. Given A € R™*", ||4]| :
R™*™ — R is the matrix norm induced by the vector norm
|- |. He(S) = ST + 5, and Ap/(S) denotes the maximum
eigenvalue of S. Given a set A C R”, |z|4 = inf{|z — y| :
y € A} is the distance of a point = from a set A.

II. LINEAR REDESIGN
A. Problem Formulation

Consider the strictly proper linear plant

ﬂ'fp = Ap.’L’p + Bpun (1)
y = Cpxp,

with z,, € R"», u,, € R, y € R™», in feedback interconnec-

tion with a linear dynamic controller
T = Az + Bey

(2)
Up = chc + Dcy»

with 2, € R". Defining the full state = := [z) z/]" € R",
with n = n, + n,, the output u,, can be written as

Up = Dccpxp +Cexe =K I:'Tp:| 3)

Le

and the linear feedback interconnection becomes

& = Ax + Bu, = (A+ BK)x, ()
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Any linear stabilizing control design (such as H, or linear
quadratic control) yields a controller of the form (2), thus
making our redesign technique broadly applicable.

Problem 1: Under the assumption that A + BK is Hur-
witz, define a hybrid controller modifying the closed-loop
(1)-(2) such that the following properties hold:

(1) GAS: the origin is robustly globally asymptotically
stable.

(i1) Unit input avoidance: the redesigned input u never takes
the value 1 along solutions.

(iii) Local preservation: the redesigned controller preserves
the nominal linear closed-loop dynamics (4) in a neigh-
borhood of the origin.

(iv) Output feedback: the redesigned controller only uses
the knowledge of z. and y, namely, only quantities
available to the linear controller.

Remark 1: Item (ii) of Problem 1 can be generalized to
any nonzero value by properly rescaling u,, and B,,.

In item (i) and the rest of the paper, we characterize
robustness of asymptotic stability in the sense of [5, Def
7.15.].

B. Redesigned controller architecture

We propose an architecture based on the hybrid dynamical
systems formalism in [5]. A logic variable ¢ € {—1,1} is
introduced to model a switch between the nominal feedback
interconnection (1)-(2) (¢ = 1), and a modified feedback
interconnection obtained by rescaling the output of the
control system (¢ = —1). The redesigned output selection
induced by ¢ is given by

1 —2¢ U, ifq:1
w=—"Ly, =142 e
1-—2¢ —U,, if ¢g=—1
1-—2¢

where £ € (0, 3) is a tuning parameter determining the trade-
off between robustness to measurement noise and preserva-
tion of the nominal closed-loop performance. The resulting
feedback interconnection is shown in Figure 1. The logic
defining the value of ¢ is implemented using the function

which induces the flow and jump sets

C:={(z,q) e R" x{~1,1} | ¢(u, q) <0}

D={(z.q) €R" x {~1,1} | b(u,q) > 0}.

Switching

signal l/

Switching logic

o(u,q)

u T, = Ay, + Bu Y
y =Gy

Un | i, = Acx. + By
U, = Cexe + Doy

Fig. 1. Redesigned plant/controller feedback interconnection.

u(t, j)

Fig. 2. Example of input evolution generated by the hybrid
architecture with jump sets generated by the function ¢(u, q).

The jump set D generated by the inequality ¢(u,q) > 0,
shown in Figure 2, can be expressed as

u>1- — for ¢g=1,
1—%26 (8)
u<l1l+4 for ¢ =—1.

d(u,q) > 0=

1-2¢

Defining the augmented state z = (z,q) € R” x {—1,1}

and the jump map toggling the value of ¢ and leaving x

unchanged, the hybrid system describing the dynamics of z
can be written as

. e

" 9
2t = mJZ[x]’ zeD.

q —q

The closed-loop hybrid dynamical system is then given
by (5), (6), (7), (9). Exploiting expression (8), Figure 2
illustrates a possible trajectory of the input and how the
switching logic ensures that it never crosses the line u = 1.

C. Main results and tuning method

In accordance with Figure 2, to ensure —= > 0 and

-2
ﬁ > 0, we constrain € € (0, %), which also guarantees
that u = 0,¢ = 1 is not in the jump set and that the scaling
factor in equation (5) is not unbounded. More specifically,
we show next that 3=* € (0, 1) such that, for any € € (0,£*),
hybrid system (5), (6), (7), (9) solves Problem 1. We also
provide a computationally attractive way to estimate €*.
First note that A + BK being Hurwitz implies that there

exists & > 0 and P = PT > 0 such that
He(P(A + BK)) < —2aP,

(10)

where « is any value less than or equal to the spectral
abscissa of A+ BK. To simplify the notation in the following
equations, we introduce the additional variable n = 15—525 >
0, which maps (0,3) to (0,00) with & = (2(1 + n))~".
It is then possible to select e* = (2(1 + n*))~!, where
n* € [0,400) is any number satisfying

He(PBK) < n*aP. (11)

We emphasize that a large enough n* solving (11) always
exists, which will lead to a small enough £* = (2(1+n*))~L.
We observe that the smaller the value of ¢*, the closer the
nominal controller will get to the unit value before jumping

(see Figure 2), which reduces the margin around the value
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u = 1. For this reason, it is of interest to solve the following
quasi-convex generalized eigenvalue problem:

n*:milgl 1 subject to (10), (11). (12)
7,

Remark 2: Given the relations n = 132 € (0,400),
since z € (0, %), and € = ﬁ, we have that maximizing
€ is equivalent to minimizing 7. Thus the best selection for
7 is the solution of the optimization problem in (12).

Theorem 1: For any plant-controller interconnection (1)-
(2) such that A+ BK is Hurwitz, pick any « in (10) smaller
than or equal to the spectral abscissa of A+ BK, and select
n* as in (12) and * = (2(1 +n*))~'. For any € (0,&*),
hybrid system (5), (6), (7), (9) solves Problem 1.

Remark 3: Following the steps of [2, Theorem 2] it is
possible to prove uniform global exponential stability in the
t-direction for (5), (6), (7), (9), thus showing a guaranteed
t-exponential decrease induced by the redesign law.

The following corollary gives an alternative way to com-
pute a suitable matrix P for the tuning of €, which is more
conservative than the solution of (12) but can be used when
the minimization problem is too computationally expensive.

Corollary 1: Consider an arbitrary plant-controller inter-
connection (1)-(2) such that A + BK is Hurwitz. Given the
matrix P = PT > 0 resulting from solving the Lyapunov
equation He(P(A+ BK)) = —1, select n* = 2\, (PBK +
(PBK)") and e* = (2(1+n*))~'. Then, the hybrid system
(5), (6), (7), (9) solves Problem 1 for any z € (0,&*).

Under mild controllability conditions, the next corollary
shows that using linear quadratic control to tune the gain
matrix K guarantees that the hybrid system (5), (6), (7), (9)
solves Problem 1 for any € in the admissible range.

Corollary 2: Givenany R=R" >0and Q = Q" >0

and assuming (A, B) stabilizable and (A, Q'/?) detectable,
when selecting K = —R™!BTP with P = PT > 0
being the unique solution to the algebraic Riccati equation
He(PA) +Q — PBR™'BTP = 0, then the hybrid system
(5), (6), (7, (9) solves Problem 1 for any z € (0, 3).
The proof follows immediately by noting that linear
quadratic control guarantees a gain margin in the range
[-6dB, +00), which implies that the corresponding closed-
loop system is robustly GAS for any & € (0, 3) such that
1£25 > 1, which holds V& € (0, 3).

Remark 4: The control scheme in Figure 1 can be inter-
preted as a feedback interconnection of an open loop plant
with input v and output u,, connected to a memoryless time-
varying gain in the sector [1, }fgg] Input-Output stability
arguments based on the circle criterion can then be exploited
to develop generalized dynamical output feedback schemes.

To rule out rapid repeated jumps, we also prove uniform
semiglobal dwell-time, namely for each r > 0 there exists
7 > 0 such that, for any solution z satisfying |2(0,0)| < r,
tj41 —t; > 7 for all consecutive jump times t;,%;41 with
j>1, and (t,j) € dom z.

Proposition 1: System (5), (6), (7), (9) enjoys a uniform
semiglobal dwell-time property.

D. Linear Example study

Consider the linearized vertical dynamics of a quadrotor
UAV with mass m

z=v, mvo=mg—T1.+d (13)

for which we consider the goal of asymptotically stabilizing
a desired altitude setpoint z,4 in the presence of an unknown
constant disturbance d and with the input constraint 7, # 0,
which is needed in hierarchical control strategies to avoid
singularity conditions [7]. To solve this task, select T, =
mg(1—u), where w is the output of the following PID control
law with feedforward gravity compensation

T, =e, Zgq= —%(md +e)

u= —l%pe — kgxg — k;x; (14)
I_n (14) e = z — z4 represents the stabilization error and
kp =k, + kq and kg = ’j—z Defining z, = [e o] T, ze =

[x;— "nzki x4] T, the closed-loop error system associated with
(13)-(14) has the same form as (4) with 4, = [$}], B, =
[0g]T,C,=[10]and D, = —k,, with the constraint u # 1.
We consider a quadcopter with mass m = 0.5 kg that has
to reach a desired altitude of z4 = —0.1 m and is subject
to a constant disturbance force d = —2.8 N (which pushes
the drone upwards against the gravity). Assigning the gains
kp = 1.05, kg = 0.75 and k; = 0.45 and the time constant
as 74 = 1’5—;?7, we get the successful simulation results in
Figure 3. To tune the value of € we used the approach of
Theorem 1, which results in € = 0.0439.
E. Proofs

We begin with some preliminary results. The following
Lemma, which will be used in the proofs of Theorem 1 and
Proposition 1, ensures that after a jump from D solutions
can not immediately jump again but must first flow.

Lemma I: Across jumps of (6)-(9) we have ¢(u™,qT) —
¢(u7 Q) < —2.

Proof: Assume z € D, which implies ¢(u,q) > 0. From (7)
we have ¢(u,q) = (¢ + 28)u — ¢ — € > 0, namely

0.2

0\
el -0.2
o 04
-0.6
-0.8

Fig. 3.  Closed-loop solution of (13)-(14). Altitude error time
evolution (Top). PID output with zoom around v = 1, showing
the boundary of D with dashed lines (Bottom).
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¢+ < (q+28)u. (15)

Substituting (15) in the expression of ¢(u™t,¢™) gives
$(u’,q")

=(—q+2u" +q-c=(—q+ 2" +q-2+¢
< (—q+28)ut +(g+28)u—28

1+ 2¢e 1—2¢2

=(—q+22 n 2e n — 28
(—q+ 6)1_qu +(g+ E)I—QEU g
= —2g,
which concludes the proof. (]

Let us now proceed with the proof of Theorem 1.

Proof of Theorem 1. To show GAS in item (i) of Problem 1,
accounting for the new logical state g, we prove asymptotic
stability of the compact set Ay = {x = 0,q = 1} for the
hybrid system (5), (6), (7), (9).

Consider the output signal defined in (5). For ¢ = 1, the
control law returns the nominal state feedback u = Kz.
Since n* is selected according to (12), then the closed-loop
flow dynamics # = (A + BK)x satisfies (10), (11) for a

suitable « > 0 and P = PT > 0. Consider now ¢ = —1.
The control law (5) reads
1+ 28 1 -2+ 4
u = T iK = EJZ EKI:Kx+ —Kux,
1-—2¢ 1—2¢ 1—2¢
(16)

and the resulting closed-loop flow dynamics reads
4g
1-2¢

i= (A+BK+ BK> z. (17)

Given P = P' > 0 and n* solving (12), consider an
arbitrary € € (0,¢*) and define n = 15525. For dynamics
(17) we obtain, using the bounds (10), (11)

iz
He(P(A+ BK + EQ,BK))
— 2¢

— He(P(A + BK)) + %He(PBK)

<He(P(A+ BK))+ gn*aP
n

< —2aP+2laP=2aP( —1)<0 (18
n n
where we use the fact that, for € € (0,¢*), we have n* =

lgff* < 15525 = 7, which implies 1_ < 1. Thus, we have

that P defines a common quadratic 7II_,yapun0V function for
the nominal and modified closed-loop dynamics.

Consider now the candidate Lyapunov function V =
%a:TPx, which is positive definite with respect to A =
AUA; ={x=0,g=1}U{z = 0,q = —1}. Due to
(10) and (18), via (17) we have that the Lyapunov function
decreases when the solution flows, i.e., V(z) <0, Vz €
C\A. Tt is immediate to see from (9) that V' is also constant
across jumps, since T = x. Moreover, Lemma 1 ensures
that after any jump the solution must flow so that V' must
decrease, which implies global asymptotic stability of .4 by
the Invariance Principle for hybrid dynamical systems. More
specifically, since (5), (6), (7), (9) satisfies the Hybrid Basic
Conditions in [5, Assumption 6.5.], then we can apply the
result in [4, Theorem S13].

Since A is the union of the two points Ay, A1, then
solutions either converge to Ag or to A;. Assume now that
there exists a solution z(¢,j) that asymptotically converges
to A;. Uniform global attractivity of A implies that for any
d > 0 there exist T' > 0 such that |z(t, j)|4, <0, V(¢,4) €
dom z s.t. t +j > T. Pick a small enough § such that

|z|4, < & implies |u| < ‘ifgg[(x‘ < 1— 5= Such a
0 always exists since u = 11122‘15K x =0 for x = 0 and
2| < 2|4, Then, |u| < 1— 455 V(t,7) € dom 2 such that
t+j > T. From the expression of D in (8) it follows that the
solution must, at some point, jump to g+ = 1 and can never
jump again, which means that no solution can asymptotically
converge to {x = 0,q = —1}. This, together with the fact
that solutions from A; = {z = 0,¢q = —1} € D jump
to Ap, proves global attractivity of Ag. Lyapunov stability
of Ay follows from Lyapunov stability of A and the fact
that Ao, A; are two disjoint points. Finally, robust global
asymptotic stability of Ay follows from global attractivity
and Lyapunov stability of Ag and the fact that system (9)
satisfies the Hybrid Basic Conditions [5, Assumption 6.5],
which allows using [5, Theorem 7.21].

Let us now continue with the proof that item (ii) of
Problem 1 is also satisfied. Consider a generic solution
(t,7) — =z(t,j) to system (9) and assume that z(0,0) is
such that «(0,0) # 1. Observe from the definition of C that
the solution can only flow for ¢(u,q) < 0. This implies that
z(t, ) can not flow with the value v = 1 while z € C, due to
the definition of D in (8). What is left to check is that, after
a jump of z, u is guaranteed to be not unitary. With a slight
abuse of notation, we will express the jump in the control

law generated by the jump map as u™ = }fggigu Forqg=1

+ _ 1428 14281 _ & \ _ 1+%
we have u™ = ;55Fu > 1_25(11 271-4—2?)1*271—25 > 1. For
— 13 + — 1=-2¢ —2€ 5 _
q = —1 instead we have u™ = {75zu < 1Jr%(l + 1) =

1-%

i72= < 1. Thus, u is guaranteed not to land on the value
u = 1 after a jump from D.

To prove item (iii) of Problem 1, it is enough to show
that the controller never switches to ¢ = —1 when u = 0.
Substituting ©v = 0,¢ = 1 in (8) and recalling that £ > 0
gives 0 > 1 — ﬁ < & > 1+ 2, which is never true
for £ € (0,3), thus leading to a contradiction. Then, the
hybrid controller never switches to the modified control law
in a neighbourhood of the origin. Additionally, the jump
dynamics only depends on the knowledge of w and ¢, and
does not require knowledge of the plant state, which proves
item (iv) of Problem 1. ([l
Proof of Corollary 1. Select P = PT > 0 satisfying
the Lyapunov equation He(P(A + BK)) = —I and n >
2\ (PBK + (PBK)T). The same steps as those in the
proof of Theorem 1 can be followed, with (18) replaced by

=
°  He(PBK)
1-—2¢

2
= —I + ZHe(PBK) < —I +
U

He(P(A + BK)) +

1

i (He(PBE)) He(PBE).

where the last term is negative semi-definite. Following the
proof of Theorem 1, the four items of Problem 1 follow. [
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We now prove a uniform dwell-time result, which is of
independent interest and is only based on a Uniform Global
Boundedness (UGB) assumption (also known as Lagrange
stability), namely for each » > 0, 3M, > 0 such that all
solutions z with |z(0,0)| < r satisfy |z(¢, j)| < M, for all
(t,j) € domz. Its proof is inspired by [3, §2].

Lemma 2: For a nominally well-posed hybrid system with
hybrid data (F,G,C, D), ift DN G(D) = () and solutions are
uniformly globally bounded, then solutions enjoy a uniform
semiglobal dwell-time property.

Proof: Due to UGB, all solutions satisfying |¢(0,0)| < r
are uniformly bounded. Then, applying [11, Lemma 2.7],
we obtain ! that each solution enjoys a dwell-time property.
From the stated assumptions, to prove uniformity we proceed
by contradiction. Suppose that for some r» > 0 there exist
solutions ¢y, k € N and indices i, > 1 with jump times
t;, and t;, 4 satisfying ¢;, 41 —t;, = 7, and 7, — O as
k — oo. Similar to [3, Lemma 1], define shifted solutions
br as or(t,j) = ér(ti,—1 +t,ip + 7 — 1) (namely, ¢y is
the tail of ¢, with the shrinking dwell-time between its jump
times ¢ and t2). Due to nominal well-posedness [5, Def. 6.2]
there exists a converging subsequence of ¢, whose limit is
a solution ¢.. By construction, the domain of ¢, satisfies
to—t1 = limy_, o 7. = 0. However, this solution contradicts
the dwell-time property established by [11, Lemma 2.7]. O
Proof of Proposition 1. First observe that system (5), (6), (7),
(9) satisfies the hybrid basic conditions of [5, As. 6.5] and
due to [5, Thm 6.8] it is nominally well-posed. Moreover, the
UGS property proven in Theorem 1 implies uniform global
boundedness, and D N G(D) = § follows from Lemma 1.
Then the result follows from Lemma 2. ]

III. NONLINEAR REDESIGN
A. Main results

We now extend the proposed hybrid architecture to a class
of input-affine nonlinear systems

&= f(z) +g(x)u, (19)

where x € R" is the state and u € R is the control input. For
a compact set A C R"™, assume that f and g are continuous
functions of x and that there exists a continuous selection
u = up(z) and a continuously differentiable Lyapunov
function V' on R", positive definite with respect to .A and
radially unbounded, such that, for the closed-loop system
& = f(x) + g(z)u,(x), it holds that

V() =VV(z) f(x)+ VV(2) g(z)un ()

= —(z) <0, VoeR"A (20)

Paralleling the reasoning in Figure 2, assume the following.
Assumption 1: There exists € € (0, 2] such that u(z) <
1 — 175z forall x € A
Following the redesign presented for the linear case, we
introduce a logic state ¢ € {—1,1} and define the full state

'Note that precompactness (which requires completeness) is required in
[11, Lemma 2.7], but only uniform global boundedness is used in its proof.

z=(x,q) € R™ x {—1,1} and a modified control law

o L@

1—2¢(x)
where the constant £ used for the linear case in (5) is replaced
by a globally bounded function z — £(x) : R™ — [0,%), to
be defined, satisfying |e(x)| < € for all x € R™, where €
comes from Assumption 1. Mimicking the linear redesign,
the flow set C and jump set D are induced by the function

o(z,q) = (¢ +2e(2)u — g — (),
as in (6), (7). The redesigned system is given by (21) with
. ] _ {f(w) - g(x)u} oo

2y

(22)

] 0
il o
2t = JJ = [ ] , 2 €D,
q —-q
where the function = — () is selected as
e(x) = v(@) (24)

eV (@) T g(2)un(@)] + 9(@)”

and p € (0,1) is a parameter determining the trade-off be-
tween avoidance robustness and preservation of the nominal
controller. Observe that (24) implies 0 < e(z) < € < %, and
that continuous differentiability of V' and continuity of f and
g imply that € is a continuous function of z.

The following theorem is a nonlinear extension of the
linear results in Theorem 1 and Proposition 1.

Theorem 2: Under Assumption 1, the set A x {1} is
robustly globally asymptotically stable for (7), (21)—(24).
Additionally, system (7), (21)—(24) satisfies items (ii) and
(iii) of Problem 1 and enjoys uniform semiglobal dwell-time.

B. Example
Consider the plant from [8, Section 3.3]
T . D —‘rl‘% 0
M = f(@) +g(x)u = [ 22 ] + M u, (25

where z = [ 22" € R? is the state and u € R is the

0 1 Zt[s]3 4 5
3
2
2
1
0
0 1 2t[s]3 4 5

Fig. 4. Closed-loop solution of the hybrid redesigned feedback (7),
(21), (22), (23), (24) applied to (25),(26).
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control input. For the selection
(26)

it is shown in [8] that V(z) = 2% + J(zo + 21 + 2})? is
a strong Lyapunov function with respect to the origin, as its
negative definite time derivative is

U=y = =211 — 2Ty — 327 — 221 (29 + 27),

V(z) = —a} — 223 — 2221y — 227 — 22129 — 23 =1 —¢(2).

Since (26) is zero at the origin, we may select € =
% for (25). Additionally, it is immediate to verify that
VV(2)Tg(x) = 2o + 21 + 2.

Applying the redesign to (25), Theorem 2 holds. Choosing
@ = 0.1 and initial conditions x1(0) = —0.5, 22(0) = —3
leads to the desirable simulations shown in Figure 4.

C. Proof of Theorem 2

We first show that the modified input (21), (24) ensures
Lyapunov decrease along flowing solutions.

Lemma 3: Given plant (19), a stabilizer u,, and a function

V' satisfying (20), along the solutions of the hybrid system
(7), (21), (22), (23), (24) it holds that V(z) < 0, Vz €
(CUD\(A x {-1,1}).
Proof: For ¢ = 1, and any z = (z,q) with z ¢ A, we
have u = u, (x) and (20) implies V(z) = —1(x) < 0. For
the non-trivial case ¢ = —1, and z = (x,q) with « ¢ A,
first note that © < 1 and € < %, together with (24) and
the fact that & < 3, imply that 4e(2)|V (z) " g(@)u, (z)| <
P(x) — 2e(x)yp(x), which can be rearranged to get

%VV(x)Tg(x)un(xﬂ < Y(x).

Then, proceeding as in (16), we obtain
V(z) =VV(2)" f(z)+ VV(2) g(a)u=VV(2)" f(x)
4e(x)

TE(%)VV(%)TQ(I)% (z)

+VV (@) " g(x)un(z) +

4e(x)

1 —2e(x)
as to be proven. (]
The following Lemma ensures that after a jump the solution
must flow, unless it jumps from A x {—1}. Its proof is the
same as the one presented for Lemma 1, so it is omitted.

Lemma 4: Let z be a solution of (7), (21), (22), (23), (24).
Then, ¢(z,q") — ¢(z,q) < —2¢(x) < 0 for all z € D.
Proof of Theorem 2. Mimicking the proof of Theorem 1,
we start by showing that A x {—1,1} is robustly globally
asymptotically stable for (7), (21), (22), (23), (24). For z € C,
Lemma 3 guarantees the decrease of V.

Consider now z € D. Since the jump map in (23)
toggles the value of ¢ and V' only depends on x, we have
that the Lyapunov function remains constant across jumps.
Additionally, Lemma 4 ensures that after a jump the solution
must flow. Since the Hybrid Basic Conditions hold, then
global asymptotic stability of A x {—1,1} follows from
the Invariance Principle for hybrid dynamical systems [4,
Theorem S13]. Following the remaining steps of the proof of
Theorem 1 we may prove robust global asymptotic stability

of Ax {1}.

= () + YV (@) g(@)un(x) <0,

Items (ii) and (iii) of Problem 1 can be proven exploiting
at the structure of C and D. Substituting ¢ = ¢(z) into
(8) and using the fact that e(x) is a continuous function
of x, only zero for x € A, we conclude that there exists
a neighbourhood of A x {1} where the nominal controller
is preserved. Furthermore, © = 1 being in the interior of D
implies that solutions never flow with v = 1. Finally, u™ # 1
can be proven by following the bounds on u™ derived at the
end of Theorem 1 with £ replaced by e(x).

The semiglobal dwell-time property can be proven by
following exactly the same steps as those in the proof of
Proposition 1, by exploiting Lemma 2. ]

IV. CONCLUSIONS

Motivated by the nonzero input assumptions required
in the controller design for underactuated UAVs [7], we
proposed a hybrid redesign, based on a switching logic with
two modes, avoiding unitary inputs in linear systems and in a
class of input-affine nonlinear systems. Future work includes
nonlinear extensions to UAV control and exploiting the
degrees of freedom highlighted in Remark 4 for developing
generalized dynamic schemes.
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