
Edit Mechanism Synthesis for Opacity Enforcement Under Uncertain
Observations

Wei Duan, Ruotian Liu, Maria Pia Fanti, Fellow, IEEE, Christoforos N. Hadjicostis, Fellow, IEEE,
and Zhiwu Li, Fellow, IEEE

Abstract— This paper addresses the problem of opacity
enforcement by using edit functions in discrete event systems
modeled as deterministic finite automata under partial observa-
tion. The edit function is an output interface of the system that
manipulates actual observations to confuse a malicious intruder.
We assume that the edit function simply knows whether the
intruder observes a larger or smaller set of events than itself, but
does not know the exact set of events observed by the intruder.
In this uncertain observation setting, the edit function aims to
confuse the intruder while relying on its own set of observable
events, which requires the edit function to be u-enforcing. The
opacity enforcement problem is then transformed to a two-
player game between the system and the edit function under
partial information. A so-called edit mechanism is proposed
in a game scheme to enumerate all possible edited operations
following the system behavior. We show that an edit function
synthesized from the edit mechanism (if any) can be used to
enforce opacity in the system under the uncertain observation
setting.

Index Terms— Discrete event systems, Automata, Game the-
ory.

I. INTRODUCTION

Opacity is a confidentiality property that has become an
active research topic in discrete event systems (DESs) [1]–
[4]. This property captures whether an intruder can infer a
secret state of a given system based on its observation of the
system behavior and its knowledge of the system’s structure.
Precisely, a system is said to be opaque if, for any secret
behavior, there exists at least another non-secret behavior
that appears identical to the intruder; this implies that the
intruder can never infer the system’s secrets with certainty.

When a system is not opaque, the opacity enforcement
problem arises and is extensively addressed via two main
approaches. The use of supervisory control theory was first
proposed based on the construction of minimally restrictive
opacity-enforcing supervisory controllers [5]–[8]. Then, ob-
fuscation mechanisms were used to manipulate observations
generated by the system via insertion and edit functions so
as to confuse the intruder [9], [10].

We point out that all aforementioned enforcement ap-
proaches are carried out under the premise that either (i)

*This work was supported in part by the National R&D Program of
China under Grant No. 2018YFB1700104, and the National Natural Science
Foundation of China under Grants 61603285 and 61873342.

Wei Duan and Zhiwu Li are with Xidian University, Xi’an, China (e-
mails: dwei1024@126.com, zhwli@xidian.edu.cn).

Ruotian Liu and Maria Pia Fanti are with Polytechnic
University of Bari, Bari, Italy (emails: {ruotian.liu,
mariapia.fanti}@poliba.it).

Christoforos N. Hadjicostis is with University of Cyprus, Nicosia, Cyprus
(e-mail: hadjicostis.christoforos@ucy.ac.cy).

the enforcer has the same observation capability as the
intruder, i.e., the controllers, the insertion functions, or the
edit functions have the same set of observable events as
the intruder [6], [9], [10], or (ii) the enforcer knows the
exact observations seen by the intruder, i.e., the controllers
have knowledge of what the intruder can observe even
though they may have different sets of observable events [5],
[7], [8]. Such requirements are restrictive since, in reality,
the enforcer may have different partial observations of the
system compared to the intruder, and may not be aware of
the exact observation capability of the intruder.

Inspired from the above considerations, this work ad-
dresses the problem of opacity enforcement via edit functions
in DESs under a more general scenario, in which the set
of observations of the system captured by the intruder,
denoted by EI , is different from that captured by the edit
function, denoted by ED. Moreover, the edit function is
assumed to have partial knowledge of the intruder, i.e., it
knows the relationship of the observation capability between
the intruder and itself, but it is not aware of the exact
observations seen by the intruder. Specifically, we consider
two cases about the relationship between EI and ED: i)
EI ⊆ ED; ii) ED ⊆ EI . We refer to this general setting as
the uncertain observation setting.

This paper proposes the notion of u-enforceability to
characterize whether the edit function has the ability to
enforce opacity of the system under the uncertain observation
setting. To this end, we build an edit mechanism within a
two-player game between the system and the edit function,
so as to enumerate all edited operations associated with
corresponding system behavior observed by the edit function.
We show that the edit function is u-enforcing if it can
be synthesized from the edit mechanism. To the best of
our knowledge, this is the first investigation of the opacity
enforcement problem in DESs when the enforcer is not aware
of the exact observations of the intruder.

II. PRELIMINARIES

Let E be a finite set of events and E∗ denote the set of
all finite length strings (finite sequences of events) over E,
including the empty string ε. The length of a string λ is the
number of events in λ, denoted by |λ|, and the length of the
empty string is denoted by |ε| = 0. A language L ⊆ E∗ is
a subset of finite-length strings. Given strings u and v, uv
stands for the concatenation of u and v.

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 7899

In this paper, we model a DES with a deterministic1 finite
automaton (DFA) G = (X,E, f, x0), where X is a set of
states, E is a set of events, f : X × E → X is the partial
transition function, and x0 ∈ X is the initial state. The
transition function f can be extended to X × E∗ → X in
the usual manner: f(x, αλ) = f(f(x, α), λ) for x ∈ X ,
α ∈ E, and λ ∈ E∗. Note that f(x, ε) = x and f(x, αλ)
is undefined if f(x, α) is undefined. The generated language
of G, denoted by L(G), is defined as L(G) = {λ ∈ E∗ |
f(x0, λ) is defined}.

The event set E in a DFA is partitioned into the set of
observable events Eo and the set of unobservable events
Euo = E \ Eo due to the partial observation of DFA. For
a sequence λ ∈ E∗, the natural projection with respect
to Eo is defined as P : E∗ → E∗o , where P (ε) = ε;
P (α) = α if α ∈ Eo; P (α) = ε if α ∈ Euo. Moreover,
P (λα) = P (λ)P (α) where λ ∈ E∗ and α ∈ E.

Given a system G = (X,E, f, x0) and a sequence σ ∈ E∗o ,
the set of possible states with respect to P starting from a
subset of states Q ⊆ X is defined as Ro(Q, σ) = {x′ ∈
X | ∃x ∈ Q,∃λ ∈ E∗ : P (λ) = σ, f(x, λ) = x′}. One
can build the system observer to estimate the current states
of the system under Eo. The observer is defined as Oo =
(Xo, Eo, fo, x

0
o), where Xo ⊆ 2X is the state space, Eo is the

set of observable events, x0o = Ro(x0, ε) is the set of initial
states, and fo : Xo × Eo → Xo is the transition function
defined for xo ∈ Xo and α ∈ Eo as fo(xo, α) = Ro(xo, α)
(fo(xo, α) is taken to be undefined if Ro(xo, α) is empty).

III. CURRENT-STATE OPACITY ENFORCEMENT VIA EDIT
FUNCTIONS UNDER UNCERTAIN OBSERVATIONS

A. Uncertain Observation Setting

Given a system that is not opaque, its opacity can be
enforced by implementing an edit mechanism via the use of
edit functions [10]. The edit function interfaces at the output
of the system by manipulating observations generated by the
system with insertion, replacement, and deletion operations.

We assume that the intruder and the edit function have
full knowledge of the system’s structure but different ob-
servations, i.e., the intruder can observe EI ⊆ Eo whereas
the edit function can observe ED ⊆ Eo. Moreover, the edit
function does not know the exact set of observable events
of the intruder, but knows whether EI ⊆ ED or ED ⊆ EI .
The following example is given to illustrate our motivations.

Example 1: Consider the system G = (X,E, f, x0) in
Fig. 1, where the set of observable events is Eo = {b, c, d}.
Assume that EI = {b, c, d} and ED = {b, d}; then, the
estimate of the system states by the intruder is not necessarily
identical to that of the edit function. For example, the intruder
can infer the system is in state {8} if the system generates
sequence abc, whereas the edit function cannot infer this
since it can only observe b. Meanwhile, the edit function
cannot distinguish the exact inferred states by the intruder in
the set of states {5, 7, 8}. �

1We focus on the deterministic case to make notations simple, but the
results in this paper can be extended to the nondeterministic case in a
straightforward manner.

1

3

2
a

5 8

4

6a

c

b c

c

9d

7b10d

Fig. 1. System G used in the running example.

Definition 3.1: Given a system G with Eo, EI , and ED,
the resilient hypothetical set of events ERH captures the set
of possible events observed by the intruder from the edit
function’s point of view. This is defined as

ERH =

{
Eo, if ED ⊆ EI ,

ED, if EI ⊆ ED.

To capture the events observed by the intruder, the edit
function needs to deduce the states of the system as captured
by the intruder in the worst scenario: in the first case (ED ⊆
EI), the edit function assumes that the intruder may capture
all observable events of the system, i.e., ERH = Eo; in the
second case (EI ⊆ ED), the edit function supposes that the
intruder has the ability to observe the same events as itself,
i.e., ERH = ED.

The resilient hypothetical projection captures observations
by the intruder from the edit function’s point of view by
following sequences generated by the system; it is defined
as PRH : E∗ → E∗RH where PRH(ε) = ε; PRH(β) = β if
β ∈ ERH ; PRH(β) = ε if β ∈ E \ ERH , and PRH(λα) =
PRH(λ)PRH(α) for all λ ∈ E∗, α ∈ E.

Next, the defender projection is introduced to capture
observations by the edit function from sequences of observa-
tions received by the presumed intruder, which is defined as
PD : E∗RH → E∗D where PD(ε) = ε; PD(γ) = γ if γ ∈ ED;
PD(γ) = ε if γ ∈ ERH \ED, and PD(σβ) = PD(σ)PD(β)
for all σ ∈ E∗RH , β ∈ ERH .

B. Current-State Opacity

By taking into account the set of events observed by the
intruder, i.e., EI ⊆ Eo, the intruder projection PI : E∗ →
E∗I is defined as PI(ε) = ε, PI(α) = α if α ∈ EI , PI(α) =
ε if α ∈ E \ EI , and PI(λα) = PI(λ)PI(α) for all λ ∈
E∗, α ∈ E. For simplicity, we only focus on the notion of
current-state opacity (CSO) in the remainder of the paper.

Definition 3.2: Given a system G = (X,E, f, x0), the
intruder projection PI and the set of secret states XS ⊆ X ,
G is said to be CSO with respect to PI if ∀t ∈ LS :=
{t ∈ L(G) : f(x0, t) ∈ XS},∃t′ ∈ LNS := {t′ ∈ L(G) :
f(x0, t

′) ∈ (X\XS)} such that PI(t) = PI(t
′).

By Definition 3.2, CSO with respect to PI requires that
the evolution of the system to states in XS is kept uncertain
to the intruder (under the intruder projection map PI), at
least until the current state of the system leaves XS .

Definition 3.3: Given a system G, the resilient hypotheti-
cal projection PRH and the set of secret states XS ⊆ X , G is
said to be CSO with respect to PRH if ∀t ∈ LS ,∃t′ ∈ LNS

such that PRH(t) = PRH(t′).
Proposition 3.4: Given a system G, if CSO with respect

to PRH holds, then CSO with respect to PI holds.

7900

Proof: If G is CSO with respect to PRH , it holds for all
t ∈ LS , there exists t′ ∈ LNS such that PRH(t) = PRH(t′).
By the definition of ERH , we know EI ⊆ ERH and E∗I ⊆
E∗RH , which implies PI(t) = PI(t

′). Thus, G is CSO with
respect to PI .

We use CSO to denote CSO with respect to PRH for short.
In the remainder of this paper, we mainly focus on the case
ED ⊆ EI since the other one (ED ⊆ EI) can be solved in
a manner similar to the techniques in [9], [10].

C. Edit Function

In this paper, the difference is that the edit function may
observe a smaller set of events compared to the intruder, i.e.,
ED ⊆ EI . With a slight modification on the edit function in
[10], an event-based version is defined to make the exposition
simpler as follows.

Definition 3.5: An edit function is defined by fe :
ERH → E∗RH such that for β ∈ ERH \ ED, we have
fe(β) = {β}; and for γ ∈ ED, we have

fe(γ) =


γIγ, γI ∈ E∗D is inserted before γ;
γR, γ is replaced with γR;
ε, γ is erased.

In the following, we assume that no γI is of unbounded
length. Under the uncertain observation setting, the edit func-
tion aims to confuse the intruder based on what the intruder
observes. For notational convenience, we let the domain and
codomain be ERH to allow the edit function to “react” to
all events observed by the intruder. That is, fe(β) = β for
β ∈ ERH \ ED in the sense that the edit function cannot
manipulate events that it does not observe; whereas fe(γ) can
implement edited operations (i.e., insertions, replacements,
and deletions) for γ ∈ ED. The edit function can be extended
to a string-based version in a recursive manner as: fe(ε) = ε,
fe(σβ) = fe(σ)fe(β) for σ ∈ E∗RH and β ∈ ERH . Note that
each modification of a symbol in ED has to rely on what
the edit function has observed and the edited operations that
have been implemented up to that point.

D. U -Enforceability

Due to lack of observations, the edit function cannot
respond to every event observed by the intruder. Hence,
regardless of what the intruder observes, the specification
of u-enforceability aims to guarantee that the edit function
is able to modify every event observed by itself such that the
intruder cannot deduce the secret states.

Definition 3.6: (U -enforceability) Consider the system G
in Definition 3.2 under the projections PD and PRH . An edit
function fe is u-enforcing if

1) ∀σ ∈ PRH [L(G)], fe(σ) is defined,
2) ∀σ ∈ PRH [L(G)],∃σ′ ∈ fe(σ): σ′ ∈ PRH(LNS),
3) ∀σ, σ′ ∈ PRH [L(G)]: PD(σ) = PD(σ′) ⇒
{fe(σ), fe(σ′) are defined such that PD(fe(σ)) =
PD(fe(σ

′))},
4) ∀σβ ∈ PRH [L(G)], fe(σβ) = fe(σ)fe(β) is defined

such that conditions (1)–(3) hold for σ and σβ.

The first condition requires the edit function to react to
each event observed by the intruder (but no modification is
allowed if the event is not observed by the edit function).
In order to retain CSO of the system, the second condition
ensures that the edit function can choose an edited sequence
that keeps the secret from being revealed to the intruder.
The third condition requires that the edit function should
implement the same edited operations to all sequences that
have the same defender projection (the edit function cannot
react differently since its observations are identical). Finally,
the fourth condition is needed to maintain consistency of
the edited sequences, i.e., each subsequent edited sequence
maintains the previous conditions (1)–(3).

IV. SYNTHESIS OF AN EDIT MECHANISM

A. System Estimate by Observers

Since the intruder is assumed to observe the set of events
ERH from the perspective of the edit function, one can
construct the resilient hypothetical observer in terms of ERH

and PRH , where ERH = Eo and PRH = P in the case that
ED ⊆ EI . In this regard, the resilient hypothetical observer
is identical to the system observer Oo, and is denoted by
ORH = (XRH , ERH , fRH , x

0
RH), where XRH = Xo,

ERH = Eo, fRH = fo, and x0RH = x0o.
Under the uncertain observation setting, the edit function

aims to deduce the system estimates possibly realized at
the intruder. To do so, based on the resilient hypothetical
observer ORH = (XRH , ERH , fRH , x

0
RH) and a sequence

ω ∈ E∗D, the set of possible states (in the observer ORH)
with respect to PD starting from a set of states QRH ⊆ XRH

is defined as RD(QRH , ω) = {x′RH ∈ XRH | ∃xRH ∈
QRH ,∃σ ∈ E∗RH : PD(σ) = ω, fRH(xRH , σ) = x′RH}.
Then, the defender observer, denoted by OD, is given by
the following definition (we allow events in ERH \ ED to
perform a self-loop in OD for notational convenience).

Definition 4.1: Given a system G = (X,E, f, x0) with
respect to ERH and PD, the defender observer is defined as
OD = (XD, ERH , fD, x

0
D), where XD ⊆ 2XRH ⊆ 22

X

is
the state space, ERH is the event set, x0D = RD(x0RH , ε)
is the set of initial states, and fD : XD × ERH → XD

is the transition function defined for xD ∈ XD and γ ∈
ED as fD(xD, γ) = RD(xD, γ), and for β ∈ ERH \ ED,
fD(xD, β) = xD.

Recall that the edit function confuses the intruder by
creating a perturbed output sequence. This is captured by
the defended observer that can be constructed by replacing
all events in OD that are observed by the edit function with
the corresponding edited operations.

Definition 4.2: Given a system G = (X,E, f, x0) with
respect to ED, PD and fe, a defended observer is constructed
by OT = (XT , ERH , fT , x

0
T), where XT = XD is the state

space, x0T = x0D is the set of initial states, ERH is the set
of events, and fT is the transition function that implements
edited operations as fT (xT , fe(γ)) = fD(xT , fe(γ)) for
xT ∈ XT and γ ∈ ED if fe(γ) is defined; and fT (xT , β) =
xT for β ∈ ERH \ ED.

7901

Since the edit function can only manipulate events in ED,
the transition function fT (xT , fe(γ)) implements the edited
operations if: i) receiving observation γ ∈ ED for xT ∈ XT ,
and ii) fD(xT , fe(γ)) is defined. Thus, the transition function
fT (xT , fe(γ)) ensures that the defended observer contains
all edited operations to react to every event observed by the
edit function; a self-loop is added for all events unobserved
by the edit function at each state.

Example 2: Recall the system (shown in Fig. 1) in Exam-
ple 1. Assume that the edit function knows that ED = {b, d},
ED ⊆ EI , and the set of secret states XS = {8}. One
can construct the resilient hypothetical observer ORH with
EI = ERH = Eo as shown in Fig. 2(a). Note that ORH

is identical to the system observer Oo. In a manner similar
to Theorem 1 in [4], we can conclude that CSO is violated
since there exists a solely secret state {8} in ORH .

The defender observer OD is constructed according to
Definition 4.1 as shown in Fig. 2(b). For the sake of readabil-
ity, we rename states [{1, 2}, {3, 4, 6}], [{5}, {8}, {7}], and
[{9, 10}] as A, B, and C, respectively. Notice that each state
in OD is a subset of states in ORH , which is used to infer
the possible estimates of the system captured by the intruder
(e.g., state B in OD means that the intruder may reach the
secret state from the perspective of the edit function).

d

1,2

5 3,4,6

8 7 9
bc

b c

10

d

(a) Oo or ORH .

d

{1,2},{3,4,6}

{5},{8},{7} {9},{10}

b

A

B C

c

c c

(b) OD or OT .

Fig. 2. Illustrations of the observers.

The defended observer OT , constructed following Defini-
tion 4.2, is identical to OD. For instance, from the initial
state A in OT , the new state is state C if the edit function
receives observation b and replaces b with d via fe(b) = d.
There is no update if the edit function inserts d before b
via fe(b) = db since db is not defined (i.e., we cannot find
sequence db from the initial state in OD). �

B. Edit Mechanism

Our objective is to construct an edit mechanism that
contains all u-enforcing edit functions. To do so, we first
assume that the edit function observes (but cannot react
to) events in ERH \ ED, and build a two-player game
structure, where the players are the system and the edit
function, to systematically illustrate how the edit function
could execute each allowed edited operation following the
system behavior. Then, we remove the above assumption that
events in ERH \ ED are observed.

Definition 4.3: Consider a system G = (X,E, f, xo) with
a set of secret states XS , and its system observer Oo = (Xo,
Eo, fo, x

0
o), defender observer OD = (XD, ERH , fD, x

0
D),

resilient hypothetical observer ORH = (XRH , ERH , fRH ,
x0RH), and defended observer OT = (XT , ERH , fT , x

0
T). An

edit game structure between the system and the edit function
is defined as EGS = (V,Eo, δ, v0), where

1) V = VA∪VF , where VA = Xo×XD×XRH ×XT is
the set of system states and VF = (Xo×XD×XRH×
XT)× Eo is the set of edit function states;

2) v0 = (x0o, x
0
D, x

0
RH , x

0
T) ∈ VA is the initial state;

3) Eo is the set of actions;
4) δ = δID ∪ δDI is the transition function, where

a) δID = VA × Eo → VF is the transition func-
tion from the system to the edit function defined as:
∀(xo, xD, xRH , xT) ∈ VA,∀α ∈ Eo, δID((xo, xD,
xRH , xT), α) = ((fo(xo, α), fD(xD, α), xRH , xT), α)
if both fo(xo, α) and fD(xD, α) are defined;
b) δDI : VF×E≤(K+1)

o → VA is the transition function
from the edit function to the system defined as: b.1)
∀((xo, xD, xRH , xT), α) ∈ VF where α ∈ ED, ∀ω ∈
E∗D, we have i) ω = α′ ∈ ED \ {α} via fe(α) = ω
(replacement), ii) ω = ε via fe(α) = ε (deletion),
and iii) ω = ω′α via fe(α) = ω′α (insertion),
such that δDI(((xo, xD, xRH , xT), α), ω) = ((xo, xD,
fRH(xRH , ω), fT (xT , ω)) if both fRH(xRH , ω) and
fT (xT , ω) are defined; and b.2) ∀((xo, xD, xRH , xT),
α) ∈ VF where α ∈ Eo \ED, we have δDI(((xo, xD,
xRH , xT), α), α) = (xo, xD, fRH(xRH , α), fT (xT ,
α) = xT).

Note that we use E≤(K+1)
o ⊂ E∗o to denote the finite set

of strings of maximum length K + 1, where K ∈ N is the
maximum number for insertions. In this regard, E≤(K+1)

o

can represent all edited operations (including replacements,
deletions, and finite insertions) during the evolution of the
transition function δID : VF × E≤(K+1)

o → VA. By taking
advantage of the construction of OD, the edit function
is assumed to “react” with the same event if the system
generates an event unobserved by the edit function. With
alternate moves, EGS is constructed such that it contains all
possible actions between the system and the edit function.

{1,2},A,{1,2},A

b c,d

({5},B,{1,2},A),b

{5},B,{10},C

d

({8},B,{10},C),c

{8},B,{10},C

c

ε

{5},B,{1,2},A

({8},B,{1,2},A),c

{8},B,{3,4,6},A

c

c c

{5},B,{5},B

({8},B,{8},B),b

{8},B,{8},B

b

c

c

Fig. 3. Part of the edit game structure.

Example 3: Consider again the system G in Fig. 1 and
its system observer, defender observer, resilient hypothetical
observer, and defended observer in Fig. 2. By Definition
4.3, one can construct the edit game structure EGS. To
conserve space, we only show part of EGS in Fig. 3.
From the initial state ({1, 2}, A, {1, 2}, A), the EGS evolves
by following the system behavior (i.e., b, c, or d). If
event b occurs first, then the initial state will update to
[({5}, B, {1, 2}, A), b] via fo({1, 2}, b) = {5}, fD(A, b) =

7902

B. Note that event b in [({5}, B, {1, 2}, A), b] is used to
track the last observed event. Then, the edit function has
three options to react to b (e.g., replacing b with d such that
state ({5}, B, {10}, C) is reached). Since the edit function
can only execute edited operations once it observes a symbol;
it cannot do anything if the system generates an event that
the edit function cannot observe, i.e., the last component A
in state [({8}, B, {3, 4, 6}, A), c] remains unchanged since c
is unobservable by the edit function. �

Note that EGS could generate problematic states when 1)
the edit function may be not able to react to one or more
events generated by the system; 2) the intruder may infer the
secrets after the edited operations via the edit function (e.g.,
state ({8}, B, {8}, B) in Fig. 3). To capture such problematic
states, we first introduce a utility function.

Definition 4.4: The utility function U : V → {0, 1} is
defined for each state v ∈ V such that:

U(v) =


0, if [[(∃x ∈ xT)x ⊆ XS] ∧ [v ∈ VA]] ∨
[(∀ω ∈ E∗D)[δDI(v, ω) is undefined] ∧ [v ∈ VF]],

1, otherwise.

The utility function captures two types of problematic
states. Specifically, state (xo, xD, xRH , xT) ∈ VA is assigned
value 0 if there exists x ∈ xT such that x ⊆ XS ; since state
xT contains subsets of states of the system G (each subset
representing a possible set of estimates at the intruder), it
means that the intruder may be able to infer the secret states
from the edit function’s point of view if for some x ∈ xT , we
have x ⊆ XS . A state of the form [(xo, xD, xRH , xT), α] ∈
VF is assigned value 0 if for all edited operations in the form
ω ∈ E∗D, δDI(v, ω) is not defined; this means that the edit
function is not able to react to event α.

The process of pruning away all problematic states accord-
ing to the utility function can be formulated as an instance
of a supervisory control problem without blocking (SCPB)
[1]. In this regard, one can mark all system states VA ⊆ V
and leave all edit function states VF ⊆ V unmarked. All
outgoing actions of VA (i.e., observable events outputted by
the system α ∈ Eo) and all outgoing actions α ∈ (Eo \ED)
of VF (i.e., events unobserved by the edit function) are taken
to be uncontrollable because the edit function cannot respond
to events it cannot observe. All other outgoing actions of
VF (i.e., events edited by the edit function in the form
ω ∈ fe(α) for α ∈ ED) are controllable. The specification
for the supervisory control problem is the trimmed version
of EGS, denoted by EGStrim, which can be obtained by
iteratively pruning away all problematic states captured by
the utility function. Then, one can obtain Lm(EGStrim)↑C

with respect to EGS by following the standard ↑ C algorithm
in [1]. In the end, the trimmed game structure T GS =
(VT , Eo, δ, v0) can be obtained as the subautomaton that
generates Lm(EGStrim)↑C . The reader is referred to [1] for
more details; in this case, the trimmed game structure is the
supervisor of the edit game structure.

Example 4: Continuing with Example 3, the trimmed
game structure T GS can be constructed from EGS via
supervisory control as follows. One can prune away all

problematic states by following the utility function, which
results in the specification for the supervisory control prob-
lem, i.e., state [{8}, B, {8}, B] is problematic since the
defended observer is at state B so that the intruder may infer
the secret state {8}. Then, edited operation b is disabled
at state [({5}, B, {1, 2}, A), b] to prevent problematic state
[({8}, B, {8}, B), b] since b is controllable. The resulting
trimmed game structure T GS is shown in Fig. 4. �

{1,2},A,{1,2},A

b

{3,4,6},A,{3,4,6},A,c

c

{5},B,{1,2},A,b

{5},B,{10},C

d

{8},B,{10},C,c

{8},B,{10},C

{3,4,6},A,{3,4,6},A

{7},B,{3,4,6},A,b {9},C,{3,4,6},A,d

b d

{7},B,{9},C

d

{9},C,{9},C

d

c

ε

{5},B,{1,2},A

{8},B,{1,2},A,c

{8},B,{3,4,6},A {7},B,{3,4,6},A

c

ε ε

{9},C,{3,4,6},A

c

c c

{10},C,{10},C

{10},C,{1,2},A,d

d

d

{10},C,{1,2},A

ε

Fig. 4. Trimmed game structure.

Next, the edit mechanism is constructed by merging states
from T GS , so as to: (i) incorporate the fact that events in
ERH \ED are not observable to the edit function; (ii) ensure
that all edited operations are defined at the merged states
(otherwise the intruder will infer the existence of the edit
function if the edit function outputs an edited operation that
is not recognized from the point view of the intruder. The
formal procedure is presented in Algorithm 1.

Algorithm 1: Construction of edit mechanism EM
Input: T GS = (VT , Eo, δ, v0), where VT = V ′A ∪

V ′F ⊆ VA ∪ VF , and δ = δID ∪ δDI .
Output: EM = (VE , ED, δI ∪ δD, vE0), where

VE = Vm ∪ Vn.
1 vE0 = {v0} ∪ {v ∈ V ′A | ∃σ ∈ (ERH\ED)∗ :

δ(v0, σ) = v};
2 Initialize VE = Vm = {vE0 }, and Vn = ∅;
3 for v ∈ Vm that have not been examined do
4 for γ ∈ ED do
5 if ∃z ∈ v, δI(z, γ) is defined then
6 δI(v, γ) =

⋃
z∈v δI(z, γ) = {y ∈ V ′F |

∃σ ∈ E∗RH : PD(σ) = γ ∧ y ∈ δ(z, σ)} ;
7 Add δI(v, γ) to Vn;

8 for v ∈ Vn that have not been examined do
9 for ω ∈ E∗D do

10 if ∀z ∈ v, δD(z, ω) is defined then
11 δD(v, ω) =

⋃
z∈v δD(z, ω) =⋃

z∈v δDI(z, ω);
12 Add δD(v, ω) to Vm;

13 Go back to line 3 and repeat until all accessible part
has been built.

We briefly explain how Algorithm 1 works here. We first
compute the initial state of the edit mechanism vE0 in Line 1

7903

as the set of states that can be reached from state v0 in T GS
via sequences of events unobserved by the edit function.
For the sake of explanation, we assume that vE0 = {v0, v1}.
Then, steps 3 to 10 evolve the initial state vE0 to a new state
vE1 ∈ Vm via δI , i.e., vE1 = {v′0, v′1} via δ(v0, σ) = v′0 and
δ(v1, σ) = v′1 when the edit function receives observation
γ ∈ ED from the sequences σ = σ1γσ2 generated by the
system in T GS , where σ1, σ2 ∈ (ERH \ ED)∗. Since the
edit function outputs the same event if the system generates
an event unobserved by the edit function in T GS , v′0 and v′1
in vE1 are system states in VA. Steps 11 to 18 evolve state
vE1 to a new state vE2 ∈ Vn via δD, i.e., vE2 = {v′′0 , v′′1} via
δDI(v

′
0, ω) = v′′0 and δDI(v

′
1, ω) = v′′1 when the edit function

manipulates observation γ to ω in terms of fe(γ) = ω. In
this case, both of states v′0 and v′1 in vE1 should be defined
for γ by δDI , otherwise the edit function may be inferred by
the intruder since the intruder can distinguish between these
two states.

Theorem 4.5: An edit function is u-enforcing if and only
if it can be synthesized from the edit mechanism EM.

Proof: (If) By contradiction, we assume that the edit
function is not u-enforcing. That is, at least one of the
conditions in Definition 3.6 does not hold. Thus, it cannot
react to every event observed by the edit function or it
cannot modify sequences generated by the system to edited
sequences such that the intruder cannot infer the secret. In
other words, one can find a sequence leading to states that
satisfies U(v) = 0. However, by construction of T GS , such
sequences have been removed. Furthermore, suppose the edit
function cannot ensure that every edited sequence can be
recognized by the intruder; however, this is not allowed in
EM, which is a contradiction. Therefore, the edit function
should be u-enforcing. (Only if) Given a u-enforcing edit
function, the four conditions in Definition 3.6 hold. Thus, it
can be retained in EGS in terms of the first condition since
we build EGS by following system behavior observed by the
edit function. Moreover, we prune away all states violating
the utility function when we build T GS such that the second
condition holds. Finally, the transition function in EM is able
to ensure that every edited operation can be recognized by
the intruder. Therefore, all edited sequences exist in EM,
such that any subsequent edited sequence can maintain the
previous three conditions. One can conclude that the edit
function can be synthesized from EM.

Example 5: Continuing with Example 4, the T GS can
be transformed to the edit mechanism EM as follows. The
initial state in EM is vE0 = {v0, v1} in terms of vE0 =
{v0} ∪ {v1 | ∃c ∈ (ERH \ ED)∗ : δ(v0, c) = v1}, where
v0 = ({1, 2}, A, {1, 2}, A) and v1 = ({3, 4, 6}, A, {3, 4,
6}, A). Subsequently, state vE1 = {[({5}, B, {1, 2}, A), b],
[({7}, B, {3, 4, 6}, A), b]} is reached if the edit function
receives observation b in terms of δI(vE0 , b) = vE1 . Finally,
state vE2 = {({5}, B, {10}, C), ({8}, B, {10}, C), ({7}, B,
{9}, C)} is reached if the edit function replaces b with d
in terms of δD(vE1 , d) = vE2 . Note that the edit function
is not able to replace b with b since b is not defined at
state [({5}, B, {1, 2}, A), b] in vE1 in T GS; if b is used, in

such case, the intruder will infer the presence of the edit
function. In the end, the edit mechanism in Fig. 5 can be
obtained by following Algorithm 1. Given a sequence abc
generated by the system, the intruder can infer the secret state
{8} by following observation PI(abc) = bc via the system
observer Oo. At this point, the edit mechanism reaches
state {[({5}, B, {1, 2}, A), b], [({7}, B, {3, 4, 6}, A), b]} via
observation b. By following the edit mechanism, the edit
function can respond to b via either a deletion operation
(outputs ε) or a replacement operation (outputs d). In either
case, from the point view of the edit function, the intruder
will not be able to infer the secret state. �

({1,2},A,{1,2},A),
({3,4,6},A,{3,4,6},A)

b

[({5},B,{1,2},A),b],
[({7},B{3,4,6},A),b]

d

({5},B,{10},C),
({8},B,{10},C),
({7},B,{9},C)

ε

({5},B,{1,2},A),
({8},B,{3,4,6},A),
({7},B,{3,4,6},A)

({9},C,{9},C),
({10},C,{10},C)

[({9},C,{3,4,6},A),d],
[({10},C,{1,2},A),d]

d

d

({9},C,{3,4,6},A),
({10},C,{1,2},A)

ε

Fig. 5. Edit mechanism under uncertain observations.

V. CONCLUSIONS

In this paper, we have considered the problem of CSO en-
forcement via edit functions under the uncertain observation
setting. The notion of u-enforceability has been proposed to
characterize the capability of the edit functions to enforce
opacity of the system. Then, we construct the edit mecha-
nism via a game scheme to implement all u-enforcing edit
functions. Our future work will investigate a more general
case where no inclusion relation between EI and ED exists.

REFERENCES

[1] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems. US: Springer, 2010.

[2] C. N. Hadjicostis, Estimation and Inference in Discrete Event Sys-
tems: A Model-Based Approach with Finite Automata. Switzerland:
Springer, 2020.

[3] F. Lin, “Opacity of discrete event systems and its applications,”
Automatica, vol. 47, no. 3, pp. 496–503, 2011.

[4] A. Saboori and C. N. Hadjicostis, “Notions of security and opacity in
discrete event systems,” in Proc. of 46th IEEE Conference on Decision
and Control, 2007, pp. 5056–5061.

[5] J. Dubreil, P. Darondeau, and H. Marchand, “Supervisory control for
opacity,” IEEE Transactions on Automatic Control, vol. 55, no. 5, pp.
1089–1100, 2010.

[6] A. Saboori and C. N. Hadjicostis, “Opacity-enforcing supervisory
strategies via state estimator constructions,” IEEE Transactions on
Automatic Control, vol. 57, no. 5, pp. 1155–1165, 2012.

[7] X. Yin and S. Lafortune, “A uniform approach for synthesizing
property-enforcing supervisors for partially-observed discrete-event
systems,” IEEE Transactions on Automatic Control, vol. 61, no. 8,
pp. 2140–2154, 2015.

[8] Y. Tong, Z. Li, C. Seatzu, and A. Giua, “Current-state opacity en-
forcement in discrete event systems under incomparable observations,”
Discrete Event Dynamic Systems, vol. 28, pp. 161–182, 2018.

[9] Y. C. Wu and S. Lafortune, “Synthesis of insertion functions for
enforcement of opacity security properties,” Automatica, vol. 50, no. 5,
pp. 1336–1348, 2014.

[10] Y. C. Wu, V. Raman, B. C. Rawlings, S. Lafortune, and S. A. Seshia,
“Synthesis of obfuscation policies to ensure privacy and utility,”
Journal of Automated Reasoning, vol. 60, no. 3, pp. 107–131, 2018.

7904

