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Abstract— This paper considers event-triggered bipartite
consensus issues for discrete-time nonlinear networked multi-
agent systems with antagonistic interactions and denial-of-
service (DoS) attacks. Firstly, a pseudo partial derivative tech-
nology is applied to obtain an equivalent dynamic linearization
model of the controlled system. The signed graph theory is
employed to analyze the coopetition relationships among agents.
Next, a distributed combined measurement error function is
formulated to transform the bipartite consensus issue into
a consensus issue. Then, an output predictive compensation
scheme is proposed to offset the influence of DoS attacks.
Furthermore, a dead-zone operator is designed to improve
the flexibility of the proposed event-triggered mechanism.
Additionally, a data-driven event-triggered resilient bipartite
consensus scheme is formulated. Then, the convergence of the
proposed method is strictly proved by using the Lyapunov
theory and the contraction mapping principle, which indicates
that the bipartite consensus error could be cut to a small region
around zero. Finally, hardware tasks are conducted to verify
the effectiveness of the proposed method.

I. INTRODUCTION

With information theory and technology development,
cooperative control of networked multi-agent systems
(NMASs) has received considerable attention in recent years.
Massive applications exist for NMASs, for instance, satellite
formation, intelligent transport systems, and so forth. How-
ever, most agents are often based on microprocessors or weak
data-processing computers in practical industrial processing.
The communication limitations and energy efficiency issues
must be addressed, especially for larger-scale NMASs. For-
tunately, the event-triggered (ET) scheme [1] is one of the
useful schemes for the above issues, effectively reducing
the computation and communication burden of NMASs with
satisfactory control performance. The ET control was first
introduced into NMASs by Dimarogonas et al. [2], which
has inspired many useful researches. For example, Zhao et
al. [3] designed a fully distributed edge-based ET method,
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Liang et al. [4] studied a neural-network-based ET method,
and some meaningful results can be found in [5].

Nevertheless, most previous ET algorithms for NMASs
may not properly function when attackers invade some agents
or communication channels. So far, few results focus on ET
consensus control for NMASs under the cyber-attack influ-
ence. Moreover, the openness of NMASs makes them vul-
nerable and makes it easier to be attacked. Generally, cyber-
attacks mainly include denial-of-service (DoS) attacks, false
data injection attacks, and deception attacks. Zhang et al.
[6] investigated the intermittently random DoS attack issue
for linear NMASs and formulated a resilient ET controller.
Nonlinear NMASs subjected to DoS attacks to perform ET
consensus control were studied by Shang et al. [7]. Besides,
Guo et al. [8] proposed an ET cluster consensus method for
heterogeneous NMASs with DoS attacks. Moreover, more
details about cyber-attacks can be found in [9], [10].

The efforts mentioned above usually assume that the
dynamic models of controlled plants are available. However,
nonlinearity and uncertainty are inevitable in practical sys-
tems. The errors of modeling or identification are ubiquitous
and cause the aforementioned model-based approaches to be
hardly applied to practical NMASs. To address this problem,
data-driven control approaches have attracted much attention
from scholars, including iterative learning, reinforcement
learning, model-free adaptive control (MFAC), and so forth.
It is noteworthy that MFAC is a helpful approach to cope
with the issue of discrete-time nonlinear systems with un-
known dynamics models, which was studied for a single
nonlinear system by Hou et al. [11]. After that, the cyber-
attack and ET issues for a single plant were studied by
Qiu et al. [12] and Lin et al. [13], respectively. An output-
dependent perturbation issue was investigated by Corradini
[14]. It is noticed that the results for NMASs based on
MFAC are still open, although Bu et al. [15] proposed an
MFAC framework for NMASs, the communication delay was
investigated by Zhang et al. [16], and a distributed MFAC
strategy for NMASs with DoS attacks was designed by Ma et
al. [17]. Notably, ET and DoS attack issues were considered
in [13] and [17], respectively. However, the method in [13] is
only suitable for a single controlled system, and [17] did not
consider the communication bandwidth issues of NMASs.
Hence, designing a data-driven ET mechanism for NMASs
under cyber attacks is meaningful work.

Furthermore, the research above on NMASs only consid-
ered the cooperative interactions among agents. However,
cooperative and competitive are coexistent. For example, in
a game, a player needs to collaborate with his teammates
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and antagonize others from the opposite team. Therefore,
it is unreasonable to ignore the competitive relationships
among agents when designing an algorithm for NMASs.
Recently, a signed graph was studied for analyzing the
relationships among agents by Altafini [18], and a bipartite
consensus algorithm was proposed, where the agents are
divided into two groups with opposite tracking objects.
After that, several meaningful results were investigated. A
bipartite consensus scheme was proposed for multi-robot
systems with data quantization in [19]. A bipartite consensus
method for NMASs was studied in [20]. Moreover, several
efforts were made for data-driven bipartite consensus [21]–
[23]. However, in MFAC framework, the relevant study of
competitive relationship among MASs is still in its infancy.

This article considers nonlinear NMASs under coopetition
interactions and successive DoS attacks to realize the ET bi-
partite consensus tasks. The main contributions of this paper
are: (i) Propose an output predictive compensation scheme.
Compared with the method in [17], the proposed output
predictive compensation scheme can effectively offset the
effects of successive DoS attacks; (ii) Establish a dead-zone-
based operator ET strategy. Compared with the method in
[13], the proposed ET strategy can adjust the number of ET
to balance the performances and costs; (iii) Propose a data-
driven ET resilient bipartite consensus (ET-RBC) method.
Compared with the methods in [7]–[9], the proposed ET-
RBC further considers the antagonistic interactions among
agents and does not require the dynamics models.

The remainder of this paper is listed: Section II presents
the signed graph theory and controlled systems. The pro-
posed ET-RBC and analyses of its convergence property
rigorously are given in Section III. The hardware tests and
conclusions are given in Sections IV and V, respectively.

II. PRELIMINARY AND PROBLEM FORMULATION

A. Signed Graph Theory

This paper considers a signed graph Ḡ = (V̄ , E,A) to
describe the communication topology of NMASs, where
V̄ = {0}∪V with V = {1, · · ·, N}, E = {(i, j)|i, j ∈ V } ⊆
V ×V , and A = [aij ] ∈ RN×N with aij ∈ {−1, 0, 1} denote
the set of nodes, the set of edges, and the weighted adjacency
matrix, respectively. The neighbor set of node i is expressed
by Ni = {j ∈ V |(j, i) ∈ E}, and the degree matrix of Ḡ is
expressed by D = diag{d1, · · ·, dN} with di =

∑
j∈Ni
|aij |.

L = −A+D is the Laplacian matrix of Ḡ. The virtual leader
is expressed by node 0. Here, matrix B = diag{b1, · · ·, bN}
with bi ∈ {0, 1} is employed to describe the connection
relationships between the virtual leader and each agent. If
the virtual leader is directly connected with agent i, bi = 1;
otherwise, bi = 0. In addition, Ḡ is also called as structurally
balanced, where nodes of Ḡ are divided into two subsets V1

and V2, satisfying: (i) V1 ∪ V2 = V and V1 ∩ V2 = ∅; (ii)
If ∀i, j ∈ Vz with z ∈ {1, 2}, aij ∈ {0, 1}; (iii) If ∀i ∈ Vz
and j ∈ Vq with z 6= q(z, q ∈ {1, 2}), aij ∈ {−1, 0}. If
(j, i) /∈ E or i = j, aij = 0. Moreover, s = diag(s1, · · ·, sN )
is the grouping matrix. If agent i ∈ V1, si = 1. Otherwise,
si = −1.

B. System Descriptions
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Fig. 1. Communication topologies of NMASs.

Consider the nonlinear NMASs, which consist of N agents
and a virtual leader, where the control input ui (k) ∈ R and
the control output yi (k) ∈ R satisfy

yi(k + 1) = fi(yi(k), · · · ,yi(k − ny),

ui(k), · · · , ui(k − nu)) (1)

where ny ∈ Z+, nu ∈ Z+, and fi (·) represents an unknown
nonlinear function. All agents are connected by applying
the internet, and all components are synchronous. The com-
munication topology of NMASs satisfies the definition of
graph Ḡ = (V̄ , E,A), which is defined in Section II-A, as
shown in Fig. 1, where the data flow along the path with the
arrows. The red arrow indicates that the connected agents’
interactions are antagonistic with the negative weight, “−1”,
while the black one denotes the collaborative interactions
with positive weight, “1”. Moreover, constraints of the
NMASs are presented below, which are critical requirements
of MFAC theories.

Assumption 1: The partial derivative of fi(·) concerning
ui(k) exists and is continuous.

Assumption 2: The generalized Lipschitz condition ap-
plies to Eq. (1). Let ∆ui(k) = ui(k) − ui(k − 1) 6= 0
and ∆yi(k + 1) = yi(k + 1) − yi(k). If ∆ui(k) 6= 0,
|∆yi(k + 1)| ≤ r|∆ui(k)| with r ∈ R+.

Remark 1: Assumption 1 is a weak requirement when
studying nonlinear systems. Assumption 2 implicates that
both ui(k) and yi(k) of a practical plant are bounded, which
is reasonable from the viewpoint of energy conservation [11].

Lemma 1 ( [11]): If Eq. (1) satisfies Assumptions 1 and
2, an equivalent dynamic linearization model can be struc-
tured:

∆yi (k + 1) = Mi (k) ∆ui (k) (2)

where Mi(k) is called as the pseudo-partial-derivative (PPD)
parameter in the MFAC theory to describe the relationship
between the input and output, which is time-varying. More-
over, there exits a constant r leading to |Mi(k)| ≤ r.

Assumption 3 ( [24]): Ḡ is strongly connected, where
L + B is an irreducible matrix with positive diagonal el-
ements.

C. The DoS Attack Descriptions

The DoS attack is a typical network attack that locks the
communication channel and prevents agents from exchang-
ing information. As same as several results [12], [17], the
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success probability of the DoS attack is described as{
Prob{Λi(k) = 0} =E{Λi(k)} = w
Prob{Λi(k) = 1} = 1− E{Λi(k)} = 1− w (3)

where w ∈ (0, 1), E{Λi(k) − w} = 0, and
E{(Λi(k)− w)2} = σ with σ > 0. Here, a DoS attack model
is established as

yattacki(k) = Λi(k)yi(k)

where if agent i is subjected to DoS attack, Λi(k) = 0;
otherwise, Λi(k) = 1.

Assumption 4 ( [17]): The time of successive DoS attacks
has a maximum upper bound Γ̄ ∈ Z+, that is, 0 ≤ Γ ≤ Γ̄.

To mitigate the effects of the attacks, an output compen-
sation scheme is formulated as

ycompi(k) = (1− Λi(k))yi(k
∗ + Γ|k∗)

A signal yai(k) consisting of the DoS attack and the output
compensation is designed as

yai(k) = yattacki(k)+ycompi(k)

= Λi(k)yi(k) + (1− Λi(k))yi(k
∗ + Γ|k∗) (4)

where k∗ denotes the last time instant that agent i success-
fully escaped the DoS attack, Γ stands for the times of the
successive attacks, and yi(k∗ + Γ|k∗) is designed later on.

The bipartite consensus error is defined as ei(k) =
siyr(k) − yi(k), and this paper aims to guarantee that the
NMASs realizes

lim
k→∞

ei(k) = lim
k→∞

(siyr(k)− yi(k)) ≤ υ, i ∈ V (5)

where yr(k) denotes the ouput of the virtual leader, υ is an
acceptable constant, and si is given in Section II-A.

Remark 2: Since υ is not equal to zero, the NMASs
finally realize bounded bipartite consensus. To facilitate the
expression, we briefly name bounded bipartite consensus as
bipartite consensus.

III. ET-RBC DEVELOPMENT AND ANALYSIS

Figure 2 shows an event generator and a compensator
designed to realize ET control and mitigate the effects of
the DoS attack, respectively, where all components of the
controlled systems are synchronous.
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Fig. 2. The diagram of the proposed ET-RBC.

The output of controller i will remind the same states
during no ET processes and will update the states at the

ET instant. The attack detector will monitor the information
at the ET instant. If agent i doesn’t obtain the information
from the communication network at the ET instant, attack
detector i will turn on the switch to make the compensator
i work and start to predict the missed data for agent i.

A. Event-triggered PPD Estimation Mechanism

To relieve the computational burden of the controlled
plants, an ET PPD estimation law is designed as

M̂i(k)=


M̂i(k − 1) + η∆ui(k−1)

u+∆u2
i (k−1)

(∆yi(k)

−M̂i(k − 1)∆ui(k − 1)), k = ki
M̂i(ki), ki < k < ki+1

(6)

where M̂i(k) is the estimation of Mi(k), ki is the time-stamp
of the last ET instant, 0 < η < 1, and u > 0. Besides, to
enhance the estimate ability of Eq. (6), a reset law is defined:

M̂i(k) = M̂i(1), if |M̂i(k)| ≤ δ or |∆ui(k − 1)| ≤ δ
or sign(M̂i(k)) 6= sign(M̂i(1)) (7)

where M̂i(1) is the initial condition of M̂i(k). δ is a constant,
which is often set as 10−3 or 10−4.

Theorem 1: If M̂i(k) is adjusted by laws (6) and (7), there
exist constants r̂ and r̃, ensuring |M̂i(k)| ≤ r̂ and |M̃i(k)| ≤
r̃ with M̃i(k) = M̂i(k)−Mi(k).

Proof: Case 1: k = ki. Here, Eq. (6) can be written as

M̂i(k) = M̂i(k − 1)+(∆yi(k)− M̂i(k − 1)∆ui(k − 1))

×η∆ui(k − 1)
/

(u+ ∆u2
i (k − 1)) (8)

Then, according to Theorem 2 in [15], we obtain that M̂i(k)
and M̃i(k) are bounded.

Case 2: ki < k < ki+1. Here, Eq. (6) becomes that

M̂i(k) = M̂i(ki) (9)

The boundedness of M̂i(ki) ensures the boundedness
of M̂i(k). Moreover, since Mi(k) is bounded, M̃i(k) is
also bounded, and there exist constants r̂ and r̃, satisfying
|M̂i(k)| ≤ r̂ and |M̃i(k)| ≤ r̃, respectively.

B. Output Predictive Compensation Mechanism

In this part, a gain predictive method is developed:

∆yi(k
∗ + Γ|k∗) = M̂i(k

∗)∆ui(k
∗ + Γ− 1|k∗) (10)

yi(k
∗ + Γ|k∗) = yi(k

∗ + Γ− 1|k∗)
+ ∆yi(k

∗ + Γ|k∗)
(11)

∆ui(k
∗ + Γ|k∗) = Hi(k

∗)(yr(k
∗ + 1)− yi(k∗|k∗)) (12)

where Hi(k
∗) = ρiM̂i(k

∗) /(λ + M̂2
i (k∗)), 0 < ρi < 1,

λ > 0, k∗ + Γ = k ≥ k∗, Γ stands for the number of the
successive attacks, and k∗ represents the last time instant that
the agent successfully escapes the DoS attack.

From Eqs. (10)-(12), an increment iterative compensation
method is developed as

∆ysi(k
∗ + Γ|k∗) = ∆ysi(k

∗ + Γ− 1|k∗)
+ ∆yi(k

∗ + Γ|k∗)
(13)
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where ∆ysi(k
∗ + 1|k∗) = ∆yi(k

∗ + 1|k∗).
Theorem 2: Using Eq. (11), Eq. (13), and Assumption 2,

it yields that ∆ysi(k|k∗) is bounded for k = k∗ + Γ > k∗.
Proof: According to Eqs. (11), (13), and (15), we have

∆ysi(k|k∗) = ∆yi(k
∗ + Γ|k∗) + ∆ysi(k

∗ + Γ− 1|k∗)
= yi(k

∗ + Γ|k∗)− yi(k∗|k∗) (14)

From Assumption 2, it is known that yi(k∗ + Γ|k∗) and
yi(k

∗|k∗) are bounded. Thus, it is known that ∆ysi(k|k∗) is
bounded for k > k∗.

After that, the output predictive compensation approach is
proposed as

yi(k
∗|k) = ∆ysi(k

∗ + Γ|k∗) + yi(k
∗ − 1) (15)

where yi(k∗ − 1) is the output of agent i at k = k∗ − 1.
From Eq. (15), it is noted that historical data can be used to
predict the lost data. Then, according to Assumption 2, Eq.
(15), and Theorem 2, we obtain a bounded variate ri(k∗|k)
leading to

yi(k) = yi(k
∗|k) + ri(k

∗|k) (16)

Substituting Eq. (16) into Eq. (4), it yields that

yai(k) = yi(k)− (1− Λi(k))∆i(k) (17)

where ∆i(k) = ∆ysi(k−1|k∗)+yi(k
∗−1)−yi(k−1|k∗)+

ri(k
∗|k) ≤ ∆̄ since of Theorem 2.

C. Observer-based event-triggered mechanism

Here, an observer is designed:

ŷai(k + 1) = ŷai(k) + M̂i(k)∆ui(k) + x
^
εyi(k) (18)

where ^
εyi(k)=ŷai(k) − yai(k), M̂p(k) is defined in Eq.

(6), and yai(k) is defined in Eq. (4). ŷai(k) and x are the
output and the feedback gain of the observer, respectively.
The observer error and the input gain error are formulated:

εyi(k) = ŷai(k)− ^
y i(k) (19)

ε∆i(k) = ∆ui(k)−∆
^
ui(k) (20)

where ^
y i(k) = yi(ki) and ∆

^
ui(k) = ∆ui(ki), ki ≤ k <

ki+1. Then, an ET condition is developed:

Θ(|ε∆i(k)|) >

√
θ(1− 4(1 + x)

2
)

4r̂2
|εyi(k)| or k − ki ≥ rk

(21)

where θ ∈ (0, 1), rk ∈ Z+, x ∈ (−1.5, −0.5), and r̂ is the
upper bound of M̂i(k), obtained by experiments. Moreover,
Θ(·) stands for the dead-zone operator structured:

Θ(|ε∆i(k)|) =

{
|ε∆i(k)|,

0,
|εyi(k)| > τ

otherwise (22)

where τ is the bound of εyi(k), which is derived later on.
Remark 3: Eq. (21) includes two different ET conditions.

The second condition, k−ki ≥ rk, is rarely developed, where
the operator can adjust rk to monitor whether there are faults

in the controlled plant. Moreover, from Eq. (22), it is noted
that during the process that |εyi(k)| 6 τ , whatever happened
the event will not be triggered. The parameter τ of the dead-
zone operator can be adjusted to reduce the number of ET
to balance the product features and costs and can overcome
a Zeno-like behavior of discrete-time systems [25].

Theorem 3: If system (1) is restrained by Assumptions 1-
2, Mi(k) is obtained by laws (6)-(7), and the ET conditions
obey Eqs. (21)-(22), the observer error εyi(k) is bounded.

Proof: According to Eqs. (2), (18), and (19), it yields

εyi(k+1) = (1 + x)εyi(k) + M̂i(k)ε∆i(k)

+ x(
^
y i(k)− yai(k))

(23)

Then, a Lyapunov function is structured as

Vi(k + 1) = ε2
yi(k + 1) (24)

and analyze the two different situations below.
Case 1: k = ki. Here, applying Eq. (20), it yields that

ε∆i(k)=0 and ^
y i(k)=yi(k). Applying Eqs. (17), (18), and

(23), it yields

εyi(k+1) = (1 + x)εyi(k) + x(w − Λi(k))∆i(k)

+ x(1− w)∆i(k)
(25)

Using Eq. (3), Eq (17), Eq. (25), and Young’s inequality, the
expectation of ∆Vi (k + 1) = Vi (k + 1)−Vi (k) is obtained:

E{∆Vi(k + 1)} ≤ −(1− 2(1 + x)2)ε2
yi(k)

+ 2x2(1− w)2∆̄2 + x2σ2∆̄2
(26)

If |εyi(k)| >
√

(σ + 2(1− w)
2
)x2∆̄2/(1− 2(1 + x)

2
)=τ ,

we have E{∆Vi(k + 1)} < 0, and we obtain that

−(
√

2 + 2)/2 < x < (
√

2− 2)/2 (27)

Case 2: ki < k < ki+1. Here, Eq. (25) becomes

εyi(k+1) ≤ (1 + x)εyi(k) + M̂i(k)ε∆i(k) + xΩ

+ x(w − Λi(k))∆i(k) + x(1− w)∆i(k)
(28)

where Ω ≥ |yi(ki)− yi(k)|. Eq. (26) becomes

E{∆Vi(k + 1)} ≤ −(1− 4(1 + x)2)ε2
yi(k)

+ 4r̂2ε2
∆i(k) +H1

(29)

where H1 ≥ 4x2Ω24x2+(1− w)2∆̄2 +x2σ2∆̄2. According
to Eq. (21), Eq. (29) can be rewritten as

E{∆Vi(k + 1)}
≤ −(1− θ)(1− 4(1 + x)2)Vi(k) +H1

(30)

According to θ ∈ (0, 1) and x ∈ (−1.5, −0.5), we can
obtain that 0 < (1− θ)(1− 4(1 + x)2) < 1. Thus, applying
Eq. (30) yields that εyi(k) is bounded.

Remark 4: From Eq. (29), it is found that if |εyi(k)| >√
(σ + 2(1− w)

2
)x2∆̄2/(1− 2(1 + x)

2
)=τ , it yields that

E{∆Vi(k + 1)} < 0, that is, if the observer error εyi(k)
exceeds τ , εyi(k) will be declined to less than τ . Hence, the
operator can adjust τ to obtain a corresponding εyi(k).
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D. ET-RBC Controller Design

A distributed combined measurement error function of
agent i is structured:

ζi(k) =
∑
j∈Ni

((aij)ŷaj(k)− |aij |ŷai(k))

+ bi(siyr(k)− ŷai(k))

(31)

where si and bi are presented in Section II-A, and ŷai(k)
is defined in Eq. (18). Then, the ET-RBC controller is
structured:

∆ui(k) =

{
ρiM̂i(k)ζi(k)/(λ+ M̂2

i (k)), k = ki
∆ui(ki), ki < k < ki+1

(32)

where ui(k) = ∆ui(k) + ui(k − 1), 0 < ρi ≤ 1, λ > r2/4,
M̂i(k) is designed in Eq. (6), and r is the controlled system
inherent property discussed in Assumption 2.

Remark 5: It is noted that Eq. (31) successfully transfers
the bipartite consensus issues to traditional consensus issues.
Moreover, only local information from the network is em-
ployed, so Eq. (32) is a distributed ET scheme that can reduce
computation costs.

Lemma 2 ( [18]): If J(φ) stands for a time-varying irre-
ducible substochastic matrix with positive diagonal entries,
0 < ‖J(φ)J(φ− 1) · · · J(1)‖ ≤ U < 1 holds for all
φ ∈ Z+.

Theorem 4: When NMASs (1) are subjected to the DoS
attacks, restricted by Assumptions 1-4 and ET conditions
(21)-(22), and governed by the proposed ET-RBC (32)
with the output compensation method (10)-(15) to conduct
bipartite consensus tasks, the bipartite consensus error of the
NMASs is bounded under the condition ρi < 1/(di + bi).

Proof: The following cases should be analyzed to prove
the boundedness of the bipartite consensus error.

Case 1: ki < k < ki+1. Here, from Eqs. (18) and (19),
it is found that the observer error increases since ŷai(k)
increases during the no ET processes. If the observer error
increases to exceed τ , the controlled system will enter the ET
processes. Hence, only the case k = ki needs to be analyzed.

Case 2: k = ki. Here, let êai(k) = siyr(k) − ŷai(k).
Then, applying Eq. (18) yields

êai(k + 1) = êai(k)− M̂i(k)∆ui(k)− x^
εyi(k) (33)

Meanwhile, Eq. (31) becomes

ζi(k) =
∑
j∈Ni

(aij êai(k)− |aij |êaj(k))+biêai(k) (34)

Then, let êa(k) = [êa1(k), ..., êaN (k)]T , ζ(k) =
[ζ1(k), ..., ζN (k)]T , and ^

εy(k) = [
^
εy1(k), ...,

^
εyN (k)]T .

From Eqs. (2) and (34), Eq. (33) becomes

êa(k + 1) = êa(k)− ρH(k)(L+B)êa(k)− x^
εy(k)

= (I − ρΨ(k))êa(k)− x^
εy(k) (35)

where H(k)=diag(H1(k), ...,HN (k)), ρ=diag(ρ1, ..., ρN ),
0 < Hi(k) = M̂i(k)M̂i(k)/(λ + M̂2

i (k)) < 1, and
Ψ(k)=H(k)(L+B). Then, from Eqs. (17), (19), we have

^
εyi(k)=εyi(k) + (1− Λi(k))∆i(k) (36)

Case 2.1: ET and DoS attacks. Here, Λi(k) = 0. Apply-
ing Eq. (36) yields that ^

εyi(k)=εyi(k) + ∆i(k). ^
εyi(k) is

bounded since |εyi(k)| 6 τ and |∆i(k)| 6 ∆̄.
Case 2.2: ET and no DoS attacks. Here, Λi(k) = 1. Ap-

plying Eq. (36) yields that ^
εyi(k)=εyi(k), and ^

εyi(k) is
bounded since |εyi(k)| ≤ τ .

To sum up, there exists a constant Ω satisfying
‖x^
εy(k)‖ ≤ Ω ∈ R+. Moreover, since the graph Ḡ of the

controlled NMASs is strongly connected, ρi < 1/(di + bi),
and 0 < Hi(k) < 1, we obtain that I − ρΨ(k) satisfies
the condition of Lemma 2 that I − ρΨ(k) is an irreducible
substochasitc matrix. Hence, taking norm from both sides of
Eq. (35) and according to Lemma 2, we obtain that

lim
k→∞

||êa(k + 1)|| 6 Ω/(1− U) (37)

where the details about Eq. (37) can be found in Theorems
3 and 4 of references [15], [21]. According to Eq. (5) and
êai(k) = siyr(k)− ŷai(k), we obtain that

ei(k) = êai(k) + εyi(k) (38)

Then, from Theorem 3, Eq. (37), and Eq. (38), we obtain
that the bipartite consensus error ei(k) is bounded.

Remark 6: From Eq. (38), it is found that the upper bound
of ei(k) is affected by êai(k) and εyi(k). lim

k→∞
||êa(k)|| 6

Ω/(1−U), where Ω/(1−U) is a constant. lim
k→∞

|εyi(k)| 6 τ ,
where the operator can adjust τ . Hence, the upper bound of
ei(k) can be adjusted by the operator.

IV. EXPERIMENTAL RESULTS

In this section, a hardware platform consisting of five
Quanser SRV02 units, three Q2-USB data acquisition de-
vices, and five VoltPAQ-X1 amplifiers, as shown in Fig.
3, is established to verify the effectiveness of the proposed
ET-RBC. Here, Quanser’s QUARC and MATLAB/Simulink
are employed as the code editor for the proposed ET-RBC,
where the sampling time is 1ms, and the SRV02 units are
connected as shown in Fig. 1. Moreover, the initial conditions
are configured as y1(1) = y4(1) = y5(1) = 3 rad/s and
y2(1) = y3(1) = −3 rad/s. Furthermore, the parameters are
configured as M̂i(1) = 2, x = −1, σ = 0.5, ∆̄ = 0.5
ρi = 0.2, η = 0.6, u = 0.5, λ = 1, δ=10−3, θ = 0.01,
r̂ = 35, and w = 0.8. The objective speed is configured as
yr(k) = 2− (−1)round(3k/10000) rad/s.

The performances of five SRV02 units shown in Fig. 4(a)
are worse than that of five SRV02 units shown in Fig. 4(b).
It demonstrates that the DoS attacks affect the performance
of the existing MFAC [20]. However, the proposed ET-RBC
effectively mitigates the effects of the DoS attacks. Moreover,
the numbers of ET of SRV02 units are 1777, 1882, 1766,
1863, and 1839, which means that the proposed ET-RBC
reduces about 81.7% communication energy for governing
the SRV02 units under DoS attacks to perform bipartite
consensus tasks. Besides, from the configurations of the
parameters, it is obtained that the definitional domain of τ is
[0, 0.29]. Then, the results are shown in Fig. 4(d). Here, as τ
increases, the number of ET decreases, that is, the operator
can adjust τ to balance the performances and costs.
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Fig. 3. Experimental system with five SRV02.
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Fig. 4. Performances of five SRV02 with DoS attacks.

V. CONCLUSIONS

This paper has developed a data-driven ET resilient bipar-
tite consensus approach for nonlinear NMASs under DoS
attacks and coopetition interactions. Sufficient conditions of
the designed method have been derived. The hardware tests
have been conducted, where the proposed scheme effectively
reduces communication resources and offsets the effects
of DoS attacks. Moreover, the operator can flexibly adjust
the number of ET to balance the performances and costs.
In future studies, the reduction of the effects of unknown
disturbances and time delays will be further considered.
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