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Abstract— In this letter we propose a holistic analysis merging
the techniques of passivity-based control (PBC) and control
barrier functions (CBF). We constructively find conditions under
which passivity of the closed-loop system is preserved under CBF-
based safety-critical control. The results provide an energetic
interpretation of safety-critical control schemes, and induce novel
passive designs with respect to standard methods based on damp-
ing injection. The results are specialised to port-Hamiltonian
systems and simulations are performed on a cart-pole system.

I. INTRODUCTION

Passivity-based control (PBC) encompasses several tech-
niques aiming to stabilise systems independently on exter-
nal environmental interactions [1]–[4]. These schemes use
Lyapunov-like arguments to design closed-loop generalised
energy functions (or storage functions) encoding both desired
behaviors and stability guarantees for the controlled system
[5]. A seemingly unrelated control tool is represented by
safety-critical control, a technique producing forward invari-
ance of a safe set, a subset of the state space defined as the
superlevel set of so-called control barrier functions (CBFs)
[6]–[8]. Safety-critical control is practically implemented via
solving a quadratic program minimising the distance from a
desired control input, and as such producing a filtered version
of the control input which guarantees forward invariance of
the safe set.

In this letter we investigate under which conditions this
safety-critical filtering algorithm preserves passivity of the
underlying controlled system, assuming that the desired input
comes from a PBC design. We specialise the results to the
class port-Hamiltonian (pH) systems [9], encompassing for
a great variety of physical systems including the totality of
the mechanical ones. Due to its explicit display of energetic
information, this formulation is very convenient when PBC
schemes are developed [1], [5]. It will be shown how the
pH formulation used in a safety-critical framework induces
intuitive and technical advantages with respect to a Lagrangian
formulation, normally used in this context. As a consequence
safety-critical control schemes gain a clear energetic interpre-
tation, which can be used for multiple purposes in energy-
aware schemes [1], [4]. In particular we introduce classes
of CBFs inducing non trivial damping injection actions for
mechanical systems, able to achieve richer behaviours than
mere stabilisation of equilibria. We claim this way to give
an incremental contribution in equipping the PBC framework
with a tool allowing to constructively embed task-oriented
specifications in passive designs, often considered over con-
servative in their basic formulations.

Related work: The class of CBFs that preserve passivity
include those introduced by the authors in [10], which are
associate to the so-called energy-based safety constraints.
This fact, beyond providing a constructive way to guarantee
passivity when computing kinematic tasks, reinforces the link
between safety-critical and energy-based techniques, a duality
stressed in [6] and explored further in this letter. Furthermore
we recognise the papers [11], [12] combining PBC and CBFs.
In [11] safety-critical control is used to passivize the possibly
non passive desired control action taking advantage of the
energy tank framework [13]. In [12] the same goal is achieved
through the use of a time-varying CBF, whose safety critical
effect is to add enough damping to make the closed-loop
system passive. Both works introduce a specific CBF which,
possibly degrading the performance of the desired task-based
controller, achieves passivity of the closed-loop system. In
this letter instead we start with a passive design as nominal
controller and study conditions under which safety-critical
control preserves passivity. As a consequence the safety-
critical filtering does not act adversely to the nominal input,
but specific CBFs can be chosen to improve the performance
of the system without compromising passivity. This concept is
proven in the simulations where an energy shaping + damping
injection scheme is partly performed by the underlying passive
controller (energy shaping) and partly by the safety critical
effect (damping injection).

In Sec. II the background and motivation related to PBC
and CBFs are introduced. Sec. III presents the result involv-
ing passivity preserving safety-critical control, which is spe-
cialised to port-Hamiltonian systems in Sec. IV. Simulations
are presented in Sec. V and Sec. VI concludes the paper.

II. BACKGROUND

Consider the affine nonlinear control system:

ẋ = f(x) + g(x)u (1)

where x ∈ D ⊆ Rn is the state, u ∈ U ⊂ Rm is the
input, f : Rn → Rn and g : Rn → Rn×m are continuously
differentiable maps. As a consequence a Lipschitz continuous
controller guarantees existence and uniqueness of solutions
of (1). In the following we briefly introduce the relevant
information involving passivity and safety-critical control. We
refer to [2] for passivity and to [6]–[8], [10] for safety-critical
control for references which completely cover the presented
background.

A. Passivity and passivity-based control

Passivity: A system in the form (1) equipped with an
output y ∈ Y ⊂ Rm, is said to be passive with respect to a
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differentiable storage function S : D → R+ and input-output
pair (u, y), if the following inequality holds ∀u ∈ U :

Ṡ = LfS(x) + LgS(x)u ≤ y>u, (2)

where LfS(x) := ∂S
∂x

>
f(x) ∈ R, LgS(x) := ∂S

∂x

>
g(x) ∈

R1×m and the gradient of S(x) is ∂S
∂x ∈ Rn.

For physical systems, where S(x) represents energy and
y>u power flow, condition (2) is a statement of energy conser-
vation, i.e., the variation of energy in the system is bounded by
the power flowing in the system. The inequality margin in (2)
is due to the natural dissipation d(x) = −LfS(x), induced by
the drift vector field of (1). An equivalent condition for (2) of
system (1) with output y is then d(x) ≥ 0 and y = LgS(x)>.

Passivity-based control: Passivity-based control (PBC) aims
to design a controller for a system in the form (1) in such a way
that the closed-loop system is passive. We refer to [2]–[4], [9],
[13] for in depth motivations underlying passive designs, but
in brief we recognise two distinct motivations. i) New methods
to design stabilising controllers: Stability is a corollary of
passivity under weak conditions qualifying storage functions
as Lyapunov functions. The framework of PBC proposes new
methodologies to constructively build those functions with
arguments involving the performance of desired closed-loop
systems, and not only stability [1], [5]; ii) Robust stability:
Passive controllers represent a feasible solution to make the
closed-loop system robustly stable to unknown environmental
interactions, i.e., passive designs are necessary for stability
when the controlled system interacts with other unknown
passive systems [4], [11], [14]. In particular the PBC objective
for system (1) is to find a state feedback law u(x) = β(x)+ν
such that the closed-loop system{

ẋ = fcl(x) + g(x)ν

y = g(x)> ∂Scl

∂x

(3)

is passive with respect to a closed-loop storage function Scl(x)
and input-output pair (ν, y), where fcl(x) = f(x)+g(x)β(x).
Notice that in this case passivity reduces to 0 ≤ dp(x) :=
−LfclScl(x), i.e., the natural dissipation of the passively
controlled system has to be non negative.

Nominal
Controller System External World

Passive System

Fig. 1: The interconnection view of passivity

This concept is depicted in Fig. 1: if an “external world”
system interacts with the passively controlled system through
the input-output pair (ν, y), then a passive closed-loop system
guarantees that when it interfaces with a physical (passive)
system, the interconnection is stable.

The performance of the controlled system along a task
depend on the choice of admissible Scl(x) and fcl(x), which
in general requires solving matching PDEs [5], [9]. However
some significant particular cases which can be conveniently

addressed by means of these design methods encompass e.g.,
all potential compensation techniques for mechanical systems
(falling in the so-called energy balance (EB-PBC) methods),
which will be treated in the sequel as a case study.

B. Control-barrier functions and safety-critical control

Control barrier functions represent a technique to guarantee
forward invariance of a set C, normally called safe set, i.e.,
the control goal is to design a state feedback u(x) = k(x) for
system (1) resulting in the closed-loop system ẋ = fcl(x) =
f(x) + g(x)k(x) such that

∀x(0) ∈ C =⇒ x(t) ∈ C ∀t > 0. (4)

The safe set C is built as the superlevel set of a continuously
differentiable function h : D → R, i.e.,

C = {x ∈ D : h(x) ≥ 0}.

The function h(x) is then a control barrier function (CBF) on
D if ∂h

∂x (x) 6= 0,∀x ∈ ∂C and

sup
u∈U

[Lfh(x) + Lgh(x)u] ≥ −α(h(x)) (5)

for all x ∈ D and some extended class K function1 α. The
following key result connects the existence of such CBF to
forward invariance of the corresponding safe set.

Theorem 1 ([7]). Let h(x) be a CBF on D for (1). Any
locally Lipschitz controller u(x) = k(x) such that Lfh(x) +
Lgh(x)k(x) ≥ −α(h(x)) provides forward invariance of the
safe set C. Additionally the set C is asymptotically stable on
D.

The way controller synthesis induced by CBFs are imple-
mented is to use them as safety filters, transforming a desired
state-feedback control input udes(x) into a new state-feedback
control input u∗(x) in a minimally invasive fashion in order to
guarantee forward invariance of C. In practice, the following
Quadratic Program (QP) is solved:

u∗(x) = argmin
u∈U

||u− udes(x)||2

s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x))
(6)

The transformation of the desired control input udes(x) in
u∗(x) by solving (6) is denoted as safety-critical control, or
safety-critical filtering. A last result that will be crucially used
in this work is the following lemma.

Lemma 1 ([8], [10]). Let h(x) be a CBF on D for (1)
and assume U = Rm and Lgh(x) 6= 0, ∀x ∈ D. Define
Ψ(x;udes) = ḣ(x, udes(x)) + α(h(x)). A closed-form solution
for (6) is given by u∗(x) = udes(x) + usafe(x), where

usafe(x) =

−
Lgh(x)>

Lgh(x)Lgh(x)>
Ψ(x;udes) if Ψ(x;udes) < 0

0 if Ψ(x;udes) ≥ 0
(7)

1A function α : (−b, a)→ (−∞,∞) with a, b > 0, which is continuous,
strictly increasing, and α(0) = 0.
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Note (Disclaimer on the term “safety”). In the following
we refer to “safety” for CBF-related terminology (e.g., safety-
critical filtering, safe set, etc.). We stress that this concept of
safety is in general not connected to safety guarantees in the
sense of preventing physical safety hazards (e.g., human-robot
collisions), which are often characterised by fixed thresholds in
the amount of admissible energy or power transfer [15]. CBF-
related designs can nevertheless be very useful to deal with
this latter type of safety, which we will refer to as “physical
safety” in the sequel.

III. PASSIVITY PRESERVING SAFETY-CRITICAL CONTROL

In this section we investigate under which conditions passiv-
ity of (3) is preserved under safety-critical filtering. This will
characterise a class of CBFs, which might be useful for dif-
ferent reasons (e.g., physical safety, obstacle avoidance, etc.),
that can be used to filter a posteriori a passive action without
compromising passivity of the new closed-loop system.

The following theorem, graphically supported by Fig. 2,
provides the result.

Theorem 2. Let system (1) with u(x) = β(x) + ν result in
the passive closed-loop system (3). A safety-filtering on (3)
induced by a CBF h(x), results in the new controller u(x) =
β(x) + µ(x) + ν. We indicate with dp(x) = −L(f+gβ)Scl(x)
the dissipation of the passive system (3) and Ψ(x;β) =
ḣ(x, β(x)) + α(h(x)). The resulting closed-loop system is
passive with respect to Scl(x) and (ν, y) if and only if
Lgh(x) 6= 0 and

−LgScl(x)Lgh(x)>

Lgh(x)Lgh(x)>
Ψ(x;β) ≤ dp(x) (8)

when Ψ(x;β) < 0. Furthermore, independently whether
passivity is preserved, the instantaneous power that the safety-
critical controller injects in the system is given by the left hand
side of (8) when Ψ(x;β) < 0.

Proof. The task is to check when the system{
ẋ = f(x) + g(x)β(x) + g(x)µ(x) + g(x)ν

y = g(x)> ∂Scl

∂x

(9)

is passive with respect to Scl(x) and the input-output pair
(y, ν), where the desired input in (6) and (7) is udes(x) = β(x)
and the safety component in (7) is usafe(x) = µ(x). Due to
the available closed-form solution (7) we can directly calculate
the dissipation inequality for (9):

Ṡcl = −dp(x) + LgScl(x)µ(x) + LgScl(x)ν.

Passivity condition Ṡcl ≤ y>ν holds if and only if
LgScl(x)µ(x) ≤ dp(x), where LgScl(x)µ(x) is the power
the safety-critical controller injects in the system. The case
Ψ(x;β) ≥ 0 is always satisfied since µ(x) = 0 and dp(x) ≥ 0
because of passivity of (3), while the case Ψ(x;β) < 0
corresponds to (8), which concludes the proof.

Nominal
Controller System External World

Safety-critical
filtering

Passive system if (8) holds

Fig. 2: Graphical support to Theorem 2.

IV. EB-PBC FOR PORT-HAMILTONIAN SYSTEMS WITH
SAFETY-FILTERING

In this section we specialise the result to mechanical sys-
tems and without loss of generality we use a port-Hamiltonian
(pH) formulation to describe their dynamics [9]. This mod-
eling technique is often used in the development of PBC
schemes since it explicitly encodes the energetic structure of
the underlying physical systems. One of the contributions of
this section is to use this formulation in the CBF framework.
We will show how several manipulations, especially involving
the so-called energy-based safety constraints [10] (and their
generalisation introduced in the sequel), will gain intuitive and
technical advantage.

The input–state–output representation of a port–
Hamiltonian system consists in an instance of (1) with
output y ∈ Rm in the form:{

ẋ = (J(x)−R(x))∂H∂x + g(x)u

y = g(x)> ∂H∂x
(10)

where J(x) = −J(x)> and R(x) = R(x)> ≥ 0 are respec-
tively skew-symmetric and positive semi-definite symmetric
matrices representing the power-preserving and the dissipative
components of the system. The non-negative function H :
D → R+ is called the Hamiltonian and maps the state
into the total physical energy of the system. As a matter
of fact system (10) is passive by construction with storage
function H(x) and input-output pair (y, u) since, using skew-
symmetry of J(x), positive-definitness of R(x) and indicating
with f(x) = (J(x)−R(x))∂H∂x :

Ḣ = LfH(x)+y>u = −∂H
∂x

>
R(x)

∂H

∂x
+y>u ≤ y>u (11)

which is a statement of energy conservation. PBC techniques
in this framework are conveniently addressed by designing
a target closed-loop system in port-Hamiltonian form and
“matching” it to the open-loop port-Hamiltonian system with
a parametrised feedback law u(x) = β(x) + ν. A complete
description of these design methodology can be found in [5],
[16]. In the following we address a particular case, which
encompasses many control schemes of interest, referred to as
energy balancing (EB)-PBC.

Theorem 3. ([16]) Consider the open-loop system (10) under-
going its energy balance (11) where we indicate with d(x) =
∂H
∂x

>
R(x)∂H∂x the natural dissipation. If it is possible to find

β(x) such that ˙̄V (x) = y>β(x) where V̄ (x) = Scl(x)−H(x),
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then the control law u(x) = β(x) + ν is such that Ṡcl(x) =
y>ν − d(x) is satisfied, i.e., a passive closed-loop system
with storage function Scl(x) and input output port (y, ν) is
obtained.

The design procedure is complemented with some desired
properties on the closed-loop storage function Scl(x), nor-
mally by choosing the minimum of Scl(x) as the point that
needs to be stabilised. The EB-PBC design is then possi-
bly completed by the so-called damping injection procedure,
where a negative output feedback on ν = −Diy for some
positive definite matrix Di increases the convergence rate
to the minimum of Scl(x). Notice how the class of passive
closed-loop systems obtained with this constructive procedure
can directly undergo a safety filtering through a CBF h(x), for
which condition (8) determines whether passivity with respect
to Scl(x) is preserved. It is worth remarking how this class of
systems encompasses any physical system admitting a port-
Hamiltonian formulation, which is far bigger than mechanical
systems, on which we zoom further in the following.

A. EB-PBC procedure for mechanical systems

In order to better comprehend the proposed methodology
and discuss how it complements standard EB-PBC approaches,
let us specialise system (10) to mechanical systems, where
we introduce the state x = (q>, p>) ∈ R2n as canonical
Hamiltonian coordinates on the cotangent bundle of the con-
figuration manifold of the system. Let q ∈ Rn be the vector
of generalized coordinates. p ∈ Rn denotes the generalized
momenta, p := M(q)q̇, where M(q) = M(q)> > 0 is the
positive definite inertia matrix of the system. The equations
of motions in canonical form are given by (10) with

J(x)−R(x) =

[
0 In
−In −D

]
, g(x) =

[
0
B

]
resulting in

[
q̇

ṗ

]
=

[
0 In

−In D

][
∂H
∂q
∂H
∂p

]
+

[
0

B

]
u

y =
[
0 B>

] [∂H
∂q
∂H
∂p

]
= B>q̇

(12)

where H : R2n → R is the total energy (Hamiltonian)

H(q, p) =
1

2
p>M−1(q)p+ V (q),

V : Rn → R maps the position state to conservative potentials
(gravity, elastic effects), D = D> ≥ 0 takes into account
dissipative and friction effects, B ∈ Rn×n is the input matrix2,
In indicates the n × n identity matrix and non specified
dimensions of matrices, comprising those with only zero
entries and denoted with the symbol “0”, are clear from the
context.

The EB-PBC procedure applied to (12) encompasses all
passive potential compensation techniques for mechanical
systems, for which the control reduces to β(q) = −∂V̄∂q , i.e.,
the function V̄ in Theorem 3 depends only on the position

2For lightening notation we hide possible state dependencies on D and B.

variable q. This procedure, which will be considered from
now on, can be used to de facto re-derive PD+potential
compensation controllers with novel arguments (see [17]), by
choosing V̄ (q) = −V (q) + 1

2q
>Kq with K = K> ≥ 0,

and add damping injection to increase the convergence to the
minima of the closed-loop storage function

Scl(q, p) = H(q, p) + V̄ (q). (13)

More generally, any choice of V̄ (q) which is bounded from
below3 gives raise to a passive closed-loop system, as an
instance of (3) in the form

[
q̇

ṗ

]
=

[
0 In

−In D

][
∂Scl

∂q
∂Scl

∂p

]
+

[
0

B

]
ν

y =
[
0 B>

] [∂Scl

∂q
∂Scl

∂p

]
= B>q̇.

(14)

With a slight abuse of notation we denote D in (14) the
dissipation matrix that possibly includes a damping injection
component, and consistently with the notation in Theorem 2
we indicate the dissipative power dp(q, p) = ∂Scl

∂p

>
D ∂Scl

∂p =

q̇>Dq̇. We now apply the results of Theorem 2 to system (14),
giving an energetic interpretation of safety-critical filtering on
passively controlled mechanical systems. We indicate with
Psafe(x) = LgScl(x)µ(x), the power injected by the safety
filtering component of the controller. It will be technically
convenient to use {·, ·}, the Poisson bracket induced by
the symplectic structure canonically present in hamiltonian
mechanical systems, i.e., for two smooth real-valued functions
φ(q, p), ξ(q, p), the Poisson bracket is defined as {φ, ξ} =
∂φ
∂q

∂ξ
∂p −

∂φ
∂p

∂ξ
∂q . We use the notation Psafe|Ψ<0 to indicate the

power injected by the safety-critical controller when Ψ < 0,
since otherwise Psafe = 0.

Applying safety-critical filtering induced by a CBF h(q, p)
to (14), one obtains:

Ψ(q, p;β) = {h, Scl} − dp(q, p) + α(h(q, p)) (15)

Psafe|Ψ<0 = −
q̇>BB> ∂h∂p
∂h
∂p

>
BB> ∂h∂p

Ψ(q, p;β) (16)

and we remind that the condition (8) for passivity preserva-
tion is Psafe|Ψ<0 ≤ dp(q, p). Notice that the expression for
Ψ(q, p;β) in (15) can be derived by calculation, or by using
the Hamiltonian structure encoded in (14) as follows. The term
ḣ(q, p, β(q)) in Ψ(q, p;β) measures the variation of the CBF
along the closed-loop Hamiltonian vector field in (14), which
is exactly what the Poisson bracket {h, Scl} produces in the
conservative case. Subtracting the natural dissipation due to
D yields the expression (15) by pure geometrical reasoning.

We now consider the class of candidate CBFs in the form

h(q, p) = −Ke(q, p) + αE h̄(q) + Ē, (17)

where Ke(q, p) = 1
2p
>M−1(q)p is the kinetic energy, h̄(q) is

a smooth function on the position variable only, Ē ∈ R+ and

3Boundedness of V̄ (q) qualifies Scl(q, p) as a valid storage function.
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αE ∈ R. We call the superlevel sets of CBFs in the form (17)
generalised energy-based safe sets, see Remark 1, and present
the following corollary.

Corollary 1. Every candidate CBF in the form (17) induces
a passivity-preserving safety-critical filtering. Furthermore
the dissipated power by the controller is always negative
when Ψ(q, p;β) < 0 and equals the constraint value, i.e.,
Psafe|Ψ<0 = Ψ(q, p;β). Furthermore Ψ(q, p;β) = {αE h̄ +
V t,Ke}+ dp(q, p) +α(h(q, p)) where V t(q) = V (q) + V̄ (q)
is the total closed-loop potential.

Proof. ∂h
∂p = −∂Ke

∂p = −q̇. As a consequence Psafe|Ψ<0 =
Ψ(q, p;β), i.e., condition (8) is always satisfied. The value
of the constraint Ψ(q, p;β) is easily calculated using skew-
symmetry and bilinearity of the Poisson bracket.

The following remarks address particular cases of interest.

Remark 1 (Safety-Critical Kinematic Control). Using a
Lagrangian formalism, in [10] the authors define the energy-
based safe sets as the superlevel set of (17) with αE > 0 and
Ē = 0, and prove that it is a valid CBF on its superlevel
set. In [10] the motivation is to implement safety-critical
kinematic control, i.e., to make the superlevel set of h̄(q)
forward invariant, which cannot be done trivially since h̄(q) is
not a valid CBF because Lgh̄ = 0 for mechanical systems. The
authors prove that with a sufficiently large αE the superlevel
sets of (17) approach those of h̄(q), and thus solve successfully
the safety-critical kinematic control problem. We conclude that
all the safety-critical kinematic control schemes developed
in [10] are passivity-preserving since the used CBFs are
particular cases of (17).

Remark 2 (Physical Safety). Limiting the total energy
Scl(q, p) or the kinetic energy Ke(q, p) to a constant value Ē,
are particular cases of safe sets encoded in (17) (resp. with
αE h̄(q) = −V t(q) and αE = 0), and thus can be used to im-
pose physical safety constraint along passive designs, as (even
if often misunderstood) passivity does not imply physical safety
[13]. Notice that when h(q, p) = −Scl(q, p)+Ē, the dissipated
power reduces to Psafe|Ψ<0 = −dp(q, p) + α(h(q, p)) since
{Scl, Scl} = 0.

We observe that the described safety-filtering procedure
provides novel ways to implement damping injection schemes
on mechanical systems. In fact Corollary 1 provides conditions
under which the safety critical controller acts as a damper,
in a different way than a standard derivative action does:
the controller, implementing a nontrivial logic encoded in the
safety-critical optimisation, damps energy in regions of the
state space that conveniently encode task-oriented information
though proper choices of CBFs.

V. SIMULATIONS

We present simulations involving a cart-pole system, shown
in Fig. 3. We consider the simple case of a nominal controller
implementing a proportional action with reference q∗1 = 1
on the horizontal coordinate. In the PBC interpretation, the
controller acts like a linear spring with stiffness k, and the
closed-loop system is passive with storage function Scl(q, p) =

Fig. 3: The cart-pole system and the physical representation of its
control effects.

H(q, p) + 1
2kq

2
1 , being H(q, p) the open-loop Hamiltonian

of the system. To show the role of the passivity-preserving
safety-critical controller as a damper, we assume no friction
in the plant and no dissipation in the passive controller, i.e.,
the passively controlled system is lossless, a particular case
of passivity with dp(q, p) = 0. It follows that all the losses
in Scl are caused by the safety-critical controller. We perform
two classes of simulations with two instances of CBFs in the
form (17), for which Corollary 1 guarantees that the safety
critical controller acts indeed as a damper, as represented in
Fig. 3. All model parameters are set to unity unless specified,
and the initial states of the system are zero both in position and
momentum. Furthermore we use α(h) = γh with γ = 10Hz4.

1) Limiting kinetic energy: Fig. 4 shows the effect of
the safety critical controller induced by the CBF h(q, p) =
−Ke(q, p) + Ē with different choices of Ē, i.e., the safe set
is defined in a way to limit the total kinetic energy of the
system to a constant value. Since the nominal controller is
implemented with k = 6N/m, it results Scl|t=0 = 3J, a
value that would be nominally conserved along the motion
since the system without safety critical filtering is lossless.
It is clearly visible that as soon as h(q, p) approaches zero,
the safety critical filtering modifies the control action to damp
energy from Scl. The amplitude of the steady state oscillations
around q∗1 decrease when Ē decreases.

2) Safety-critical kinematic control: Fig. 5 shows the re-
sults of the simulations with h(q, p) = −Ke(q, p) + αE(q̄1 −
q1), which approaches (see [10]) the safe set q1 ≤ q̄1 for a
sufficiently large αE . As predicted by Corollary 1, we observe
that the critical safety filtering damps energy from Scl (this
time initialised at 6J since k = 12N/m) in a way to constraint
the horizontal coordinate to be less than q̄1.

The experiments prove the concept that it is possible to
take advantage of CBFs in the form (17) to introduce damping
effects whose role goes beyond mere stabilisation of equilibria.

VI. CONCLUSIONS

In this letter we presented conditions under which safety-
critical control implemented with CBFs preserves passivity
of the underlying system. We specialised the results to me-
chanical systems in port-Hamiltonian form, which revealed
convenient ways to complement passive designs with novel

4Notice that the unit of γ for CBFs in the form (17) must be Hz since the
term γh enters as a sum in Ψ which carries the unit of power.
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Fig. 4: Safety critical filtering effect on the lossless system of Fig. 3 with h(q, p) = −Ke(q, p) + Ē for different Ē.
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Fig. 5: Safety critical filtering effect on the lossless system of Fig. 3 with h(q, p) = −Ke(q, p) +αE(q̄1 − q1) for different q̄ and αE = 10.

damping injection strategies encoded by generalised energy-
based CBFs.
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