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Abstract— This paper explores the continuity characteristics
of value functions associated with optimal control in circadian
rhythm entrainment problems. Our results demonstrate that
when the optimal objective is to minimize the time required
for entrainment, the corresponding value function is not Lip-
schitz continuous. This lack of Lipschitzianity suggests that
the optimal cost and optimal trajectory are not robust under
perturbation. As an alternative, we propose a new objective
function that is based on the cumulative squared tracking error
and show that the resulting value function is Lipschitz continu-
ous. Through numerical simulations, we further establish that
data-driven feedback control systems exhibit higher robustness
to input perturbation when the data are collected from optimal
control solutions that minimize the cumulative squared tracking
error, as opposed to those that are time-optimal.

I. INTRODUCTION

Circadian rhythms are endogenous periodic oscilla-
tions that regulate the sleep-wake cycle, gene expression,
metabolism, and many other biological activities [1]. They
allow humans to adjust to predictable cyclic environmental
changes, such as day and night. Disruption of circadian
rhythms has adverse effects, such as fatigue and an increased
risk of cardiovascular disease and cancer. Disrupted circadian
rhythms also affect the level of cognition and productivity
[2]. In this study, we use a widely accepted model proposed
by Kronauer et al. [3] to represent circadian rhythm dynam-
ics. The Kronauer model uses a Van der Pol oscillator to
capture the oscillations of core body temperature and the
effect of light on the amplitude and phase of this oscillation.

Circadian rhythm entrainment is the problem of using light
as control input to synchronize a misaligned circadian phase
with a reference circadian phase. Many studies focus on the
time-optimal problem, which is to minimize the time taken
to synchronize the circadian phases. As an example, time-
optimal entrainment eliminates the effect of jet lag as quickly
as possible [4], [5], [6]. However, when we analyze the data
of [5], [7] numerically, we observe that slight changes in the
initial states can cause large changes in the value function
in some regions. This leads to the problem that the time-
optimal control is not robust. An intuitive example showing
that a value function is discontinuous is shown in Fig. 1. The
example is a 1D harmonic oscillator (pendulum):

dx1

dt
= x2,

dx2

dt
= −x1 + u, (1)

where x1 is the position and x2 is the velocity. u is the force
applied to the pendulum, and u is bounded: u ∈ [0, 1]. The
target set is a circle centered on x1 = 1, x2 = 0 with radius
0.1. The red trajectory reaches the target set at 2.77 s, but
the blue trajectory misses the target at first and reaches the

target set at 6.41s. This illustrates that perturbing the initial
states a little can change the final time significantly.
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Fig. 1. An example showing the discontinuity in final time for time-optimal
control in a harmonic oscillator (pendulum problem).

To address this problem, we propose an alternative opti-
mization objective with minimum cumulative quadratic costs
(MCQC) and demonstrate that its entrainment time is close
to that for time-optimal entrainment. Some studies also min-
imize the difference between the current circadian phase and
the reference circadian phase [8], [9], [10], but the authors do
not consider the continuity properties of the value functions.
This paper is the first paper to prove the Lipschitz continuity
of value functions in circadian rhythm entrainment. We
prove that MCQC entrainment has a value function that is
Lipschitz continuous with respect to initial states. Continuity
properties of value functions are essential for commonly used
optimal control methods, such as dynamic programming and
the Hamilton-Jacobi-Bellman equation [11]. Furthermore,
deep reinforcement learning guarantees an improvement in
performance in each iteration if the value function is smooth
[12]. The stability of reinforcement learning is also related
to the smoothness of the value function. In [13], Kobayashi
applied a regularization method to make the value function
smooth and demonstrated that the agent achieved better task
performance with the smooth value function in a noisy
environment. We also show through numerical simulations
that when we use a data-driven method to control circadian
rhythm entrainment, the data collected from the MCQC are
more robust against input perturbation.

In this work, our main contributions are as follows:

• We prove that the time-optimal circadian entrainment
problem has Lipschitz discontinuous value functions.
We also prove that the MCQC entrainment has Lipschitz
continuous value functions.

• We demonstrate that data-driven feedback using the
MCQC control as data is more robust against input
perturbation than using the time-optimal entrainment as
data without sacrificing the entrainment time much.
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II. THE KRONAUER MODEL FOR CIRCADIAN RHYTHM

We consider the widely accepted Kronauer model [3] to
represent circadian rhythms. The dynamics of the model is:

dx

dt
=

π

12
[xc + µ(

1

3
x+

4

3
x3 − 256

105
x7) +B], (2)

dxc

dt
=

π

12
[qxcB − (

24

0.99729τ
)2x− kxB], (3)

B = (1− 0.4x)(1− kcxc)u. (4)

Here, µ = 0.13 h−1, k = 0.55 h−1, τ = 24.2 h, q =
1
3 , kc = 0.4 h are the model parameters. x is the normalized
core body temperature and xc is a fictional state that forms
the Van der Pol oscillator with x. X(t) ≜ (x(t), xc(t)). u ∈
[0, umax ≜ 0.2208] is the bounded light input. We denote
the 16-h light and 8-h dark periodic light signals by uref (t),
and the resulting periodic state trajectories by Xref (t) ≜
(xref (t), xc,ref (t)). The optimal entrainment problem is to
find the input sequence u(t) that minimizes a cost function J
under boundary constraints. We consider two cases: the time-
optimal cost, J ≜ T, T being the time such that |X(T ) −
Xref (T )| is less than a tolerance ϵ, and the MCQC cost:

J ≜
∫ 336

0

(x(t)− xref (t))
2 + (xc(t)− xc,ref (t))

2dt. (5)

III. LIPSCHITZ CONTINUITY OF THE VALUE FUNCTION

A. General Theory

The necessary and sufficient conditions for the Lipschitz
continuity of a value function have been studied in the
previous literature [14], [15], [16], [17], [18], [19]. The
conditions in [14], [15], [16], [17] are only applicable to
time-optimal problem. In contrast, the conditions in [18] are
not applicable to time-optimal problem. The most suitable
theorem is in [19] which elaborated the necessary and
sufficient conditions for the Lipschitz continuity of the value
function for the Mayer problem with an arbitrary closed
target set. Differential inclusions are used to represent the
dynamics in [19]. Time-optimal entrainment and MCQC
entrainment can both be represented as Mayer problems. We
provide formal mathematical proofs of the value function
Lipschitzianity in both circadian entrainment problems using
conditions in [19].

If the system has the dynamics Ẋ = f(t,X(t), u(t)),
X ∈ Rn, t ∈ [t0, T ], u ∈ [0, umax], the differential inclusion
Ẋ ∈ F (X, t) represents the same dynamics if F (X, t) ≜
{Ẋ|∃u(t) ∈ [0, umax], s.t. Ẋ = f(t,X(t), u(t))}. Consider
a system with differential inclusion dynamics:

Ẋ ∈ F (X, t), t ∈ [t0, T ], X ∈ Rn, (6)

subject to some initial constraint X(t0) = X0, and final
constraint X(T ) ∈ M(T ). M(·) : R → Rn is a set-valued
mapping representing the target set. We define Γ ⊂ Rn ×R
as the graph of M(·), A(X, t) as mapping a point (X, t) ∈
Rn × R to the set of any targets in Γ that can be reached

from (X, t), and D = {(X0, t0)|A(X0, t0) ̸= ∅} as the set
of all initial states that can reach the targets in Γ.

Definition 1. A Mayer problem is an optimization problem:

min g(X(T ), T ), (7)

where g : Rn × R → R denotes a cost function, subject to
the differential inclusion in Eq. (6) and boundary constraints
X(t0) = X0, X(T ) ∈ M(T ).

The value function of the Mayer problem, V (X0, t0), is
defined as the minimum of Eq. (7) under the initial constraint
X(t0) = X0.

There are four assumptions about the system in [19].

Assumption 1. F : Rn×R −→ Rn is nonempty, convex, and
compact valued.

Assumption 2. Suppose H(P,Q) is the Hausdorff distance
between two sets P,Q and F is measurable in t for every X,
for every compact set S ⊂ Rn, there is a locally integrable
upper semicontinuous function λS(·) and a locally bounded
function mS(·) such that

H(F (X1, t), F (X2, t)) ≤ λS(t)|X1 −X2|,

|F (X, t)| ≤ mS(t), for every t ∈ R and X,X1, X2 ∈ S.

Assumption 3. For every compact set K ⊂ Rn × R and
θ > 0, there is a constant N such that, if (X0, t0) ∈ K and
X(·) is a solution of (6) in some interval [t0, t0+ τ ], τ ≤ θ,
then ||X(·)||C ≤ N , where ||X(·)||C ≜ sup{|X(t)| : t ∈
[t0, t0 + τ ]}.

Assumption 4. If any (Xk, tk) ∈ A(X0, t0) is reachable
from an initial condition (X0, t0) and tk −→ ∞, then
g(Xk, tk) −→ ∞.

Definition 2. [19] A closed valued mapping B around a
point z ∈ Rn×R is locally Lipschitz continuous if for every
compact set K ⊂ Rn × R, there are a constant L and a
neighborhood V of z ∈ Rn × R such that

H(B(z′),B(z′′)) ≤ L|z′ − z′′|, for every z′, z′′ ∈ V ∩K.

Then the necessary and sufficient condition for Lipschitz
continuity of the value functions is as follows [19]:

Lemma 1. If Assumption 1-4 are satisfied and the mapping
(X, t) → F (X, t) is continuous, the necessary and sufficient
condition for the value function V (X0, t0) to be locally
Lipschitz continuous for (X0, t0) ∈ D is as follows:
For every compact set G ⊂ Rn×R, there is ρ > 0 such that,
for every (X, t) ∈ ∂Γ ∩G where t is a Lebesgue point (see
Theorem 5.6.2 in [20]) of the mapping F (X, t), and ∂Γ is
the boundary of Γ:

sup
(l,l0)∈N⊥

Γ

min
ξ∈F (X,t)

⟨(l, l0), (ξ, 1)⟩ ≤ −ρ, (8)

where l ∈ Rn,l0 ∈ R, N⊥
Γ (z) is the set of all unit vectors

orthogonal to Γ at z ∈ ∂Γ.



B. Lipschitz Continuity of the Value Function in the Time-
optimal Circadian Entrainment

We first convert the systems in Eqn. (2)-(4) to differential
inclusion as in [19]. The differential inclusion F maps
(x(t), xc(t), t) to the set{[

ẋ
ẋc

]
∈ R2|∃u ∈ [0, umax] s.t.

[
ẋ
ẋc

]
= a⃗+ b⃗u

}
, (9)

where

a⃗ =

[
π
12 (xc + µ( 13x+ 4

3x
3 − 256

105x
7))

π
12 (−( 24

0.99729τ )
2x)

]
, (10)

b⃗ =

[
π
12 (1− 0.4x)(1− kcxc)

π
12 (qxc − kx)(1− 0.4x)(1− kcxc)

]
. (11)

Suppose the entrainment process starts initially at T0 ∈
[0, 24) and the jet lag is Tlag ∈ [0, 24) , the initial condition
X(0) ≜ [x(0), xc(0)] as a function of T0 and Tlag is:

X(0) = G(T0, Tlag) ≜ [xref (T0 +Tlag), xc,ref (T0 +Tlag)].

Definition 3. The time-optimal entrainment problem is to
find optimal controls ūTO(t,X(0)) that minimize the final
time T subject to the differential inclusion in Eq. (9) with
initial conditions X(0) = G(T0, Tlag) and target set:

{X(T ) ∈ R2|(x(T )−xref (T ))
2+(xc(T )−xc,ref (T ))

2 ≤ ϵ}.

This ϵ ≜ 0.01 is the tolerance for reference tracking error
and it corresponds to around 30 minutes of phase difference.

Lemma 2. The value function of the time-optimal entrain-
ment is not Lipschitz continuous.

Proof: We first verify the assumptions for Lemma 1.
The set in Eq. (9) is a line segment in R2 so Assumption
1 is satisfied. In our paper, the system dynamics is time-
invariant. Thus, λS can be time-independent. Because F (X)
is a polynomial function of x, xc, it is locally Lipschitz.
Therefore, for any compact set S ∈ R2, and for any
X,X1, X2 ∈ S, there exists a λS for this S such that

H(F (X1, t), F (X2, t)) ≤ λS |X1 −X2|.

Because X is in a compact set S and a⃗ and b⃗ are polynomial
functions of x, xc, the images of x, xc through a⃗ and b⃗ are
compact. In addition, because u ∈ [0, umax] is compact,
F (X, t) as the image of a⃗ + b⃗u is also compact. Thus,
there exists a locally bounded function mS = max(|⃗a+ b⃗u|)
such that |F (X, t)| ≤ mS(t). Assumption 2 is also satisfied.
The Kronauer model has regions of attraction and regions of
repulsion at the same time. To prove Assumption 3, we prove
that any initial states will converge to a compact set with
bounded inputs. We can represent the circadian dynamics
model as a differential equation

f(X,u, t) = a⃗+ b⃗u,

with X ≜ (x, xc), a⃗, b⃗ in Eq. (10),(11) and u ∈ [0, umax].
For the set S : {X ∈ R2|XTX ≥ 4}, we can find a positive

definite Lyapunov function for all X ∈ S such that

V (X) ≥ 0.0001(x4 + x4
c), V̇ =

dV

dX
· f(X,u, t) ≤ 0. (12)

A candidate of V (X) is found using SOSTOOLS [21]. This
V (X) can be found at https://github.com/KiraTau/Value-
Function-Continuity.git. Because V (X) ≥ 0.0001(x4 + x4

c),

|X| ≤ 10
√
2V

1
4 (X). (13)

Suppose the supX∈S∁ V (X) = V1 where S∁ represents the
complement of S, the compact set Ω : {X ∈ R2|V (X) ≤
V1+1} is a positively invariant set because the boundary of
Ω, ∂Ω has to be in S and V̇ (X) ≤ 0.
For an arbitrary compact set K ⊂ Rn × R and the initial
condition (X0, t0) ∈ K, let θ > 0 and X(·) be the solutions
of (6) on some interval [t0, t0 + τ ], τ < θ. There are two
possibilities for X0: X0 ∈ Ω or X0 ∈ Ω∁.
First, we consider X0 ∈ Ω. Because Ω is a positively
invariant set, the solutions X(·) of X0 cannot leave Ω in
the interval [t0, t0 + τ ]. The upper bound N of ||X(·)||C is
N = 10

√
2(V1 + 1)

1
4 .

Next, we consider X0 ∈ Ω∁. Because Ω∁ ⊂ S, for all
X ∈ Ω∁, V̇ (X) ≤ 0. Consider the set Λ : {X ∈ R2|V (X) ≤
V (X0)}. For any X on the boundary of Λ, V̇ ≤ 0, so Λ
is also a positively invariant set. X(·) starting from X0 will
remain in the set Λ in interval [t0, t0+τ ]. From Eq. (13), we
acquire an upper bound N for ||X(·)||C ≜ sup{|X(t)| : t ∈
[t0, t0 + τ ]}: N = 10

√
2V

1
4 (X0). Assumption 3 is satisfied.

Lastly, g(X(T ), T ) = T , so Assumption 4 is also satisfied
by definition. Now we can use the necessary and sufficient
condition in Lemma 1 to prove that the value function
is Lipschitz discontinuous. The lemma 1 is related to the
dynamics pointing inward to the target boundary and to
small-time local controllability in the neighborhood of the
target boundary. If any points on the boundary ∂Γ violate
Eq. (8), it indicates that the states cannot reach the target in
an arbitrarily small time and makes the value function Lip-
schitz discontinuous. We use counterexamples to show that
the value function of time-optimal entrainment is Lipschitz
discontinuous.

If we denote V⃗0 = X −Xref (t), where

Xref (t) =

[
xref (t)
xc,ref (t)

]
, X =

[
x
xc

]
,

then a point X ∈ ∂Γ at t is in the set {X : Z(X, t) =

V⃗0
T
V⃗0 − ϵ = 0, ϵ = 0.01}. The gradient of Z(X, t) = 0 is:[

dZ
dX
dZ
dt

]
=

[
2V⃗0

−2ẊT
ref V⃗0

]
= 2

[
1

−ẊT
ref (t)

]
· V⃗0, (14)

where 1 is a 2 by 2 identity matrix. Because ( dZ
dX , dZ

dt ) is
orthogonal to Γ, the unit vectors (l, l0) orthogonal to ∂Γ are
calculated by

(l, l0) =

(
dZ

dX
,
dZ

dt

)
/

∣∣∣∣( dZ

dX
,
dZ

dt

)∣∣∣∣ . (15)

We can find multiple examples of ⟨(l, l0), (ξ, 1)⟩ ≥ 0 by



numerically computing the signs. An example is shown in
Fig. 2. For a reference point R on the periodic solution where
Xref (58.16) = (0.4930, 0.9257), the boundary set will be
the set ∂Γ = {R2 × t|(x − 0.4930)2 + (xc − 0.9257)2 =
0.01, t = 58.16}. We can find a point of interest P =
(0.4804, 0.8265, 58.16) ∈ ∂Γ such that

sup
(l,l0)∈N⊥

Γ

min
ξ∈F (x(t),t)

⟨(l, l0), (ξ, 1)⟩

= (⟨[−0.1251,−0.9880,−0.0903], [0.2576,−0.124, 1]⟩)

= 5.483 · 10−4,

which contradicts Eq. (8) in Lemma 1. The value function
of time-optimal entrainment is not Lipschitz continuous. ■

Fig. 2. An example of a point P in the boundary set ∂Γ. The green arrow
points in the direction of (l, l0) and blue arrow points in the direction of ξ
that satisfy sup(l,l0)∈N⊥

Γ
minξ∈F (x(t),t)⟨(l, l0), (ξ, 1)⟩ > 0.

We can verify that for any ϵ ≥ 0, the value function
will not be Lipschitz continuous using similar techniques
as in the proof of Lemma 2. To visualize sharp changes in
the entrainment time, we solve the time-optimal entrainment
problem using gradient descent methods from [5] for initial
conditions of T0 uniformly sampled from 1 to 24, combined
with Tlag uniformly sampled from 1 to 23. We define these
initial conditions as the set:

χ ≜ {X(0) = G(T0, Tlag)|T0 ∈ {1, 2, · · · , 24},
Tlag ∈ {1, 2, · · · , 23}}. (16)

The optimal entrainment times are plotted in Fig. 3.a.
In Fig. 4, we plot the reference tracking errors for two
cases: Case 1:(T0 = 19.2, Tlag = 19) and Case 2:(T0 =
19.3, Tlag = 19). In Case 2, the tracking error reaches the
error threshold ϵ at t = 52.91 h, but in Case 1, the tracking
error reaches ϵ at t = 60.04 h, which is 7.13 h longer. We
can see that a small difference in the initial condition causes
a large jump in the entrainment time. Therefore, we should
not use the entrainment time as the most important metric
to evaluate the performance of entrainment, especially in
regions where the value function is not Lipschitz continuous.

C. Lipschitz Continuity of the Value Function in the MCQC
Entrainment

We change the optimization objective to MCQC cost in
Eqn. (5). We choose the optimization horizon to be T =
336 h which is much longer than the longest entrainment
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Fig. 3. (a) Entrainment times T (in hours) for time-optimal entrainment.
The red dots mark five regions where we observe jumps in T . (b) The
cumulative quadratic costs (unitless) for MCQC entrainment.

time in time-optimal entrainment (see Fig. 3.a) so that any
X(0) ∈ χ can reach entrainment. To convert this to a Mayer
problem, we introduce a cumulative error variable e, where

ė = (x(t)− xref (t))
2 + (xc(t)− xc,ref (t))

2 (17)

and e(0) ≜ 0, so the states of the system are X(t) ≜
(x(t), xc(t), e(t)). The differential inclusion F (X, t) is:

 ẋ
ẋc

ė

 ∈ R3|∃u ∈ [0, umax] s.t.

 ẋ
ẋc

ė

 = a⃗+ b⃗u

 , (18)

where

a⃗ =

 π
12 (xc + µ( 13x+ 4

3x
3 − 256

105x
7))

π
12 (−( 24

0.99729τ )
2x)

(x− xref )
2 + (xc − xc,ref )

2

 ,

b⃗ =

 π
12 (1− 0.4x)(1− kcxc)

π
12 (qxc − kx)(1− 0.4x)(1− kcxc)

0

 .

Because J is only defined up to T , and Assumption 4
requires the value function to be a continuously increasing
function. The performance index in this case is defined as

g(X, t) ≜

{
e, t < T,

e+ (t− T ), t ≥ T.
(19)

Definition 4. The MCQC entrainment problem is to find the
optimal controls ūQC(t,X(0)) that minimize g(X(T ), T ) in
Eq. (19) subject to the differential inclusion in Eq. (18) with
initial conditions X(0) = (G(T0, Tlag), 0) and target set:

Γ ≜ {R3 × R|(x, xc, e) ∈ R3, t ≥ T}. (20)

Lemma 3. The value function of the MCQC entrainment is
Lipschitz continuous.

Proof: Assumption 1-3 can be verified similarly as in
the proof of Lemma 2. Assumption 4 is also satisfied in
Eq. (19) by definition. The vectors orthogonal to the target
boundary for any (X, t) ∈ ∂Γ are N⊥

Γ = (0, 0, 0,−1). For
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any (X, t) ∈ ∂Γ,

sup
(l,l0)∈N⊥

Γ

min
ξ∈F (X,t)

(⟨(l, l0), (ξ, 1)⟩) (21)

= (⟨(0, 0, 0,−1), (⃗a+ b⃗u, 1)⟩) = −1. (22)

The necessary and sufficient condition in Lemma 1 is satis-
fied and for any initial conditions (X0, t0), the value function
V (X0, t0) is Lipscitz continuous . ■

The MCQC entrainment problems for all initial conditions
X(0) ∈ χ in Eq. (16) are solved by CasADi nonlinear
programming solver [22]. We can see that the cumulative
costs do not show any significant changes with respect to
the changes in the initial conditions in Fig. 3.b.

Key observation: On average, the time taken to reach the
error threshold ϵ = 0.01, denoted as Tϵ, such that

(x(Tϵ)− xref (Tϵ))
2 + (xc(Tϵ)− xc,ref (Tϵ))

2 ≤ ϵ,

for the MCQC is 0.94 h longer than time-optimal entrainment
and the maximum difference is 9.42 h. The differences are
plotted in Fig. 5. In 552 cases, 75% cases have a time
difference of less than 1 h and only 3.44% have a time
difference of greater than 6 h. The MCQC entrainment speed
to drive (x(t), xc(t)) to (xref (t), xc,ref (t)) is still close to
that of time-optimal entrainment.

IV. FEEDBACK ROBUSTNESS TO INPUT UNCERTAINTY

The time-optimal entrainment and the MCQC entrainment
that we solved numerically in discrete time in Section III are
open-loop controls. All controls are bang-bang solutions. In
practice, the subject does not always strictly follow the light
schedule. We apply a feedback controller based on Nearest
Neighbor Search. After solving the optimal control for each
initial condition Xi(0) ∈ χ, i ∈ {1, 2, ..., 552} in Eq.
(16), we have the i-th trajectories of controls uTO(t,Xi(0))
or uQC(t,Xi(0)) , states (xi(t), xc,i(t)) and reference
(xref,i(t), xc,ref,i(t)) respectively. Let Ti, Ni be the final
time, and the number of time steps in the i-th case. At the
j-th time step tj ∈ [0, Ti], the control is uTO(tj , Xi(0))
or uQC(tj , Xi(0)), the states are (xi(tj), xc,i(tj)) and the
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percentage (bottom panel).

reference states are (xref,i(tj), xc,ref,i(tj)). i, j are positive
integer indices. The reference phase is:

θref,i(tj) ≜ − tan−1

(
xc,ref,j(tj)

xref,j(tj)

)
, θref,i(tj) ∈ [0, 2π).

We denote (uTO(tj , Xi(0)), xi(tj), xc,i(tj), θref,i(tj)) as a
data point (ūTO,i,j , xi,j , xc,i,j , θref,i,j). Then

UTO ≜{(ūTO,i,j , xi,j , xc,i,j , θref,i,j)

|i ∈ {1, ..., 552}, j ∈ {1, · · · , Ni}} (23)

represents the set of all data points in the time-optimal en-
trainment. Similarly, with ūQC,i,j being the MCQC control,
the set represents all data in the MCQC entrainment is

UQC ≜{(ūQC,i,j , xi,j , xc,i,j , θref,i,j)

|i ∈ {1, ..., 552}, j ∈ {1, · · · , Ni}}. (24)

The feedback law for states (x, xc, θref ) is defined as

B(x, xc, θref ) = ūk,ℓ,where (25)

(ūk,ℓ, xk,ℓ, xc,k,ℓ, θref,k,ℓ) ∈ Udata, data ∈ {TO,QC},
k, ℓ = argmin

i∈[1,552],j∈[1,Ni]

|(x, xc, θref )− (xi,j , xc,i,j , θref,i,j)|.

We tested both feedback with perturbed light schedules for
cases that have initial states that show big jumps in the en-
trainment time with the initial states perturbation, marked in
red in Fig. 3.a, because we expect that the input perturbation
will have some major impacts on the entrainment process.
The simulation steps can be summarized as follows:

• Randomly pick 5 times {t1, · · · , t5} in [0, 96] h.
• Start with an initial condition X(0) ∈ χ in Eq. (16). We

denote the control and the states at t as u and X(t, u).
While ∥Xref (t) −X(t, ū)∥2 > 0.01, drive the system
with control ū using the feedback law in Eq. (25). If
the current time t ∈ {[ti−0.5, ti+0.5]|i ∈ {1, · · · , 5}},
then the value ū changes from umax to 0 or 0 to umax.

• Drive the system with ū = uref until t = 336 h.



• Compute the cumulative quadratic cost

J =

∫ 336

0

(Xref (t)−X(t, ū))
2
dt. (26)

We tested the feedback using time-optimal data and
MCQC data for 5 initial conditions X(0) ∈ χ in Eq. (16).
For each case, we performed the simulations 50 times and
{t1, · · · , t5} were kept the same for the time-optimal feed-
back and the MCQC feedback. The statistics of time taken
to reach the error threshold ϵ = 0.01, Tϵ and the cumulative
quadratic costs J for 5 cases are summarized in a spread-
sheet that can be found at https://github.com/KiraTau/Value-
Function-Continuity.git. We plotted the normalized costs J
and entrainment time Tϵ in Fig. 6. The costs J and entrain-
ment time Tϵ are normalized by dividing the unperturbed
J and Tϵ for the same initial conditions in Fig. 3. Using a
paired t-test, we also find that the mean of J and Tϵ are both
significantly lower in the MCQC feedback control than in
the time-optimal feedback control. Input perturbation causes
smaller variations in J and Tϵ in the MCQC feedback than
in the time-optimal feedback. These results show that the
MCQC feedback control is more robust to input perturbation
than the time-optimal feedback.
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Fig. 6. Box plots of the normalized quadratic costs J (top panel) and
entrainment time Tϵ (bottom panel) for MCQC and time-optimal feedback.
Blue bars represent the time-optimal feedback and white bars represent the
MCQC feedback. Red crosses represent outliers.

V. CONCLUSION

In this paper, we study the continuity properties of the
value function in circadian rhythm entrainment problems.
Time-optimal entrainment is not robust for circadian rhythm
entrainment because the value functions are not Lipschitz
continuous and the entrainment time is sensitive to state
perturbation. Using entrainment time as a metric does not
always represent how close the circadian states are to the
reference states. We propose the MCQC entrainment and
prove that its value function is Lipschitz continuous and
observe that this objective does not sacrifice entrainment
speed too much. We also find that if we use a feedback
policy method to control circadian rhythm entrainment, the

MCQC feedback is more robust against input perturbation
than the time-optimal feedback.
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