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Abstract— This paper presents a distributed resilient ob-
server for continuous-time linear time-invariant plants that
remains functional even under sensor attacks. The proposed
method aims to determine the estimation outcome that matches
the majority of sensor measurements, which is formulated as an
ℓ1-minimization problem considering all the observable com-
ponents of each sensor measurement. A distributed observer
based on the blended dynamics theory is then proposed to
solve the ℓ1-minimization problem in a distributed manner.
As a result, the distributed resilient estimation is enabled for
a broader class of systems compared to previous works. The
design procedure is constructive with parameters obtained from
a specified condition that is equivalent to the well-known null-
space property.

I. INTRODUCTION

In response to recent developments in network communi-
cation technology, the distributed state estimation problem
in sensor networks has been studied extensively [1]–[3]. In
the problem, spatially deployed multi-agents are requested to
cooperatively estimate the state of a target system, particu-
larly under the localized structure; each agent can use its own
sensor measurements and the information received from its
neighboring agents through a communication network. Such
structure provides benefits of scalability and robustness on
its operation [4].

On the other hand, as new threats caused by malicious
attacks have been reported (e.g., attacks on sewage control
systems [5] and StuxNet malware on SCADA systems [6]),
attack-resilient design in networked systems has become one
of main concerns [7], [8]. For the sensor networks, such
resiliency is essential because the more sensors there are, the
more likely they could be compromised by malicious attack-
ers. Under this context, we consider the distributed resilient
state estimation problem in sensor networks, where attackers
could inject false information into sensor measurements.

The key idea to handle the sensor attacks is the majority
voting from redundant sensor measurements. Specifically,
the estimation outcome is determined as a value that co-
incides with the majority of the measurements. One strand
of research is to formulate this idea as an ℓ0-minimization
problem [9], [10], where the resilient estimation can be
guaranteed as long as the number of sensor attacks is less
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than a threshold value. Motivated by this, the authors of
[11] address the resilient estimation problem in a distributed
manner, where a consensus-based technique is employed for
each agent to get a compressed version of all the sensor mea-
surements. However, it suffers from scalability issues due to
the NP-hard and combinatorial nature of the ℓ0-minimization
problem. More specifically, significant communication and
computation are required for each agent to prepare for a
larger number of sensor attacks.

Another strand is to formulate the idea of majority voting
as an ℓ1-minimization problem [10], [12]. This approach
can be explained as arguably the tightest convex relaxation
of the ℓ0-minimization, which reduces the computational
complexity dramatically [13], [14]. Inspired by this, [15]
proposes a scalable distributed algorithm solving the resilient
estimation problem, with the help of one technical assump-
tion on system dynamics called the scalar decomposability1.
Under this assumption, the resilient state estimation problem
can be decomposed into multiple sub-problems, where each
sub-problem is simplified as an ℓ1-minimization problem
with scalar variables only.

In this paper, we extend the method of [15] so that dis-
tributed resilient state estimation becomes possible even for
systems not satisfying the scalar decomposability condition.
To achieve this, we first consider a local partial observer
of each agent, and formulate the estimation problem to a
general form of an ℓ1-minimization problem regarding all the
partial estimates. Then, we construct a distributed resilient
observer that estimates the whole state of a target system
by cooperatively solving the ℓ1-minimization problem. Espe-
cially, to guarantee the achievement of resilient estimation,
we provide a condition, which has a modified form of the
well-known null-space property [16] and helps to determine
the parameters of the distributed observer.

As a tool for the design of distributed observer, we employ
the blended dynamics theory [17]. To be more specific, let
us consider a heterogeneous multi-agent system

ẋi = fi(t, xi) + γ
∑
j∈Ni

(xj − xi), i ∈ N := {1, · · · , N} (1)

where xi is the state, fi(t, xi) is the individual vector field, N
represents the set of agent indices, and Ni is the index set of
neighbor agents connected to agent i. Under an undirected
and connected communication graph, if the coupling gain
γ > 0 is sufficiently large, then each state xi(t) of (1) obeys

1There exists a uniform basis such that all the unobservable subspaces of
each sensor measurement have a basis that can be represented as a subset
of the uniform basis.
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the solution s(t) of the so-called blended dynamics defined
as

ṡ =
1

N

N∑
i=1

fi(t, s)

as long as the blended dynamics is stable in some sense.
Thus, we design the fi’s so that the blended dynamics
becomes a gradient flow dynamics2 for the ℓ1-minimization
problem. Thanks to the convexity of the problem, the solution
s(t) may converge to the minimizer under some conditions.
Therefore, we conjecture that every agent obtains the correct
estimation outcome.

The remainder of the paper is organized as follows. In
Section II, we rigorously formulate the distributed resilient
estimation problem in the sensor networks, along with the
required assumptions. In Section III, details of the proposed
algorithm are presented, followed by the main result. Section
IV shows simulation results of the proposed scheme, and
Section V concludes this paper.

Notation: Let 1N ∈ RN be a vector comprising all ones,
and IN ∈ RN×N be the identity matrix. For a matrix B,
∥B∥p denotes the induced matrix p-norm. For a finite set C,
|C| represents the cardinality of C. For s ∈ R, we denote
the signum function by sign(s) = 0 if s = 0 and sign(s) =
s/|s| otherwise. For a vector x = [x1, · · · , xk]

T ∈ Rk, let
sign(x) := [sign(x1), sign(x2), · · · , sign(xk)]

T ∈ Rk be the
componentwise signum function, by abuse of notation. Let
Sn := {r ∈ Rn | ∥r∥2 = 1} be the surface of n-dimensional
unit sphere. A communication topology is represented by an
unweighted graph G := {N , E}, where N = {1, · · · , N}
is a finite nonempty set of agent indices, and E ⊂ N × N
is an edge set of ordered pairs of agent indices. We denote
Ni = {j ∈ N | (j, i) ∈ E} as the index set of agents who
can give information to the agent i, and the Laplacian matrix
of the graph G as L = [lij ] ∈ RN×N , where lij is |Ni| if
i = j, −1 if j ∈ Ni, and 0 otherwise. For discontinuous
dynamical systems, the solution is considered in the sense
of Filippov.

II. PROBLEM FORMULATION

For a linear time-invariant plant given by

ẋ = Ax (2)

where x ∈ Rn is the state with ∥x(0)∥2 < M for M > 0,
we consider N agents, whose goal is to estimate the state
x(t). Each agent i can communicate with neighboring agents
j ∈ Ni, and measure an output yi(t) of the plant

yi(t) = Cix(t) + ai(t) ∈ Rpi (3)

where ai(t) ∈ Rpi is the attack signal that may corrupt the
measurement yi(t) to an arbitrary value.

The distributed resilient state estimation problem is of
interest; that is to design a distributed observer for the system
(2) and (3) such that each agents obtains the correct state

2For a differentiable function F : Rn → R, a gradient flow dynamics is
ṡ = −∇F (s), which flows along the route of the steepest descent direction.

x(t), even when some sensors are compromised by attackers.
We particularly propose the distributed observer having a
localized structure, which is characterized as follows:

i) (local measurement): Each agent i utilizes the measure-
ment yi(t), which may not be sufficient to estimate the
whole state x(t).

ii) (local communication): To compensate such insufficient
measurement, each agent communicates with neighbors,
according to a communication network represented by
an undirected and connected graph G = {N , E}.

If the majority of measurements {yi(t)}i∈N are corrupted
by attack signals, then the accurate state estimation becomes
impossible. To deal with this, we assume that the malicious
attacker can compromise at most q out of N agent outputs.

Assumption 1: There exist at least N − q agents that are
not attacked for all t, i.e., |U | ≥ N − q, where

U := {i ∈ N | ai(t) ≡ 0}. (4)

The set U is unknown to the agents.

III. PROPOSED SCHEME

In this section, we present a distributed estimation scheme
for obtaining the state x(t) of (2), even when some sensors
suffer from the attack signals. In the proposed approach,
each agent i ∈ N runs two observers. The first observer
is a standard partial observer that estimates the observable
components from yi(t), but not the entire state x(t). The
second observer is designed to decode the whole state x(t) of
the target system (2), by solving an ℓ1-minimization problem
regarding all the partial estimates in a distributed manner.
This distributed approach enables the correct state estimation
even when some sensors are compromised.

A. Design of Partial Observer
Let us construct a partial observer of the agent i ∈ N

for the system (2) regarding the measurement yi(t). For the
observability matrix with respect to the pair (A,Ci) given by
Oi := colnk=1(CiA

k−1) with rank(Oi) = di, one can find
two matrices Zi ∈ Rdi×n and Wi ∈ R(n−di)×n such that
their rows are orthonormal basis of Im(OT

i ) and ker(Oi),
respectively. With the coordinate change of zi(t) := Zix(t)
and wi(t) := Wix(t), the system (2) is rewritten as

żi = ZiAZT
i zi

ẇi = WiAZT
i zi +WiAWT

i wi

yi = CiZ
T
i zi + ai

with the pair (ZiAZT
i , CiZ

T
i ) being observable. Thus, there

exists a gain Li such that ZiAZT
i −LiCiZ

T
i is Hurwitz, and

hence, each agent i runs the following partial observer:
˙̂zi = ZiAZT

i ẑi + Li(yi − CiZ
T
i ẑi) ∈ Rdi (5)

with ∥ẑi(0)∥2 ≤ M . The design of the injection gain Li

guarantees the existence of constants3 Bϵ > 0 and α > 0

3Since the matrix Qi := ZiAZT
i − LiCiZ

T
i is Hurwitz, Vi(t) =

ϵTi (t)Piϵi(t) is a Lyapunov function for ϵi(t), where Pi > 0 is the solution
of QT

i Pi + PiQi + In = 0. Therefore, the constants can be given by

Bϵ := 2M ·maxi∈N

√
λmax(Pi)
λmin(Pi)

and α := mini∈N
1

2λmax(Pi)
.
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such that the estimation error ϵi(t) := ẑi(t)− zi(t) satisfies

∥ϵi(t)∥2 ≤ Bϵe
−αt, ∀i ∈ U. (6)

Therefore, for all i ∈ U with arbitrary σϵ, one can obtain

∥ϵi(t)∥2 ≤ Bϵ, ∀t ≥ 0, (7a)

∥ϵi(t)∥2 ≤ σϵ, ∀t ≥ Tϵ :=
1

α
ln

(Bϵ

σϵ

)
. (7b)

On the other hand, for i ∈ N \U , the estimation error ϵi(t)
may not converge to zero due to the attack signal ai(t).

B. Design of Distributed Observer

We now design a distributed observer that estimates the
whole state x(t) of (2) based on an ℓ1-minimization problem
regarding the partial observer of (5). To this end, let us stack
all the partial estimates as follows:

ẑ(t) = z(t) + ϵ(t) = Zx(t) + ϵ(t)

=

Z1

...
ZN

x(t) +

 ϵ1(t)
...

ϵN (t)

 =

 ẑ1(t)
...

ẑN (t)

 ∈ R
∑N

i=1 di . (8)

Then, the state estimation problem at a time instant t can be
interpreted as decoding the state x(t) from the relation (8),
where the matrix Z is a known linear code and the partial
estimate ẑ(t) is available instead of z(t).

To recover the state x(t), we consider an estimator at a
time instant t based on the ℓ1-minimization problem:

min
x̂∈Rn

∥Zx̂− ẑ(t)∥1 = min
x̂∈Rn

N∑
i=1

∥Zix̂− ẑi(t)∥1. (9)

It should be noted that the problem (9) is convex, and hence,
the existence of a minimizer is guaranteed. More specifically,
the set M(t) of the optimal solutions for (9), defined as

M(t) :=
{
x∗ ∈ Rn

∣∣∣ ∥Zx∗ − ẑ(t)∥1 = min
x̂∈Rn

∥Zx̂− ẑ(t)∥1
}

is non-empty. Moreover, the minimizer can be efficiently ob-
tained using the gradient descent dynamics, which contrasts
with the estimators based on ℓ0-minimization problem [10].

However, the minimizer of the problem (9) may not
coincide with the state x(t), due to the estimation error
{ϵi(t)}Ni=1 of the partial observers. In order to deal with this
issue, we consider a condition on the matrix Z, as follows.

Definition 1: For an index set I ⊂ N = {1, · · · , N}, a
block column matrix Z = colNi=1(Zi) is said to have the
ℓ1-recovery property with an intensity βI > 0, if

−
∑
i∈I

∥Zir̂∥1 +
∑

i∈N\I

∥Zir̂∥1 ≤ −βI (10)

for all r̂ ∈ Sn = {r ∈ Rn | ∥r∥2 = 1}.
In the following proposition, we find an upper bound on

the distance between the state x(t) and the minimizer x∗ ∈
M(t) under the ℓ1-recovery property of Z for the index set
U , where U is the index set of uncompromised agents defined
in (4). Its proof can be found in Appendix A.

Proposition 1: For the index set U in (4), suppose that
the matrix Z has the ℓ1-recovery property with an intensity
βU > 0. Then, we have, for each t,

∥x∗ − x(t)∥2 ≤ 2

βU

∑
i∈U

∥ϵi(t)∥1, ∀x∗ ∈ M(t).

As it can be seen in (6), the estimation error ϵi(t)
converges to zero for all i ∈ U . From this and Proposition
1, ∥x∗ − x(t)∥2 converges to zero, if the matrix Z has the
ℓ1-recovery property for U . Therefore, the state x(t) can be
obtained with arbitrary precision by solving the problem (9)
after a sufficiently large time interval.

Remark 1: The condition of Z having the ℓ1-recovery
property for U is stronger than the observability of the
pair (A, coli∈U (Ci)). Specifically, from (10) with I = U ,
we have −

∑
i∈U ∥Zir̂∥1 < 0 for all r̂ ∈ Sn. This im-

plies that coli∈U (Zi) has full column rank. In other words,
(A, coli∈U (Ci)) is observable.

Remark 2: According to Proposition 1, when ϵi(t) ≡ 0
for all i ∈ U , the ℓ1-recovery property for I = U is sufficient
for the exact state recovery. Indeed, there exists a well-known
necessary and sufficient condition for exact state recovery,
the null-space property [16] relative to N \ I, given by

−
∑
i∈I

∥Zir∥1 +
∑

i∈N\I

∥Zir∥1 < 0, ∀r ∈ Rn \ {0}.

Notably, the null-space property relative to N \ I is equiva-
lent to the ℓ1-recovery property for I with some βI > 0.

Motivated by above observations, we propose the dis-
tributed resilient observer for each agent i ∈ N , given by

˙̂xi = Ax̂i − kZT
i sign(Zix̂i − ẑi) + kγ

∑
j∈Ni

(x̂j − x̂i) (11)

with ∥x̂i(0)∥2 ≤ M , where x̂i ∈ Rn is the state, ẑi ∈ Rdi is
the state of the partial observer (5), and the parameters k and
γ will be designed later. The first term is the copy of system
(2). The second term serves the injection of estimation error,
inspired by the gradient descent flow for the local cost
function ∥Zix̂i(t)− ẑi(t)∥1 of the problem (9). Last term is
the coupling that enforces synchronization of all the x̂i(t)’s.

The intuition for the form (11) is rooted in the blended
dynamics theory [17]. Let us check the blended dynamics
of (11), which comprises the average of all the individual
vector fields as follows:

ṡ = As− k

N
ZT sign(Zs− ẑ) ∈ Rn (12)

where the gradient flow −ZT sign(Zs − ẑ) for the problem
(9) is inflated k/N times. Note that the system (12) is not
globally stable in general, and thus, careful analysis on the
convergence of the system (11) will be addressed.

As stated in Assumption 1, the agents lack knowledge
what sensor measurements are being attacked. Consequently,
it is challenging to design the observer’s parameters k and γ
because information about U is not available. Nevertheless,
to achieve resilient estimation, we assume the followings.
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Assumption 2: Let U be the collection of all index sets
U ′ ⊂ N satisfying |U ′| ≥ N − q. For all U ′ ∈ U , the matrix
Z has the ℓ1-recovery property with the intensity βU ′ > 0.

Note that the cardinality of the collection U is finite. Thus,
from Assumption 2, one can find β > 0 satisfying βU ′ ≥ β
for all U ′ ∈ U . Moreover, since U ∈ U from Assumption 1,

−
∑
i∈U

∥Zir̂∥1 +
∑

i∈N\U

∥Zir̂∥1 ≤ −β, ∀r̂ ∈ Sn (13)

which will be utilized for designing the parameters k and γ.

C. Main Result

The main result of this paper is as follows:
Theorem 1: Under Assumptions 1, 2, and the graph G

being undirected and connected, all the agents run the
distributed observer of (5) and (11). For arbitrary η > 0
and M > 0, there exist k∗ and γ∗ such that, if k > k∗ and
γ > γ∗, then the solution x̂i(t), i ∈ N , of (11) satisfies

∥x(t)− x̂i(t)∥2 ≤ max
{
c− ρ·t, η

}
, ∀t ≥ 0 (14)

where ρ := β
2N (k − k∗) and

c := e∥A∥2Tϵ ·max
{
2M,

2
√
nN

β
(BW +Bϵ)

}
+BW + ρTϵ.

Here, β is given in (13), BW ≤ max{2M
√
N, η/2}, and

both Bϵ and Tϵ are defined in (7) with σϵ =
βη

16
√
nN

.
Proof: Define an error variable ei(t) := x(t) − x̂i(t),

and consider the following coordination change[
ē(t)
ẽ(t)

]
=

[
1
N (1TN ⊗ In)
RT ⊗ In

]
· colNi=1

(
ei(t)

)
(15)

with its inverse ei(t) = ē(t) + (ri ⊗ In)ẽ(t), where ri ∈
R1×(N−1) is the ith row of the matrix R defined in (37).
Then, the time derivatives of both ē(t) and ẽ(t) are

˙̄e = Aē− k

N

N∑
i=1

ZT
i sign(Ziē+ ϵ̄i) (16a)

˙̃e = (IN−1 ⊗A)ẽ− kγ(Λ⊗ In)ẽ

− k(RT ⊗ In) · colNi=1

(
ZT
i sign(Ziē+ ϵ̄i)

)
(16b)

where Λ is given in (37) and the vector ϵ̄i(t) := Zi(ri ⊗
In)ẽ(t) + ϵi(t) ∈ Rdi satisfies

∥ϵ̄i(t)∥1 ≤
√

di∥Zi(ri ⊗ In)ẽ(t) + ϵi(t)∥2
≤

√
n
(
∥ẽ(t)∥2 + ∥ϵi(t)∥2

)
, ∀i ∈ N . (17)

Meanwhile, the relation ei(t) = ē(t)+(ri⊗In)ẽ(t) yields

∥ei(t)∥2 ≤ ∥ē(t)∥2 + ∥ẽ(t)∥2. (18)

Therefore, to establish the inequality (14), we analyze how
upper bounds of ∥ē(t)∥2 and ∥ẽ(t)∥2 are determined from
the parameters k and γ.

Define W (t) := ∥ẽ(t)∥2 whose time derivative along (16)
with W > 0 is

Ẇ =
ẽT

∥ẽ∥2
˙̃e =

ẽT

∥ẽ∥2
(IN−1 ⊗A)ẽ− kγ

ẽT

∥ẽ∥2
(Λ⊗ In)ẽ

− k
ẽT

∥ẽ∥2
(RT ⊗ In) · colNi=1

(
ZT
i sign(Ziē+ ϵ̄i)

)
≤ −(kγλ2 − ∥A∥2)W + k

√
nN

where λ2 > 0 is given in (36). Thus, for all γ > γ∗(k) :=
∥A∥2

kλ2
+ 2

√
nN

λ2σW
with some σW > 0, we have

Ẇ < −2k
√
nN

σW

(
W − σW

2

)
.

Hence, from ∥ei(0)∥2 ≤ 2M for all i ∈ N , we obtain W̄0 :=
2M

√
N such that W (0) ≤ W̄0, and hence

W (t) ≤ BW := max
{
W̄0, σW

}
, ∀t ≥ 0, (19a)

W (t)≤σW , ∀t≥TW (k) :=
σW

2k
√
nN

ln
(2BW −σW

σW

)
. (19b)

Next, we define V (t) = ∥ē(t)∥2 whose time derivative
along (16) with V >0 is

V̇ =
ēTAē

∥ē∥2
+

k

N∥ē∥2

(
−
∑
i∈N

(Ziē)
T sign(Ziē+ ϵ̄i)

)
. (20)

Note that, by using (13), (17), and (38), we have

−
∑
i∈N

(Ziē)
Tsign(Ziē+ϵ̄i)≤−

∑
i∈U

(Ziē)
Tsign(Ziē+ϵ̄i)+

∑
i∈N\U

∥Ziē∥1

≤ 2
∑
i∈U

∥ϵ̄i∥1−
∑
i∈U

∥Ziē∥1+
∑

i∈N\U

∥Ziē∥1

≤ 2
√
n
∑
i∈U

(∥ẽ∥2+∥ϵi∥2)−β∥ē∥2. (21)

Applying
∑

i∈U (∥ẽ∥2 + ∥ϵi∥2) ≤ N(∥ẽ∥2+maxi∈U ∥ϵi∥2)
into (21), the inequality (20) becomes

V̇ ≤ ∥A∥2V +
2
√
nk

V

(
∥ẽ∥2 +max

i∈U
∥ϵi∥2

)
− kβ

N
. (22)

Meanwhile, from ∥ei(0)∥2 ≤ 2M and ∥ϵi(0)∥2 ≤ 2M for
all i ∈ U , one can find Bϵ > 0 satisfying (6), and we define
V̄0 = 2M so that V (0) ≤ V̄0. Then, in order to make the
ultimate bounds on both W (t) and V (t) less than or equal to
η/2, we choose σϵ := βη

16
√
nN

and σW := min{ βη
16

√
nN

, η
2}

of (7b) and (19b), respectively. Moreover, using the definition
of TW (·) in (19b), we define k∗1 := TW (Tϵ) such that
TW (k∗1) = Tϵ. Then, the relation k>k∗1 yields TW (k)≤Tϵ,

∥ẽ(t)∥2+max
i∈U

∥ϵi(t)∥2≤BW +Bϵ, ∀t ≥ 0, (23a)

∥ẽ(t)∥2+max
i∈U

∥ϵi(t)∥2≤σW +σϵ≤
βη

8
√
nN

, ∀t≥Tϵ. (23b)

Therefore, by combining (22) with (23a), V̇ ≤ ∥A∥2V for
V ≥ V̄1 := 2

√
nN
β

(
BW +Bϵ

)
, which yields

V (t) ≤ e∥A∥2t max{V̄0, V̄1}, ∀t ≥ 0. (24)

Moreover, the combination of (22) and (23b) yields

V̇ ≤ ∥A∥2V +
kβη

4NV
− kβ

N
, ∀t ≥ Tϵ. (25)
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Fig. 1. Agents are patrolling around monitoring towers.

Thus, with V̄2 := e∥A∥2Tϵ · max{V̄0, V̄1}, we choose k
satisfying k > k∗ := max

{
2N
β ∥A∥2V̄2, k

∗
1

}
so that k > k∗1

(which is required for obtaining (23)) and

∥A∥2V +
kβη

4NV
− kβ

N
<− β

2N
(k − k∗) when

η

2
≤ V ≤ V̄2.

By combining this and (24), we obtain

V (t)≤max
{
V̄2−

β(k − k∗)

2N
·(t− Tϵ),

η

2

}
, ∀t ≥ Tϵ. (26)

Now, we are ready to prove (14). From (19a) and (24),
the inequality (18) becomes, for all 0 ≤ t ≤ Tϵ and i ∈ N ,

∥ei(t)∥2 ≤ V̄2 +BW . (27)

Similarly, from (19b) and (26) with k > k∗ and γ > γ∗(k∗),

∥ei(t)∥2≤max
{
V̄2+

η

2
− β(k−k∗)

2N
·(t−Tϵ), η

}
,∀t≥Tϵ. (28)

From the definitions of V̄0, V̄1, and V̄2, one can find an upper
bound of V̄2, and hence, both (27) and (28) imply (14).

IV. SIMULATION RESULTS

We consider N = 3 pairs of agents and monitoring towers,
where each agent i is patrolling a circular path centered at the
position pi0 ∈ R2 of its pair tower and can communicate with
neighboring agents and its pair tower, as shown in Fig. 1.
We aim to design distributed observers so that each agent
estimates all the positions {pi(t) ∈ R2}Ni=1 of agents, even
when some sensors are compromised by attackers.

The motion of agents are described by the system (2),
where x(t) = colNi=1

(
pi(t)− pi0

)
∈ R2N is the state and

A = IN ⊗
[
0 ω
−ω 0

]
with some ω ∈ R. We assume that all the positions of
monitoring towers, {pi0}Ni=1, are known to every agent.
Hence, the goal is achieved when each agent obtains the
state x(t). Each agent i can measure the relative positions
ȳi(t) = colj∈Ni(p

j(t)− pi(t)) of neighbor agents. Then, by
combining ȳi(t) and {pi0}Ni=1, the agent i also obtains

yi(t)=
1√
2

colj∈Ni

((
pj(t)−pj0

)
−
(
pi(t)−pi0

))
+ai(t)∈R2|Ni|.

Here, ai(t) is the attack signal. Meanwhile, by labeling
ith monitoring tower as i+N , we denote its measurement

Fig. 2. The position p2(t) of agent 2 is drawn as black dashed curve, and
all the estimation p̂2i (t) of each agent i are drawn as colored solid curves.

yi(t)=(pi(t)−pi0)+ai(t), for i=N+1, · · · , 2N . Then, the
measurement matrix Ci is determined as

Ci =

{
1√
2
·colj∈Ni

(
(vTj − vTi )⊗ I2

)
, i = 1, · · · , N

vTi−N ⊗ I2, i = N + 1, · · · , 2N

where vi ∈ RN is the standard basis vector, whose ith
element is one and the others are zero. Under this setting, the
matrix Zi for (5) can be chosen as Ci for all i = 1, · · · , 2N .

Note that the scalar decomposability is not satisfied in
this case4, and thus, the method in [15] cannot be applied.
Suppose that attackers can compromise at most q = 1 of 2N
measurements. Then, Assumption 2 is satisfied, since Z =
col2Ni=1(Zi) has the ℓ1-recovery property with an intensity
βU ′ ≥

√
2−1 for all U ′⊂{1,· · ·, 2N} satisfying |U ′|≥2N−1.

Each agent i runs the observers (5) and (11), where the
estimation variable x̂i(t) is utilized for estimating pj(t), i.e.,
p̂ji (t) :=(vTj ⊗ I2)x̂i(t)+pj0. Simulation results are in Fig. 2,
where the plant parameter is w=1, the observer parameters
of (11) are k=γ=3, and the attack signal ai(t) is 104·14 for
i= 2 and 0 otherwise. Particularly, we added measurement
noise of magnitude 1 when measuring all yi(t)’s. The result
shows attack-resilient property of our estimation scheme.

V. CONCLUSION

We propose a resilient estimation scheme that employs a
standard partial observer (5) and a distributed observer (11),
which estimates the plant state by solving an ℓ1-minimization
problem in a distributed manner. To ensure accurate state
estimation, we specify the conditions on the parameters k
and γ, which is available when the matrix Z for the partial
observers satisfies the ℓ1-recovery property. The proposed
scheme is scalable, since the amount of computation and
communication required at each agent are consistent regard-
less of the network size or the number of attacks.

4If any eigenvalue of A has more than one Jordan block, scalar decom-
posability is not satisfied generally. For more details, see [15, Appendix B].
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APPENDIX

A. Proof of Proposition 1

We prove this by contradiction. Assume that there exists a
minimizer x∗ ∈ M(t) of (9) satisfying ϕ̄ := ∥x∗−x(t)∥2 >
2
βU

∑
i∈U ∥ϵi(t)∥1. We claim that there exists x̌ such that

x̌ ̸= x∗ and ∥Zx∗ − ẑ(t)∥1 − ∥Zx̌− ẑ(t)∥1 > 0. (29)

Note the claim contradicts to the hypothesis of x∗ being the
minimizer of (9). Define x̌ := x(t) + ϕv̂, where

v̂ :=
x∗ − x(t)

∥x∗ − x(t)∥2
, ϕ :=

ϕ̄+ 2
βU

∑
i∈U ∥ϵi(t)∥1
2

.

Then, we consider the following relation:

∥Zx∗−ẑ(t)∥1−∥Zx̌−ẑ(t)∥1=∥ϕ̄Zv̂−ϵ(t)∥1−∥ϕZv̂−ϵ(t)∥1
=

∑
i∈N

(
∥ϕ̄Ziv̂ − ϵi(t)∥1 − ∥ϕZiv̂ − ϵi(t)∥1

)
. (30)

For i ∈ N \ U , from the triangular inequality, we have

∥ϕ̄Ziv̂−ϵi(t)∥1−∥ϕZiv̂ − ϵi(t)∥1≥(ϕ̄−ϕ)
(
−∥Ziv̂∥1

)
. (31)

For i∈U , define gi(τ) :=∥τZiv̂−ϵi(t)∥1 with τ ∈ R, then

∥ϕ̄Ziv̂ − ϵi(t)∥1 − ∥ϕZiv̂ − ϵi(t)∥1 = gi(ϕ̄)− gi(ϕ). (32)

Since the function gi is piecewise linear, it follows that

gi(ϕ̄)− gi(ϕ) =

∫ ϕ̄

ϕ

(Ziv̂)
T sign(τZiv̂ − ϵi(t)) dτ. (33)

From (38) of Lemma 2, it can be obtained that for τ > 0,

(Ziv̂)
T sign(τZiv̂ − ϵi(t)) ≥

(
∥Ziv̂∥1 −

2

τ
∥ϵi(t)∥1

)
.

By applying this and (33) into (32), we have, for all i ∈ U ,

∥ϕ̄Ziv̂−ϵi(t)∥1−∥ϕZiv̂−ϵi(t)∥1≥
∫ ϕ̄

ϕ

∥Ziv̂∥1−
2

τ
∥ϵi(t)∥1 dτ

≥
∫ ϕ̄

ϕ

∥Ziv̂∥1−
2

ϕ
∥ϵi(t)∥1 dτ=(ϕ̄−ϕ)

(
∥Ziv̂∥1−

2

ϕ
∥ϵi(t)∥1

)
. (34)

Now, let us show (29). From (31) and (34), (30) becomes

∥Zx∗ − ẑ(t)∥1 − ∥Zx̌− ẑ(t)∥1

≥ (ϕ̄− ϕ)
(
−

∑
i∈N\U

∥Ziv̂∥1 +
∑
i∈U

(
∥Ziv̂∥1 −

2

ϕ
∥ϵi(t)∥1

))
≥ (ϕ̄− ϕ)

(
βU − 2

ϕ

∑
i∈U

∥ϵi(t)∥1
)

(35)

where (35) follows from (10) with I = U . Since
2
βU

∑
i∈U ∥ϵi(t)∥1 < ϕ < ϕ̄ from the definitions of ϕ̄ and ϕ,

the right-hand side of (35) is greater than zero, which shows
the claim (29) and completes the proof.

B. Technical lemmas
Lemma 1 ([18]): For the undirected and connected graph

G, all the eigenvalues of the Laplacian matrix L of G are non-
negative real numbers, and there is only one zero eigenvalue.
Namely, the eigenvalues can be sorted as

0 = λ1 < λ2 ≤ λ3 · · · ≤ λN . (36)

Moreover, there exists a matrix R ∈ RN×(N−1) such that

1TNR, RTR = IN−1, RTLR = Λ (37)

where Λ := diagNi=2(λi) ∈ R(N−1)×(N−1).
Lemma 2: For vectors a, b ∈ Rn, it holds that

−aT sign(a+ b) ≤ 2∥b∥1 − ∥a∥1. (38)

Proof: This lemma can be proved as follows:

− aT sign(a+ b)

= −aTsign(a+b)+(a+b)T sign(a+b)−(a+b)T sign(a+b)

= bT sign(a+ b)− ∥a+ b∥1
≤ ∥b∥1 − ∥a+ b∥1 = ∥b∥1 − ∥a+ b∥1 + ∥a∥1 − ∥a∥1
≤ 2∥b∥1 − ∥a∥1. ■
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