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Abstract— In this paper, we present cooperative rebalancing
control of a one-way car-sharing service, where several service
providers operate vehicles independently while sharing the
common rental stations. The objective of service providers is
to reduce the number of deadhead vehicles considering limited
parking slots at stations. To this end, we propose a rebalancing
control method by a distributed dual decomposition algorithm.
Each provider transmits the estimation of the dual optimizers
to the neighboring providers in an event-triggered manner. A
numerical example shows that all service providers can find
an optimal rebalancing solution while effectively reducing the
number of communications.

I. INTRODUCTION

Car-sharing is a sharing economy service allowing users
to rent a car conveniently. The market of the car-sharing
industry is predicted to proliferate around the world as mobil-
ity objectives become diverse [1]. In the car-sharing service,
pick-up or drop-off sites are called stations. The car-sharing
service is divided into two types: one-way and round-trip
sharing services. A round-trip sharing service requires users
to return a vehicle to the station where it was initially rented.
In contrast, a one-way sharing service allows users to begin
and end their trips at different stations. However, operating
a one-way car-sharing service is generally more challenging
due to an imbalance of vehicle allocation. The imbalance
must be reduced by rebalancing control. As the rebalancing
control, deadheading, that is, transferring vehicles between
stations, is carried out to reduce the gap between supply and
demand. However, the deadheading involves extra costs for
service providers. To solve this issue, several providers can
operate the service cooperatively.

The rebalancing control with several service providers has
been investigated by different approaches such as an integer
programming method [2], a game-theoretic approach [3], and
a learning-based approach [4], [5]. These studies assume that
the rebalancing control problem is solved in a centralized
manner, which has the issue of scalability for large-scale car-
sharing services. Recently, distributed optimization methods
have been gaining significant attention [6], [7]. In distributed
approaches, users or service providers act as independent
decision-makers that collaboratively find an optimal solution
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[8]–[10]. However, service providers must communicate at
each iteration in these distributed optimization methods,
which may waste communication resources [11], [12]. To
save limited communication resources, distributed event-
triggered methods have been considered in many control and
optimization applications [13]–[16].

In this paper, we present cooperative control of a one-
way car-sharing service. Each service provider is modeled
as an agent, and a group of agents operates vehicles inde-
pendently but shares rental stations. The objective of service
providers is to reduce the cost of the deadheading as much
as possible, considering limited parking slots at stations. The
cooperative rebalancing control to minimize the deadheading
cost is formulated as a distributed optimization problem
with a coupling inequality. The optimization problem can
be solved by consensus-based algorithms such as a primal-
dual algorithm [17], a dual decomposition algorithm [18],
and an ADMM-based algorithm [19], [20]. In this paper, we
extend the dual decomposition algorithm [18] to distributed
event-triggered optimization. The communication between
agents is conducted only when the discrepancy between the
latest estimation transmitted to the neighbors and the current
estimation exceeds a predefined threshold.

The event-triggered approach for cooperative car-sharing
optimization was considered in [21]. However, this approach
is based on the primal-dual algorithm, and the cost function
of the rebalancing control is assumed to be strongly convex.
On the other hand, we consider an approach based on the
dual decomposition and the proximal algorithm [18]. Thus,
the proposed method does not require strong convexity of
the cost function and can be applied to a broader class of
rebalancing control problems such as sparse optimization
scheduling. Moreover, for a cost function with a quadratic
form, the proximal maximization step in the dual update
can be reduced to the projection onto the positive orthant.
In general, the projection step in the primal-dual algorithm
[17], [22] is computationally demanding. Therefore, the
service providers can effectively find an optimal solution by
applying the proposed algorithm combining dual decompo-
sition with event-triggered communication. We also derive
the convergence rate of the distributed dual decomposition
algorithm with the event-triggered communication, which
is not addressed quantitatively even for the time-triggered
algorithm in [18].

The remainder of this paper is organized as follows.
In Section II, we address the problem formulation of a
cooperative car-sharing control problem and propose a dis-
tributed event-triggered dual decomposition algorithm. The
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convergence analysis of the proposed algorithm is conducted
in Section III. The numerical simulation is shown in Section
IV. Finally, concluding remarks are given in Section V.

II. PROPOSED ALGORITHM

A. Model of Rebalancing Control

Let R≥0 and N are the sets of the nonnegative real
numbers and the nonnegative integers. We consider S car-
stations that is shared by N service providers. Although the
number of vehicles takes an integer value in real car-sharing
systems, this paper considers a control problem with the
expected number of vehicles. Suppose that γi,j [k] ∈ R≥0

and hi,jℓ[k] ∈ R≥0 are the expected numbers of vehicles
of provider i ∈ V at station j ∈ S and vehicles that move
from the station ℓ to j at time k ∈ T = {1, 2, . . . , T},
where V = {1, 2, . . . , N} and S = {1, 2, . . . , S} are the
sets of the service providers and the stations. Suppose also
that ϑi,jℓ[k] ∈ R≥0 and ωi,jℓ[k] ∈ R≥0 are the expected
rates of the numbers of deadheading vehicles and demands
of provider i from station ℓ to j.

In this paper, we consider a probabilistic model for the
demands based on a Poisson distribution [23]:

P[Wi,jℓ[k] = τ ] =
(ωi,jℓ[k])

τ

τ !
e−ωi,jℓ[k],

∀i ∈ V , ∀j, ℓ ∈ S, ∀k ∈ T ,

where Wi,jℓ[k] is the number of vehicles departing from
station ℓ to j corresponding to the demand at time k. The
expectation of Wi,jℓ[k] is given as E[Wi,jℓ[k]] = ωi,jℓ[k].

Let ξi[k] = [γi,1[k], γi,2[k], . . . , γi,S [k], hi,12[k], hi,13[k],
. . . , hi,S,S−1[k]]

⊤ ∈ Rn, ui[k] =
[ϑi,21[k], ϑi,31[k], . . . , ϑi,S−1,S [k]]

⊤ ∈ Rm, and
ωi[k] = [ωi,21[k], ωi,31[k], . . . , ωi,S−1,S [k]]

⊤ ∈ Rm

be provider i’s state, control input, and external
input, where m = S(S − 1) and n = S2. Then,
the dynamics of each provider is represented as
ξi[k + 1] = Aiξi[k] +Biui[k] +Biωi[k], where Ai ∈ Rn×n

and Bi ∈ Rn×m describe the dynamics of sharing service,
and ξi[0] = ξi0 ∈ R≥0 [21].

B. Formulation of Cooperative Rebalancing Control

Let ui = [u⊤i [0], u⊤i [1], . . . , u⊤i [T − 1]]⊤ ∈ RmT

be the stacked vector for the number of deadheading ve-
hicles of provider i. The constraint on the parking space
is represented as Ψ

∑N
i=1 ξi[k] ≤ ψ[k] for all k ∈ T ,

where Ψ = [IS OS×(n−S)] ∈ RS×n and ψ[k] ∈ RS is
the maximum number of vehicles at stations at time k. The
inequality relation between vectors stands for the component-
wise inequality relation. Furthermore, the constraint for the
number of deadheading vehicles is given as ui ∈ Ui = {u′ ∈
RmT | 0 ≤ u′ ≤ ūi} for all i ∈ V , where ūi ∈ RmT

≥0 . Since
Ui is bounded and closed, there exists Cu > 0 such that
∥u′∥ ≤ Cu for all u′ ∈ Ui and i ∈ V .

Then, with a similar discussion as in [21], the rebalancing
control problem is formulated as follows:

minimize
{ui}N

i=1

N∑
i=1

fi(ui) (1a)

subject to

N∑
i=1

gi(ui) ≤ 0, (1b)

ui ∈ Ui, i ∈ V . (1c)

In the optimization problem (1), fi(ui) = u⊤i Hiui is the cost
function of provider i, where Hi =

∑T−1
τ=0 E

⊤[τ ]RiE[τ ] ∈
RmT×mT , E[k] = [Om×mk, Im, Om×m(T−k−1)] ∈
Rm×mT , and Ri ∈ Rm×m is a positive-definite matrix.
Moreover, gi(ui) = Ξiui + ζi is provider i’s constraint
function, where Ξi =

[
−Φ̂⊤

i , Φ̌
⊤
i

]⊤ ∈ Rq×mT , ζi =[
−(Âiξi[0])

⊤, µ⊤
i

]⊤ ∈ Rq , µi ∈ RST is a coefficient vector,
and q = (n+S)T . The matrices Φ̂i, Φ̌i, and Âi are defined
as Φ̂i = [Φ⊤

i [1],Φ
⊤
i [2], . . . ,Φ

⊤
i [T ]]

⊤ ∈ RnT×mT , Φ̌i =
[(ΨΦi[1])

⊤, (ΨΦi[2])
⊤, . . . , (ΨΦi[T ])

⊤]⊤ ∈ RST×mT ,
Âi = [A⊤

i , (A
2
i )

⊤, . . . , (AT
i )

⊤]⊤ ∈ RnT×n, and Φi[k+1] =
[Ak

iBi, A
k−1
i Bi, . . . , Bi, On×m(T−k−1)] ∈ Rn×mT with

Φi[0] ∈ On×mT .
The Lagrange function for (1) is given as L(u, λ) =∑N
i=1 Li(ui, λ), where u = [u⊤1 , u

⊤
2 , . . . , u

⊤
N ]⊤ ∈ U ⊂

RmNT . Let ϖi(λ) = minui∈Ui
Li(ui, λ) be the dual func-

tion for provider i. We consider the following dual problem
for (1):

maximize

N∑
i=1

ϖi(λ)

subject to λ ≥ 0.

(2)

In this paper, we assume that Slater’s qualification for (1)
is satisfied [17]. Then, we obtain Λ∗ ̸= ∅ and f∗ = ϖ∗,
where Λ∗ is the set of the dual optimizers, and f∗ and ϖ∗

are the optimal values of (1) and (2).

C. Distributed Event-Triggered Dual Decomposition Algo-
rithm

Let u(t)i ∈ RmT and λ
(t)
i ∈ Rq be the estimations of

a primal optimizer of (1) and a dual optimizer of (2) at
iteration t. An undirected graph G = (V, E) represents a
communication network of service providers, where E is the
set of communication edges. The estimation λ

(t)
i is sent to

the neighboring provider when ∥λ(t)i − λ̌
(t)
i ∥ ≥ e

(t)
i holds,

where e
(t)
i is provider i’s threshold of the event-triggered

communication and

λ̌
(t)
i =

{
λ
(t)
i , if t is a triggered iteration of i,
λ̌
(t−1)
i , otherwise.

(3)

The event-triggered dual decomposition algorithm of
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provider i is given by

w
(t)
i = λ

(t)
i +

N∑
j=1

aij(λ̌
(t)
j − λ̌

(t)
i ), (4)

u
(t+1)
i = arg min

ui∈Ui

{
fi(ui) + (w

(t)
i )⊤gi(ui)

}
, (5)

λ
(t+1)
i =

[
w

(t)
i + α(t)gi(u

(t+1)
i )

]
+
, (6)

where α(t) > 0 is a stepsize, [·]+ is the projection onto
the positive orthant, and aij is the edge weight such that
aij ∈ [a, 1) for {i, j} ∈ E , aij = 0 for {i, j} /∈ E and i ̸= j,
and aii ≥ a for all i ∈ V with a positive constant a.

The proposed event-triggered algorithm can effectively
reduce the number of communications compared with the
time-triggered algorithm [18], which requires information
exchange at every iteration. In addition, different from the
consensus-based primal-dual algorithm [21], [22], the pro-
posed dual decomposition approach does not require strong
convexity of the cost function.

III. CONVERGENCE ANALYSIS
To establish convergence of the proposed event-triggered

dual decomposition algorithm, we make the following as-
sumptions.

Assumption 1: The graph G is connected.
Assumption 2:

∑N
j=1 aij = 1 for any i ∈ V and∑N

i=1 aij = 1 for any j ∈ V .
Assumption 3: The stepsize satisfies limt→∞ α(t) = 0,∑∞
t=0(α

(t))2 <∞, and
∑∞

t=0 α
(t) = ∞. Moreover, the trig-

ger threshold satisfies limt→∞E(t) = 0 and
∑∞

t=0E
(t) <

∞, where E(t) is the upper bound of the threshold at iteration
t such that e(t)i ≤ E(t) for all i ∈ V .

Without loss of generality, we assume that there exists a
positive constant E such that E(t) < E for all t ∈ N.

The next result shows that the estimation by the proposed
algorithm converges to a dual optimizer.

Proposition 1: Under Assumptions 1–3, we have
limt→∞ ∥λ(t)i − λ∗∥ = 0 for all i ∈ V , where λ∗ ∈ Λ∗.

Proof: We define the weighted sum of the trigger errors
by ê(t)i =

∑N
j=1 aij(e

(t)
j − e

(t)
i ). From Assumptions 1–3, we

have
N∑
i=1

ê
(t)
i =

N∑
i=1

N∑
j=1

aij(e
(t)
j − e

(t)
i )

=
1

2

N∑
i=1

N∑
j=1

aij(e
(t)
j − e

(t)
i )

+
1

2

N∑
i=1

N∑
j=1

aji(e
(t)
j − e

(t)
i ) = 0 (7)

and

∥ê(t)i ∥ ≤
N∑
i=1

N∑
j=1

aij∥e(t)j − e
(t)
i ∥

≤ 2

N∑
i=1

N∑
j=1

aijE
(t) = 2NE(t). (8)

Then, by an argument similar to Theorem 1 in [18], Propo-
sition 1 can be proven based on the result for the event-
triggered subgradient method [13].

The following theorem is the main result of this paper that
guarantees the convergence by the proposed algorithm.

Theorem 1: Under Assumptions 1–3, we have
limt→∞ dist(û(t),U∗) = 0, where dist(û(t),U∗) =

minv∈U∗ ∥û(t) − v∥, û(t) = [(û
(t)
1 )⊤, (û

(t)
2 )⊤, . . . , (û

(t)
N )⊤]⊤

and û(t+1)
i = (

∑t
r=0 α

(r)u
(r+1)
i )/

∑t
r=0 α

(r).

Proof: From the convexity of the constraint function,
we have

N∑
i=1

gi(û
(t+1)
i ) ≤

N∑
i=1

∑t
r=0 α

(r)gi(u
(r+1)
i )∑t

r=0 α
(r)

=

∑t
r=0 α

(r)
∑N

i=1 gi(u
(r+1)
i )∑t

r=0 α
(r)

. (9)

Since λ
(t+1)
i =

[
w

(t)
i + α(t)gi(u

(t+1)
i )

]
+

≥ w
(t)
i +

α(t)gi(u
(t+1)
i ), we have

t∑
r=0

α(r)
N∑
i=1

gi(u
(r+1)
i ) ≤

t∑
r=0

N∑
i=1

(λ
(r+1)
i − w

(r)
i )

=

t∑
r=0

N∑
i=1

(λ
(r+1)
i − λ

(r)
i )

=

N∑
i=1

(λ
(t+1)
i − λ

(0)
i ) <∞, (10)

where the first equality follows from Assumption 2 and (7),
and the last inequality follows from the fact that {λ(t)i } is
bounded. Since

∑∞
r=0 α

(r) = ∞, from (9) and (10), we have

lim sup
t→∞

N∑
i=1

gi(û
(t+1)
i ) ≤ 0. (11)

From the convexity of Li(ui, λ) with respect to ui, we
have

2

N∑
i=1

Li(û
(t+1)
i , λ∗) ≤

∑t
r=0 2α

(r)L(u(r+1), λ∗)∑t
r=0 α

(r)
. (12)
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From (23) and (24) in Appendix, we also obtain

2α(t)L(u(t+1), λ∗)

≤ 2α(t)L(u∗, λ̄(t+1))

+

N∑
i=1

(∥λ(t)i − λ∗∥2 − ∥λ(t+1)
i − λ∗∥2)

+
4NG2

δ
(α(t))2 + 2Gα(t)

N∑
i=1

∥λ(t+1)
i − λ̄(t+1)∥

+ 8N2CλE
(t) + 4N3(E(t))2

≤ 2α(t)L(u∗, λ∗) +
N∑
i=1

(∥λ(t)i − λ∗∥2 − ∥λ(t+1)
i − λ∗∥2)

+
4NG2

δ
(α(t))2 + 2Gα(t)

N∑
i=1

∥λ(t+1)
i − λ̄(t+1)∥

+ 8N2CλE
(t) + 4N3(E(t))2. (13)

From (12) and (13), we have

2L(û(t+1), λ∗)

≤ 2L(u∗, λ∗)

+
1∑t

r=0 α
(r)

(
N∑
i=1

∥λ(0)i − λ∗∥2 + 4NG2

δ

t∑
r=0

(α(r))2

+ 2G

t∑
r=0

α(r)
N∑
i=1

∥λ(r+1)
i − λ̄(r+1)∥

+8N2Cλ

t∑
r=0

E(r) + 4N3
t∑

r=0

(E(r))2

)
. (14)

Thus, from (21) and Assumption 3, we have
lim supt→∞ L(û(t+1), λ∗) ≤ L(u∗, λ∗). On the other
hand, from (24), L(u∗, λ∗) ≤ L(û(t+1), λ∗) holds. This
yields that

lim
t→∞

L(û(t+1), λ∗) = L(u∗, λ∗). (15)

Let {û(tk)} be a subsequence of {û(t)}. Here, we assume
that limt→∞ dist(û(t),U∗) = 0 does not hold. Then, there
exists a positive constant ε such that

lim
t→∞

dist(û(tk),U∗) ≥ ε. (16)

Since Ui is bounded and closed, {û(tk)} has a convergent
subsequence. Moreover, from (11) and (15), the limit point
of the subsequence is feasible and belongs to the set of the
optimal primal solutions, which contradicts (16).

Theorem 1 shows that each service provider can find
an optimal control input for the rebalancing control by the
weighted time-averaged estimation.

The next proposition evaluates the convergence rate of the
proposed algorithm.

Proposition 2: Suppose that the stepsize is given as
α(t) = 1/tb and Assumptions 1–3 hold, where 1/2 < b < 1.
Then, we obtain (1/K)

∑K
t=1 f(u

(t+1)) − f∗ ≤ Cr/K
1−b,

where f(u) =
∑N

i=1 fi(ui) and Cr is a positive constant.

Proof: We note that (23) still holds by replacing λ∗

with 0 because (23) is valid for any feasible dual solution.
Since λ̄(t) ≥ 0 and g(u∗) ≤ 0 for any t ∈ N, we further
have 2α(t)(L(u∗, λ̄(t+1)) − L(u(t+1), 0)) ≤ 2α(t)(f(u∗) −
f(u(t+1))), where g(u) =

∑N
i=1 gi(ui). Thus, for t ∈

{0, 1, . . . ,K}, we obtain

f(u(t+1))− f(u∗)

≤ 1

α(K)

{
N∑
i=1

(∥λ(t)i ∥2 − ∥λ(t+1)
i ∥2) + 4NG2

δ
(α(t))2

+ 2Gα(t)
N∑
i=1

∥λ(t+1)
i − λ̄(t+1)∥

+ 8N2CλE
(t) + 4N3(E(t))2

}
. (17)

It follows that

1

K

K∑
t=1

(f(u(t+1))− f(u∗))

≤ 1

Kα(K)

{
N∑
i=1

∥λ(0)i ∥2 + 4NG2

δ

K∑
t=1

(α(t))2

+ 2G

K∑
t=1

α(t)
N∑
i=1

∥λ(t+1)
i − λ̄(t+1)∥

+8N2Cλ

K∑
t=1

E(t) + 4N3
K∑
t=1

(E(t))2

}
. (18)

Thus, the proof is concluded with (22) and Lemma 1.
Proposition 2 implies that the convergence rate in a finite

horizon is sublinear of O(1/K1−b). The investigation for
the event-triggered algorithms for faster convergence [20] is
a part of future work.

IV. NUMERICAL EXAMPLE

We consider a rebalancing control problem with N = 3
and S = 4. The maximum number of parking vehicles is
given by ξj [k] = 80 for all j ∈ S and k ∈ T . The total
number of operating vehicles is 194 for provider 1, 165
for provider 2, and 178 for provider 3. In this example,
we consider the case when the calls of users from station
1 to 2 increases at times 6 and 7. The stepsize is α(t) =

1/(t+ 105)0.51 and the trigger threshold is e(t)i = c/(t+ 1)
for all i ∈ V with c > 0. The weight matrix Ri is given as
the identity matrix for all i ∈ V .

Figures 1(a) and 1(b) show the normalized error
(
∑N

i=1 |f(û
(t)
i ) − f∗|)/(

∑N
i=1 |f(û

(0)
i ) − f∗|) and the to-

tal number of communications for the different thresholds,
where f∗ is the cost computed by CVXPY [24]. In Figs. 1(a)
and 1(b), TT represents the result by the time-triggered
algorithm in [18], and ET1, ET2, and ET3 are the results
by the event-triggered algorithm with c = 0.05, 0.1, and
0.2, respectively. These results show that the convergence
by the event-triggered algorithm is comparable to that by
the time-triggered algorithm. Moreover, the number of com-
munications by the event-triggered algorithm is efficiently
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(a) Normalized errors (b) Number of communications

Fig. 1. The normalized errors and the total number of communications.

(a) Number of vehicles at stations (b) Number of vehicles departed
from station 5

Fig. 2. The number of vehicles at stations and departing vehicles.

reduced compared with that by the time-triggered algorithm.
As the iterations progress, the estimations of agents approach
the optimal solution, leading to fewer significant deviations
from previous states. This results in fewer triggers for
communication. Despite the reduced communication, the
convergence performance is less affected as seen in Fig. 1(a).
This is because the diminishing step size ensures that each
agent makes smaller adjustments, which are more likely
to be in the right direction near the optimal solution. For
example, the convergence performance by the event-triggered
algorithm ET1 with c = 0.05 is almost the same as that
by the time-triggered algorithm, while the total number of
communications is significantly reduced by more than 95%.

Figures 2(a) and 2(b) show the number of vehicles at each
station and the number of vehicles that depart from station 5
for c = 0.2. In this example, the vehicles move from station
1 to station 2 from time 6 to time 8 to respond to the surge
in demand. To meet the surging demand of station 2, the
number of vehicles departing from station 5 at times 4 and 5
is increased as shown in Fig. 2(b). In addition, the constraint
on the maximum number of vehicles that can be parked
ξj [k] = 80 has been met for all stations at all times. These
results illustrate that service providers can respond flexibly
to fluctuations in demand under the constraint of available
cars and parking spaces.

V. CONCLUSION

This paper considered a distributed rebalancing control
problem for a one-way car-sharing service. Several ser-
vice providers cooperatively provide services to achieve
less deadheading while sharing parking spaces in common
stations. We proposed a distributed dual decomposition algo-
rithm with event-triggered communication. We showed that
each provider could find an optimal solution to reduce the

deadheading vehicles as much as possible. The numerical
example showed that service providers could achieve optimal
deadheading under the constraint of available parking spaces.
The extension to other cooperative sharing economy services
is a line of the future direction of this research article.
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APPENDIX

Lemma 1: Under Assumptions 1–3, we have
∞∑
t=1

N∑
i=1

∥ϕ(t)i ∥2 <∞, (19)

lim
t→∞

∥ϕ(t)i ∥ = 0, ∀i ∈ V , (20)

∞∑
t=1

α(t)
N∑
i=1

∥λ(t+1)
i − λ̄(t+1)∥ <∞, (21)

where ϕ(t)i = λ
(t+1)
i − w

(t)
i and λ̄(t) = (1/N)

∑N
i=1 λ

(t)
i .

Proof: From Proposition 1 in [8], under Assumptions
1 and 2, for all j, ℓ ∈ V and r, r′ ∈ N with r ≥ r′,
there exist constants 0 < β < 1 and C > 0 such that∣∣∣[Ar−r′+1]jℓ − 1/N

∣∣∣ ≤ Cβr−r′ , where A ∈ RN×N is the
weight matrix whose (j, ℓ)-th element is the edge weight ajℓ.

Since Ui is closed and convex for all i ∈ V , there
exists a positive constant G such that ∥gi(ui)∥ ≤ G for
all ui ∈ Ui. Moreover, from Proposition 1, the sequence of
the estimation {λ(t)i } is convergent, and hence, there exists
a positive constant Cλ such that ∥λ(t)i ∥ ≤ Cλ for all i ∈ V
and t ∈ N.

By following the similar argument of Lemmas 1 and 2 in
[18], we have

2

K∑
t=1

α(t)
N∑
i=1

∥λ(t+1)
i − λ̄(t+1)∥

≤ δC1

K∑
t=1

N∑
j=1

∥ϕ(t)j ∥2 + C2

K∑
t=1

(α(t))2 + C3 (22)

and
N∑
i=1

∥λ(t+1)
i − λ∗∥2

≤
N∑
i=1

∥λ(t)i − λ∗∥2 − (1− δ)

N∑
i=1

∥ϕ(t)i ∥2 + 4NG2

δ
(α(t))2

+ 2Gα(t)
N∑
i=1

∥λ(t+1)
i − λ̄(t+1)∥

+ 2α(t)(L(u∗, λ̄(t+1))− L(u(t+1), λ∗))

+ 8N2CλE
(t) + 4N3(E(t))2, (23)

where C1, C2, and C3 are positive constants, 0 < δ <

1/(1 + C1), u(t) = [(u
(t)
1 )⊤, (u

(t)
2 )⊤, . . . , (u

(t)
N )⊤]⊤, and

u∗ = [(u∗1)
⊤, (u∗2)

⊤, . . . , (u∗N )⊤]⊤ is the stacked vector of
the primal optimizers.

Since (u∗, λ∗) is the optimal primal-dual pair, for all u ∈
U = U1 × U2 × · · · × UN and λ ∈ Rq

≥0, we have

L(u∗, λ) ≤ L(u∗, λ∗) ≤ L(u, λ∗). (24)

This yields that L(u∗, λ̄(t+1)) − L(u(t+1), λ∗) =
(L(u∗, λ̄(t+1))−L(u∗, λ∗))+(L(u∗, λ∗)−L(u(t+1), λ∗)) ≤
0. Then, from (22) and (23), we have

K∑
t=1

N∑
i=1

∥λ(t+1)
i − λ∗∥2

≤
K∑
t=1

N∑
i=1

∥λ(t)i − λ∗∥2 − (1− δ)

K∑
t=1

N∑
i=1

∥ϕ(t)i ∥2

+ δC1G

K∑
t=1

N∑
j=1

∥ϕ(t)j ∥2 + C2G

K∑
t=1

(α(t))2 + C3G

+
4NG2

δ

K∑
t=1

(α(t))2 + 8N2Cλ

K∑
t=1

E(t)

+ 4N3
K∑
t=1

(E(t))2

=

K∑
t=1

N∑
i=1

∥λ(t)i − λ∗∥2

− (1− δ(1 + C1G))

K∑
t=1

N∑
i=1

∥ϕ(t)i ∥2

+

(
4NG2

δ
+ C2G

) K∑
t=1

(α(t))2 + 8N2Cλ

K∑
t=1

E(t)

+ 4N3
K∑
t=1

(E(t))2 + C3G. (25)

It follows that

(1− δ(1 + C1G))

K∑
t=1

N∑
i=1

∥ϕ(t)i ∥2

≤
K∑
t=1

N∑
i=1

(∥λ(t)i − λ∗∥2 − ∥λ(t+1)
i − λ∗∥2)

+

(
4NG2

δ
+ C2G

) K∑
t=1

(α(t))2 + 8N2Cλ

K∑
t=1

E(t)

+ 4N3
K∑
t=1

(E(t))2 + C3G

≤ ∥λ(1)i − λ∗∥2 +
(
4NG2

δ
+ C2G

) K∑
t=1

(α(t))2

+ 8N2Cλ

K∑
t=1

E(t) + 4N3
K∑
t=1

(E(t))2 + C3G. (26)

Therefore, from Assumption 3, (19) and (20) hold. Then,
from (19) and (22), we have (21).
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