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Abstract— Interconnections in modern systems make them
vulnerable to adversarial attackers both by corrupting com-
munication channels and compromising entire subsystems. The
field of secure state estimation (SSE) aims to provide correct
state estimation even when an unknown part of the measure-
ment signals is corrupted. In this paper, we propose a solution
to a novel generalized SSE problem in which full subsystems
can be compromised, corrupting both the actuation and mea-
surement signals. For a full system with p measurements, the
proposed sliding mode observer (SMO)-based solution allows
for up to p attack channels which can be arbitrarily distributed
amongst attacks on actuation and measurement signals. This is
a much larger class of attacks than considered in the existing
literature. The method is demonstrated on 10 interconnected
mass-spring-damper subsystems.

I. INTRODUCTION

The abundance of interconnections in modern control sys-
tems has allowed them to provide better performance and
be more resilient against faults. It however also exposes
these systems to adversarial attackers who can corrupt data
on communication channels or even compromise entire sub-
systems [1]. While it is often impossible to know which
subsystems will be targeted, an attacker is typically assumed
to have limited resources [2]. A logical way to quantify
this attacker limitation is to assume an upper bound on the
maximum number of subsystems they can compromise.

To this end, inspired by the Byzantine general’s problem
[3], the field of secure state estimation (SSE) aims to provide
correct state estimation when an unknown, but limited, part
of the measurements is corrupted [4], [5], [6], [7], [8], [9].
This secure state estimate allows for cyber-attack tolerant
control while retaining the nominal controller. Such SSE
methods have been developed to be applicable to nonlinear
systems [6], or to be implemented in a distributed fashion
[10] or with reduced computational complexity [9]. Further-
more, [8] proposes a set-based SSE method that allows for
all but one measurement to be compromised. These methods
are, however, all limited to attacks on the measurements.

Literature on generalized SSE problems which also ad-
dress actuator attacks is limited. In [11], [12] an optimization-
based decoder is proposed to estimate actuator attacks. The
number of allowed attacks for this approach is however
limited to strictly less than half the number of measurements.
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A sliding mode observer (SMO)-based approach is proposed
in [13], allowing for attacks on a known subset of actuators
when corresponding measurements are uncompromised.

In this paper, we consider a system of subsystems that
can be interconnected physically or via a distributed control
law. For such a system we solve a generalized SSE problem
where attacked subsystems are fully compromised, i.e. both
the actuator and measurements of affected subsystems are
corrupted. Similar to the traditional SSE we allow for an
unknown, but limited, part of the subsystems to be fully
compromised. SMOs are well suited to address this general-
ized SSE problem as they can estimate the state as well as
anomalies acting on the actuators or sensors [14], [15].

The main contribution of this paper, therefore, is an SMO-
based solution to the generalised SSE problem which can
tolerate as many simultaneous attacks as the number of
measurements. This represents a much larger class of attacks
than is currently addressed in the literature [8], [11], [12].
To achieve this, we design a bank of SMOs that can be used
to both isolate which subsystems are compromised, and to
estimate the attacks affecting them. In particular, an SMO is
designed for each possible hypothesis of which subsystem is
attacked and which is not. We then leverage the so-called
matching condition to cross-validate the SMOs estimates
against each other and isolate the correct hypotheses.

In the remainder of this paper we introduce the problem
in section II. In section III the bank of SMO-based state and
attack estimators are designed. The main contribution of this
work, namely a method to use the SMO-based attack esti-
mates to isolate the compromised subsystems, is presented
in section IV. In section V the method is demonstrated in
simulation. The work is concluded in section VI.

A. Notation

For a set N let us denote by |N | the cardinality of the
set.

(
n
k

)
denotes the binomial coefficient ‘n choose k‘. ⌈x⌉

denotes rounding up to the next integer. C− denotes the set
of complex numbers with negative real part. Lastly, denote
the time series from 0 to t of a variable x by x[0 : t] and
denote 0 as a time series of only zeros.

II. PROBLEM STATEMENT

Consider a set of N linear interconnected subsystems as
ẋℓ = Aℓxℓ +Bℓfuℓ

+
∑
j∈N

Aℓjxj ,

yℓ = Cℓxℓ +Dℓfyℓ
+

∑
j∈N

Cℓjxj ,
(1)
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where xℓ ∈ Rnℓ , yℓ ∈ Rpℓ , fuℓ
∈ Rmℓ , fyℓ

∈ Rpℓ

and N = {1, . . . , N} is the set of all subsystems. The
matrices Aℓj account either for physical interconnections or
the presence of a distributed state-feedback control law. This
gives a global system dynamics as{

ẋ = Ax+Bfu ,

y = Cx+Dfy ,
(2)

where B and D are block-diagonal and full column rank,
x ∈ Rn, y ∈ Rp, fu ∈ Rm, fy ∈ Rp. Note here that m =∑

ℓ∈N mℓ represents the number of possible input attacks
and p =

∑
ℓ∈N pℓ represents both the number of outputs

and possible output attacks.
Remark 1: A known input u can be added without affect-

ing the results. It has been omitted to simplify notation. ◁
We consider that this system is subject to attacks that can
compromise an unknown subset of subsystems A ⊂ N . If a
subsystem is compromised, we consider both fuℓ

and fyℓ
to

be potentially non-zero. Furthermore, both the attacker and
defender are considered to have full model knowledge and
full disclosure resources. We make the following assump-
tions about the system and attack.

Assumption 1: A is unknown, but constant over time. ◁
Note that the set A not being known differentiates the gen-
eralised secure state estimation problem solved in this paper
from state estimation with unknown inputs as researched in
[14], [16], [17] and many others.

Assumption 2: The system in (2) is state and input ob-
servable. [18] ◁

Proposition 1: The total number of active attacks is at
most equal to the number of measurements, i.e.∑

ℓ∈A

(mℓ + pℓ) ≤ p ,

is a necessary condition for Assumption 2 to hold.
Proof: The system is state and input observable by

Assumption 2, therefore the proof follows directly from
Corollary 1 in [18].

Assumption 3: If m ̸= 0, the full system state x is
observable from any combination of N − |A| outputs yℓ. ◁

Remark 2: Assumption 3 requires the subsystems to be
sufficiently interconnected. This is necessary to estimate the
attacks on the input from the un-attacked outputs. Note that if
m = 0 there are no attacks on the input and thus Assumption
3 is not required. Assumption 2 provides state and input
observability. Note that, except for the limit case where
m = 0, Assumption 3 implies the state observability claim.
The input observability claim of 2 is required to prevent
the existence of zero dynamics attacks [19] which can lead
to wrong attack identification. If zero dynamics attacks do
not need to be prevented assumption 2 can be relaxed to
mℓ < nℓ ,∀ℓ. Lastly, Proposition 1 and Assumption 1 define
the limitations on the attacker resources. ◁
The considered problem is a generalization of the SSE
problem considering attacks on both input and output. Fur-
thermore, the presented approach allows for p signals to be
attacked. To the author’s best knowledge, current approaches

allow for at most p − 1 measurement signals [8] or ⌈p−1
2 ⌉

measurement and input signals [11], [12] to be attacked.
Remark 3: Assumption 2 is common in literature on SSE

where also inputs are subject to attack [11], [12]. Further-
more, assumption 3, which implies state observability, is
common in literature on the standard SSE problem, see
for example Assumption 1.ii in [8] or implicitly in [4].
Assumption 1 also appears in several works such as [11],
[12], but is not required in [8]. Proposition 1 is a relaxation
of the common assumption that the number of attacks is
strictly less than half of the number of outputs. ◁

III. SLIDING MODE OBSERVER DESIGN

In this section we will design a bank of SMOs where each
is suited to a different attack scenario. We will prove that
for every possible attack scenario, there exists an SMO that
provides a correct state and attack estimate. We will then
present a method to identify the correct SMOs in Section IV.

To this end, let us introduce the set I = {1, . . . , I},
enumerating all the possible hypotheses on the composition
of the set A of attacked subsystems. Based on each hy-
pothesis i ∈ I we design a sliding mode observer (SMO)
that provides a correct state and attack estimate under that
hypothesis. This is possible due to the capability of SMOs
to reject matched anomalies [14]. We will denote the set of
correct hypotheses as IA ⊆ I, with IA ̸= ∅ by definition.
Below we present an example to clarify the set definitions.

Example 1: Consider N = {1, 2, 3} and pℓ = 2, mℓ =
1 ∀ℓ. Then, by proposition 1 at most 2 subsystems can be
attacked, i.e. A can be {1, 2}, {1, 3}, {2, 3}, {1}, {2},{3},
∅. Based on the possible attacks we choose hypotheses A =
{1, 2}, A = {1, 3}, A = {2, 3} to design the SMOs. These
hypotheses are enumerated in I = {1, 2, 3}. If in fact A = 2
then hypotheses 1 and 3 provide correct state and attack
estimates and thus IA = {1, 3}.

The number of possible hypotheses I can be upper
bounded as I ≤

(
N

max|A| |A|
)

, which reduces to an equality
if all subsystems have the same number of inputs and the
same number of outputs. To obtain these SMOs we first
transform the system in equation (2) in a way that allows to
distinguish the attacked and healthy subsystems. For a given

hypothesis i this transformation is defined as
[
x̃i
1

x̃i
2

]
= T i

xx,[
ỹi2
ỹi2

]
= T i

yy,
[
f i
y1

f i
y2

]
= T i

fy
fy , and

[
f i
u1

f i
u2

]
= T i

ufu which

gives the transformed system

[
˙̃xi
1
˙̃xi
2

]
=

[
Ai

11 Ai
12

Ai
21 Ai

22

]
︸ ︷︷ ︸

Ai

[
x̃i
1

x̃i
2

]
+

[
Bi

11 0
0 Bi

22

]
︸ ︷︷ ︸

Bi

[
f i
u1

f i
u2

]
,

[
ỹi1
ỹi2

]
=

[
Ci

11 Ci
12

Ci
21 Ci

22

]
︸ ︷︷ ︸

Ci

[
x̃i
1

x̃i
2

]
+

[
Di

11 0
0 Di

22

] [
f i
y1

f i
y2

]
.

(3)

The transformations just introduced are such that f i
u1

=
f i
y1

= 0 ∀t if hypothesis i is correct, i.e. if i ∈ IA. Note
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that this transformation is only possible due to the block-
diagonal structure of B and D, which appears as a result of
the subsystems definition in (1). Therefore, in the remainder
of this section, we will design an SMO which produces a
correct state and attack estimate if f i

u1
= f i

y1
= 0 ,∀t. To

be able to design such an SMO the system first needs to be
manipulated to adhere to the following two conditions that
are common for SMOs [16]:

1) Non-minimum phase condition: The invariant zeros of
(Ai, Bi, Ci) lie in C−.

2) Matching condition: relative degree between attack and
output is 1.

The non-minimum phase condition is implied by Assump-
tion 2. However, the matching condition does not trivially
hold for all i ∈ I. In sections III-A and III-B we present
two extensions of the system with which we can guarantee
the matching condition to hold for all i ∈ I.

While naively designing the SMO to provide correct state
and attack estimates in the case i ∈ IA, we will also keep
track of the effect of f i

u1
and f i

y1
on the SMO state and

attack estimates when i /∈ IA. In section IV, we will then
show how the combination of all I observers can be used to
identify the set IA and for state and attack estimation.

A. Extend the System with Filtered Measurements

Part of the attack that is to be estimated, fy2 , directly affects
the output, i.e. has relative degree 0 with respect to the
output. One can make the matching condition hold in such
cases by filtering the affected outputs as in [14]. By applying
this approach to the system in (3) we obtain

[
˙̃x1
˙̃x2
ż

]
=

[
A11 A12 0
A21 A22 0

−AfC21 −AfC22 Af

] [
x̃1
x̃2z

]

+

[
B11 0 0
0 B22 0
0 0 −AfD22

][
fu1

fu2

fy2

]
,

[
ỹ1z

]
=
[
C11 C12 0
0 0 I

] [x̃1
x̃2z

]
+
[
D11
0

]
f i
y1

,

(4)

where we omitted superscript i to ease notation. Here Af is
a full-rank Hurwitz matrix and z is the filtered ỹ2. One can
see that the matching condition now holds for fy2 by design.

B. Extend the Output using HOSM Differentiators

For the matching condition to hold for fu2 we require it to be
relative degree 1 with respect to the output. This might not
inherently be the case for all i ∈ I. Therefore, if necessary,
we extend the output with derivatives obtained from the
higher order sliding mode (HOSM) differentiator from [20].
This gives the extended output[

ỹ1
ỹd
z

]
︸ ︷︷ ︸
ỹe

=

[
C11 C12 0
C̃11 C̃12 0
0 0 I

][
x̃1

x̃2
z

]
+

[
D11 0
0 I
0 0

] [
f i
y1

ϵ

]
, (5)

where [C̃11C̃12] are rows of the matrix obtained from the
product [C11C12]

[
(Ai)⊤ (Ai2)⊤ . . . (Ain)⊤

]⊤
such

that rank(
[
C12

C̃12

]
B2) = rank(B2), i.e. the relative degree

is 1 and the matching condition holds. This can always be
achieved due to Assumption 3. Furthermore, ϵ is the error
of the HOSM differentiator, which is a function of f i

y1
[0 : t]

and is defined in Equation (6) of [20]. For the remainder of
this paper, the only relevant properties of ϵ(f i

y1
[0 : t]) is that

ϵ(0) = 0 and it is bounded for bounded input.

C. Transform system to the SMO standard form

Now that matching and non-minimum phase conditions hold,
the extended system can be transformed into the SMO
standard form [16], [21]1. To this end we perform the

transformations ye = Tye
ỹe,

[x1x2

]
= Txz

[
x̃1
x̃2z

]
and

[
f1
fu12

]
=

Tfu1
fu1 , and define f2 =

[
fu12

fu2

fy2

]
and f3 =

[
fy1ϵ1

]
to obtain

the SMO standard form as{[
ẋ1
ẋ2

]
=
[
A1 A2
A3 A4

] [x1x2

]
+

[
B1 0
B21 B2

] [
f1
f2

]
,

ye = [0 I]
[x1x2

]
+Df3 .

(6)

Here Tfu1
is chosen such that the matching condition does

not hold for attacks in f1 and f2 contains only attacks for
which the matching condition does hold. Note that as a result
of these transformations f1 = f3 = 0 ,∀t and ∀i ∈ IA.

D. SMO for state and attack estimation

For the system in (6) an SMO can be designed as
[
˙̂x1
˙̂x2

]
=
[
A1 A2
A3 A4

] [
x̂1
x̂2

]
+

[−A2
Gl

]
ey +

[
0
ν

]
,

ŷe =x̂2 ,

ν =− ρsign(Pey) ,

(7)

where Gl = As − A4, As is Hurwitz, and ey = ŷe − ye.
Thus the state estimation error dynamics can be written as
[
ė1
ė2

]
=
[
A1 0
A3 As

] [e1e2]− [
B1 0 −A2D
B21 B2 GlD

] [f1
f2
f3

]
+
[
0
ν

]
,

ey =e2 −Df3 ,
(8)

with e1 = x̂1 − x1 and e2 = x̂2 − x2.
Lemma 1: e1 and e2 converge to 0 for any i ∈ IA if

ρ > maxt ||B2f2(t)||
Proof: Recall that f1 = f3 = 0 ,∀t for any i ∈ IA.

The proof then follows from Proposition 2 in [14].
Note that in most systems very large attacks are trivially
detected. Therefore ρ can be chosen accordingly without
knowledge of the actual attack.

Corollary 1: If there are only attacks on the measure-
ments, the state can be securely estimated with a single SMO
and without the need for attack isolation.

Proof: If there are only attacks on the measurements,
mℓ = 0 ,∀ℓ, Assumption 2 holds trivially even for A = N .
Therefore, |I| ≤

(
N
|N |

)
= 1 and IA = I.

1The SMO standard form does not consider the additional attacks fu1

and fy1 that do no adhere to the matching condition. The standard form
presented here is a generalization of the standard form that does.

8016



For i /∈ IA the state estimation behaviour is analyzed below.
Lemma 2: For ρ > maxt ||A3e1 + A4Df3 − B21f1 −

B2f2 − Dḟ3||, the sliding surface e2 = Df3 is reached in
finite time.

Proof: It can be shown that the sliding motion on
sliding surface ey = 0 will take place in finite time using
the same approach as the proof of Proposition 2 in [14]. By
(8) the sliding surface ey = 0 is equivalent to e2 = Df3.

Remark 4: If ρ is chosen only as ρ > maxt ||B2f2|| then
for i /∈ IA we might not reach the sliding surface ey = 0.
Therefore, if the ρ as in Lemma 2 becomes excessively large,
ey = 0 can be used as an additional condition to identify a
correct hypothesis of the attack. ◁
Substituting e2 = Df3 and ė2 = Dḟ3 into (8), obtain νeq as
[
ė1
ḟ3

]
=
[
A1 A2D
0 0

] [
e1
f3

]
+
[−B1 0 0

0 0 I

] [f1
f2
ḟ3

]
,

νeq = [−A3 −A4D]
[
e1
f3

]
+ [B21 B2 D]

[
f1
f2
ḟ3

]
.

(9)

Typically, the attack estimate is then calculated as B†
2νeq

[14]. In this work, however, we will calculate f̂ =

[
f̂2
f̂r

]
=[

B†
2

TB

]
νeq where T⊤

B spans the null space of B†
2.

Remark 5: The additional rows of the attack estimate are
not useful for attack estimation if i ∈ IA, but are added
to make sure no information about the attack is lost if i /∈
IA. This is required for the attack identification algorithm
presented in section IV. ◁

Lemma 3: f̂2 = f2 for any i ∈ IA after the sliding surface
is reached.

Proof: Given assumption 2, B2 is full column rank and
the proof follows directly from [14].
In the next section, we will use the attack estimate f̂ for
attack identification. To simplify notation, we will denote
the following function

f̂ i = f i
est(f

i
1[0 : t], f i

2, f
i
3[0 : t]) , (10)

where [0 : t] denotes the full time-series of the attack. Note
that from this point on we re-introduce the superscript i as
we will be comparing the attack estimates for all i ∈ I.

IV. ATTACK IDENTIFICATION AND STATE
RECONSTRUCTION

As shown in section III, if i ∈ IA the state and attack are
correctly estimated. This means we can perform secure state
estimation if IA is identified. We propose to incrementally
build an estimate ÎA of IA via the rule: add i to ÎA if

f i
est(0, f̂

i
2,0) = f i

est(f
i
1[0 : t], f i

2, f
i
3[0 : t]) , (11)

Note that the right-hand side of (11) is obtained from ν in
(7) and the left-hand side is calculated using (9) where after
initial convergence we have e1 = 0. First, we prove that all
i ∈ IA will be found:

Lemma 4: All observers that provide a correct state and
attack estimate will be identified, i.e. IA ⊆ ÎA .

0 2 4 6 8 10

0

0.1

0.2

0 2 4 6 8 10

0

0.1

0.2

Fig. 1. Position and velocity of all subsystems. Colours correspond to the
different subsystems.

Proof: For any i ∈ ÎA we have f i
3[0 : t] = f i

1[0 : t] = 0
and f̂ i

2 = f i
2. Therefore, f j

est will have the same input on both
sides such that equation (11) holds.

The test in (11) might however identify an i /∈ IA if the
attack is defined as a zero-dynamics attack on f i

est. Therefore
we introduce the following lemma.

Lemma 5: f i
est has no zero-dynamics for all i and for all

possible sets of attacked subsystems A.
Proof: The proof is presented in the appendix.

Theorem 1: All and only the observers providing a correct
state and attack estimate will be identified, i.e. ÎA = IA.

Proof: f i
est has no zero-dynamics by Lemma 5. There-

fore, (11) holds only if f i
1[0 : t] = f i

3[0 : t] = 0, which is
equivalent to i ∈ IA. With Lemma 4 this means that (11)
holds iff i ∈ IA, which is equivalent to ÎA = IA.
Any observer i ∈ ÎA can now be used to perform secure
state estimation. Furthermore, the attacked subsystems can be
identified from ÎA. To this end denote Ai as set A according
to hypothesis i. Then we can identify the attacks as

Â = N \
⋃

i∈ÎA

(N \ Ai) , (12)

where Â = A if ÎA = IA.

V. NUMERICAL RESULTS

The approach is verified on the mass-spring-damper system
from [22] which represents subsystems as in (1) with

A1 = AN =
[

0 1
−0.3 −0.1

]
,

Aℓ =
[

0 1
−0.4 −0.1

]
for ℓ ∈ {2, . . . , N − 1} ,

Aℓj =
[
0 0
0.1 0

]
for ℓ ∈ N , j ∈ {ℓ− 1, ℓ+ 1} ,

Cℓ = [1 0] for ℓ ∈ N ; Bℓ =
[
0
0.2

]
for ℓ ∈ N ,

(13)

and all other matrices are zero. We connect N = 10 of
such subsystems to obtain a model as in (1) and applied a
stabilizing control law to this system.

This system has 10 measurements and each subsystem
has 2 potential attacks, one on the actuator and one on

8017



0 2 4 6 8 10
0

0.2

0.4 Attack
Estimate

0 2 4 6 8 10
0

0.2

0.4 Attack
Estimate

Fig. 2. Performed attacks and attack estimate of the observer that is
identified to be correct. Colours correspond to subsystems as in figure 1.
The attack estimate line overlays the attack line.

the measurement. Therefore at most 5 subsystems can be
attacked while still satisfying Proposition 1. In this section,
we consider attacked subsystems A = {1, 2, 7, 9, 10} on
which the attacks as shown in Figure 2 are performed. Note
that no attacks are present during the first 1 s. The state
response to these attacks is shown in Figure 1. Note that the
colours in Figure 2 correspond to the legend in Figure 1.

To identify the attack and perform secure state estimation
we designed |I| = 252 =

(
10
5

)
SMOs based on all

hypotheses of the attacked subsystems. For the considered
set off attacked subsystems A = {1, 2, 7, 9, 10} we have
that only hypothesis 55 is correct, i.e. IA = {55}.

For each hypothesis in I, the test in (11) was performed.
The result of this test over time is shown in Figure 3. One can
see that initially, for t ∈ [0, 1], all hypotheses are identified
as correct, i.e. ÎA = I. However, with every attack that
becomes active, a number of hypotheses are rejected. After
t = 5 s only the correct hypothesis ÎA = IA = {55} is
identified as correct. In figure 4 it is shown that the attack
can be correctly identified based on ÎA using (12).

0 2 4 6 8 10

50

100

150

200

250

0

0.2

0.4

0.6

0.8

1

Fig. 3. Black lines indicate the members of set ÎA over time. After t = 5 s
it holds ÎA = {55}

In Figure 2 the attack estimate produced by the observer
corresponding to the correct hypothesis i = 55 is shown. One
can see that, as expected, the fault estimation is very small.
The same holds for the state estimation error. The maximum

0 2 4 6 8 10

2

4

6

8

10

0

0.2

0.4

0.6

0.8

1

Fig. 4. Solid black color indicates the subsystems that are identified to be
attacked over time.

and average mean-squared-errors over all state estimates are
2.4 · 10−3 and 2.1 · 10−6 respectively.

VI. CONCLUSION

Attacks in interconnected systems can fully compromise
an unknown, but limited, part of its subsystems. Existing
research on secure state estimation (SSE), however, mainly
addresses attacks affecting only measurements. In this paper,
a sliding mode observer (SMO)-based method to SSE has
been proposed that can address attacks that fully compromise
subsystems, i.e. affect their actuator and measurements. Fur-
thermore, the proposed method allows for as many attacks as
measurements. This represents a much larger class of attacks
than SSE is currently available for.

The SMO-based SSE uses a bank of SMOs of which it is
proven that at least one can provide correct state and attack
estimates. The capability of the SMOs to estimate the attacks
has been used to identify which SMOs provide correct state
estimates. Specifically, the direct relation between attack and
attack estimate has been derived, which is then used to
identify the observers that produce correct attack estimates.
We prove that using this method we can identify the attacked
subsystems. The method has been demonstrated on a system
of 10 interconnected mass-spring-damper subsystems.

This paper presents a proof of concept of SMO-based
SSE for attacks that fully compromise subsystems. There
are, however, many interesting venues for future work to
expand on this concept. Firstly, it is interesting to develop
this approach for non-linear plants or considering model
and measurement uncertainty. Secondly, one might look at
distributed implementations of the scheme.

APPENDIX

Proof: (Lemma 5)
Following the approach in [23] we write an equivalent system
for each combination of attacked subsystems A as{

ẋ = Ax+Bfu ,

y = Cx+Dfy ,

where B and D are the columns of B and D corresponding
to non-zero entries of fu and fy , denoted by fu and fy . As,
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by Proposition 1, at most p attacks are active we can use the
Rosenbrock matrix to prove fest has no zero-dynamics.

Assumption 2 states that the full system is input observ-
able, which is equivalent to not having zero dynamics.[19]
Therefore ̸ ∃ s for which[

sI −A −B 0
C 0 D

]
(14)

loses rank. Below we will go through all derivation steps in
Section III and prove they cannot cause zero dynamics.

First, for all i ∈ I we perform a lossless transformation,
which leads to a Rosenbrock matrix with equivalent zero-
dynamics to (14). Then in Section III-A we filter part of the
measurements and obtain Rosenbrock matrix
sI −A11 −A12 0 −B11 0 0 0
−A21 sI −A22 0 0 −B22 0 0
AfC21 AfC22 sI −Af 0 0 AfD22 0
C11 C12 0 0 0 0 D11
0 0 I 0 0 0 0


where the same boldface notation is used for B and D as
in (14). Here row 5 and column 3 can be removed without
affecting the zero dynamics. Furthermore, row 3 can be pre-
multiplied with A−1

f , which is a lossless transformation as
Af is full rank. The resulting matrix is the Rosenbrock
matrix of the system in (3).

In Section III-B a row is added to the system output,
which cannot introduce zero-dynamics. Then in Section III-
C the SMO standard form in (6) is obtained by a lossless
transformation not affecting the zero-dynamics. From the
Rosenbrock matrix of the system in (6) we provide equiva-
lence to the Rosenbrock matrix of fest in three steps as[

sI −A1 −A2 −B1 0 0
−A3 sI −A4 −B21 −B2 0
0 I 0 0 D

]
⇕ 1)[

sI −A1 −A2D −B1 0
−A3 (sI −A4)D̃ −B21 −B2

]
⇕ 2)[

sI −A1 −A2D −B1 0
−B†

2A3 B†
2(sI −A4)D̃ −B†

2B21 −B†
2B2

−TBA3 TB(sI −A4)D̃ −TBB21 −TBB2

]
⇕ 3)sI −A1 −A2D B1 0 0

0 sI 0 0 −I
−B†

2A3 −B†
2A4D̃ B†

2B21 B†
2B2 B†

2D
−TBA3 −TBA4D̃ TBB21 TBB2 TBD



(15)

Here the steps taken in each transformation are listed below.
1) Subtract second column D times from fifth col-

umn; Remove second column and third row; Multiply
fourth column with −I; Move fourth column between
columns 1 and 2.

2) Pre-multiply second row by full rank matrix
[
B†

2
TB

]
.

3) From bottom to top: Add second row B†
2D times

to third row and TBD times to fourth row; Remove
second row and fifth column; multiply third and fourth
columns with −I .

The last matrix in (15) is the Rosenbrock matrix of the
system that defines fest.
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