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Abstract— In this paper we present a novel framework for
quickly detecting a change in a general dependent stochastic
process. We propose that any general dependent Bayesian
quickest change detection (QCD) problem can be converted into
a hidden Markov model (HMM) QCD problem, provided that
a suitable state process can be constructed. The optimal rule
for HMM QCD is then a simple threshold test on the posterior
probability of a change. We investigate case studies that can be
considered structured generalisations of Bayesian HMM QCD
problems including: quickly detecting changes in statistically
periodic processes and quickest detection of a moving target in
a sensor network. Using our framework we pose and establish
the optimal rules for these case studies. We also illustrate the
performance of our optimal rule on real air traffic data to
verify its simplicity and effectiveness in detecting changes.

I. INTRODUCTION

Quickest change detection (QCD) problems are concerned
with the quickest (on-line) detection of a persistent change in
the mode of a process, most commonly between a “normal”
and an “abnormal” mode. It is desirable to detect this change
quickly (as soon as possible) subject to a constraint on the
occurrence of false alarms. Information about the current
mode that the process is in (normal or abnormal) is extracted
from a series of quantitative observations (i.e., measurements
corrupted by noise) [1]. When the observations suggest that
the process is in the normal mode it is desirable to let the
process continue. However, if the observations suggest that
the process has changed then the aim is to detect this change
quickly. As such, with each new observation, there is the
decision of whether the process should continue or whether
it should stop and a detection declared.

QCD problems arise in a wide variety of applications
including quality control [2], and fault detection [2], [3].
There are various formulations of this problem that differ in
assumptions on the point of change and optimality criteria.
Early theoretical formulations for quickest change detection
were developed by Shiryaev who assumed that the change
point is a random variable with a known geometric dis-
tribution and the observations are independent and identi-
cally distributed (i.i.d.) [4]. Shiryaev established an optimal
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(stopping) rule that compares the posterior probability of a
change with a threshold. Shiryaev’s formulation has since
been extended to encompass non-geometrically distributed
change-times [5], [6] and dependent data (i.e., non-i.i.d.
observations) [5], [7]–[9]. These generalisations (as well
as Shiryaev’s original formulation) are known as Bayesian
formulations of QCD since the distribution of the change-
time is used as a prior for detecting its occurrence.

Despite various (generalised) Bayesian QCD formulations
appearing in the literature [6]–[8], establishing optimal de-
tection rules for dependent data and arbitrary change-time
distributions has remained a challenging problem and led
to the development of weaker asymptotic optimality results
that hold as the probability of false alarms vanishes. For the
general non-i.i.d. case, [5] was able to show that Shiryaev’s
rule is asymptotically optimal. For hidden Markov models
(HMMs), [9] was able to show that Shiryaev’s rule is
asymptotically optimal (under several regularity conditions).
The asymptotic results of [5], however, are developed under
conditions on the tail probabilities of the change-time dis-
tributions (and that the distributions of the change-times are
independent of the state of the pre-change process) whilst
[9] retains the strong geometric change-time conditions of
Shirayav’s original formulation. Recently [10] considered
QCD for HMMs in a Bayesian setting and proved that
Shiryaev’s rule is an exact optimal solution.

In this paper we present a framework for quickly detecting
a change in a general dependent stochastic process, propos-
ing that any general dependent Bayesian QCD problem can
be converted into an HMM QCD problem (which the optimal
solution was established in [10]), when a suitable state
process can be constructed. Specifically the key contributions
of this paper are:

• A framework for posing Bayesian quickest change
detection in general dependent stochastic processes as
Bayesian quickest change detection in HMMs.

• An algorithmic process for formulating and solving
Bayesian QCD problems as HMM QCD problems.

• Application of the framework and algorithmic process
to multiple case studies and in a real-world example.

The rest of this paper is organised as follows: In Section
II we formulate the Bayesian QCD problem, and in Section
III we present our framework. In Section IV we present our
case studies and real world examples. Finally, we provide
concluding remarks in Section V.
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Fig. 1: An example of a HMM QCD problem where Sb =
{eb1, eb2} and Sa = {ea1 , ea2 , ea3}. The arrows represent the
transitions of the HMMs.

II. PROBLEM FORMULATION

For k > 0, let yk ∈ Y be a sequence of (possibly
dependent) random variables taking values in the set Y ⊆
RN . We assume that the sequence yk potentially contains
an unknown (possibly random) change point ν ≥ 1 in the
sense that before the change point the conditional density of
yk given y[1,k−1] ≜ {y1, y2, . . . , yk−1} is f0

k (·|y[1,k−1]) for
k < ν and after the change point the conditional density is
f1
k (·|y[1,k−1]) for k ≥ ν. Under this change description, the

joint probability density function of the general dependent
process y[1,k] is given by

pν(y[1,k]) ≜
ν−1∏
i=1

f0
i (yi|y[1,i−1])

k∏
j=ν

f1
j (yj |y[1,j−1]) (1)

where we define the initial densities f0
1 (y1|y[1,0]) ≜ f0

1 (y1)

and f1
1 (y1|y[1,0]) ≜ f1

1 (y1), and if k < ν we define∏k
j=ν f

1
j (yj |y[1,j−1]) ≜ 1.

Significantly, the general dependent process model (1)
can be specialised to describe abrupt changes in a range of
important model classes in systems and control, including
state-space models and Markov chains (see for example [5],
[11]).

We observe yk sequentially with the aim of detecting a
change as soon as possible after the change time ν subject
to a false alarm rate constraint.

A. Bayesian QCD Problem Formulation

Before we formally state our Bayesian HMM QCD prob-
lem, let us first introduce a probability measure space. Let
Fk = σ(y[1,k]) denote the filtration generated by y[1,k]. We
will assume the existence of a probability space (Ω,F , Pν)
where we consider the set Ω consisting of all infinite se-
quences ω ≜ (y[1,∞]). Since Ω is separable and a complete
metric space it can be endowed with a Borel σ-algebra F =
∪∞k=1Fk with the convention that F0 = {0,Ω}, and Pν is the
probability measure constructed via applying Kolmogorov’s
extension theorem with the probability density function pν .

Under the Bayesian QCD formulation we consider the
change time ν ≥ 1 to be an unknown random variable
with prior distribution πk ≜ P (ν = k) for k ≥ 1. This

allows us to construct a new averaged measure Pπ(G) =∑∞
k=1 πkPk(G) for all G ∈ F and we let Eπ denote the

corresponding expectation operation. In this presentation,
the geometric prior πk = (1 − ρ)k−1ρ with ρ ∈ (0, 1) as
introduced by Shiryaev [4].

The classic formulation of Bayesian QCD seeks to find a
stopping time τ ≥ 1 that solves the following constrained
optimisation problem

inf
τ∈T (α)

Eπ

[
(τ − ν)+

]
(2)

where (τ − ν)+ ≜ max(0, τ − ν) and T (α) ≜
{τ : Pπ(τ < ν) ≤ α} denotes the set of stopping times sat-
isfying a given probability of false alarm constraint α ∈
(0, 1− ρ).

Alternatively, the Bayesian relaxation is to design a stop-
ping time τ ≥ 1 with respect to the filtration generated by
y[1,k] that minimises the following cost

J(τ) ≜ cEπ

[
(τ − ν)+

]
+ Pπ(τ < ν), (3)

where c is the penalty at each time step before declaring an
alert at τ . If c can be found such that the solution to (3)
achieves the probability of false alarm constraint constraints
α with equality (that is, Pπ(τ < ν) = α) then a standard
saddle-point argument [12, p. 220-1] establishes the duality
gap is zero and the solution to (3) is also the solution to (2).

III. PROPOSED FRAMEWORK

We now present our proposed framework for detecting a
change in a general dependant process. Our framework is
applicable to the broad class of general dependent stochastic
processes with an underlying state process which can be
modelled as a Markov chain (either exactly or estimated)
and conditioned on the underlying states, the observations
are conditionally independent.

A. State and Observation Process

To present our framework, consider two finite state spaces
before-change Sb ≜ {eb1, . . . , ebNb

} and after-change Sa ≜
{ea1 , . . . , eaNa

} where ebi ∈ RNb and eai ∈ RNa are indicator
vectors with 1 in the ith element and zeros elsewhere, and
Nb ≥ 1 and Na ≥ 1 are two integers. Consider also a process
Xk for k ≥ 0 that is able to randomly transition between
states in the space of the current stage (within Sb or Sa) or
able to transition to a state in the space of the next stage
(e.g., from Sb to Sa) as seen in Figure 1. Here, Xk starts in
the before stage; that is, X0 ∈ Sb with probability p(X0).

For k < ν, Xk ∈ Sb can be modelled a first-order
time-homogeneous Markov chain described by the transition
probabilities Ai,j

b ≜ P (Xk+1 = ebi |Xk+1 ∈ Sb, Xk = ebj)
for 1 ≤ i, j ≤ Nb. At some unknown time k = ν the process
Xk transitions between stages in the sense Xν−1 ∈ Sb and
Xν ∈ Sa according to state change probabilities Ai,j

ν ≜
P (Xk+1 = eai |Xk+1 ∈ Sa, Xk = ebj) for 1 ≤ i ≤ Na and
1 ≤ j ≤ Nb. For k > ν, Xk ∈ Sa can be modelled as
a first-order time-homogeneous Markov chain described by



the transition probabilities Ai,j
a ≜ P (Xk+1 = eai |Xk+1 ∈

Sa, Xk = eaj ), for 1 ≤ i, j ≤ Na.
Working under the average measure, noting the change

time ν = inf{k ≥ 1 : Xk ∈ Sa}, we now consider the
situation where process (1) can be modelled as

pπ(y[1,k])=
∑
X[0,k]

pπ(X[0,k])

ν−1∏
i=1

bb(yi, ζ(Xi))

k∏
j=ν

ba(yj , ζ(Xj)).

(4)
where ζ(ei) ≜ i returns the index of the non-zero element of
an indicator vector ebi or eai and bb(yk, i) ≜ P (yk|Xk = ebi )
for 1 ≤ i ≤ Nb and k < ν, and ba(yk, i) ≜ P (yk|Xk = eai )
for 1 ≤ i ≤ Na and k ≥ ν, with

pπ(X[0,k]) = p(X0)A
ζ(Xν),ζ(Xν−1)
ν

ν−1∏
i=1

A
ζ(Xi),ζ(Xi−1)
b

×
k∏

j=ν+1

Aζ(Xj),ζ(Xj−1)
a

via the definition of Xk as a time-homogeneous Markov
chain, with initial condition p(X0), using X[0,k] ≜
{X0, . . . , Xk}.

Then, with a slight adjustment of the construction of the
sample space Ω to include infinite sequences X[0,∞], we
propose converting from (1) to the (4) process model i.e.,
converting the dynamics of a system to an HMM. This in-
volves either uncovering exactly or via system identification
approaches (such as in [13] but many exist) the underlying
state and measurement processes. When this construction
is possible, the posed QCD problem (3) can be embedded
with an augmented HMM representation as shown in the
following section.

B. Augmented HMM

As some machinery for our framework, we define a new
augmented state process Zk ∈ S where S ≜ {e1, . . . , eN}
where ei ∈ RN (are indicator vectors with 1 in the ith
element and zero elsewhere) and N = Nb + Na. This
augmented state process combines the information of Xk

and ν as follows. For k < ν, Zk ∈ S is defined as

Zk ≜

[
Xk

0a

]
,

and for k ≥ ν as

Zk ≜

[
0b

Xk

]
.

where 0b and 0a are the zero vectors of size Nb

and Na, respectively. Following [10] Lemma 1 we note
that the augmented process Zk is a first-order time-
homogeneous Markov chain with transition probabilities
Ai,j ≜ Pπ(Zk+1 = ei|Zk = ej) that can be written as

A =

[
(1− ρ)Ab 0b×a

ρAν Aa

]
(5)

where 0b×a is a Nb×Na matrix of all zeros. Moreover with
measurement matrix Bj,j(yk) ≜ Pπ(yk|Zk = ej) of

B(yk) = diag(bb(yk, 1), . . . ,
bb(yk, Nb), ba(yk, 1), . . . , ba(yk, Na))

(6)

then (Zk, yk) are the state and observation processes of a
hidden Markov model with transition matrix A and mea-
surement matrix B.

We let Ẑi
k ≜ Pπ(Zk = ei|y[1,k]) denote the posterior

probabilities of being in each of the states of Zk with initial
conditions Ẑ0, where Ẑi

0 = P (Z0 = ebi ) for i ∈ {1, . . . , Nb}
and Ẑi

0 = 0 elsewhere. We can define the operation M(Z) ≜∑Nb

i=1 Z
i and no change posterior M̂1

k ≜ M(Ẑk).
The optimal Bayesian QCD rule is then a simple threshold

test
τ∗ = inf{k ≥ 1 : M̂1

k ≤ h} (7)

presented in [10] in Theorem 1. We note that detection range
and false alarm performance vary with the choice of the
threshold parameter h. In practice, detection thresholds are
often experimentally selected for a particular application or
adaptively selected such as proposed in [14] on the basis of
scene difficulty for vision based aircraft detection. The test
statistic M̂1

k can be calculated via the HMM filter recursion
[15] of our augmented HMM as

Ẑk = NkB(yk)AẐk−1 (8)

with scalar normalisation Nk ≜ ⟨1, B(yk)AẐk−1⟩−1 where
1 is the N×1 vector of all ones. Algorithm 1 describes how
to implement our optimal stopping rule (7) on a sequence of
measurements {y1, . . . , yk}.

Algorithm 1 Implementation of the Optimal Rule (7)

Require: {P (X0 = ei1)}, {b(·, ·)}, Ab, Aa, Aν & ρ (found
either exactly or through system identification techniques)

Require: h ∈ (0, 1) (selected for desired balance between
detection delay and probability of false alarms)
X̂i

0 ← P (X0 = ei1) for i ∈ {1, . . . , N(1)}
Ẑ0 ← [X̂ ′

0, 01×Nb
]′

A← Ab, Aa,Aν & ρ using (5)
repeat when yk arrives

B(yk)← yk using (6)
Ẑk ← B(yk) & Ẑk−1 using (8)
M̂1

k ←
∑Nb

i=1 Ẑ
i
k

until M̂1
k ≤ h return τ = k using (7)

Simply, our framework involves the following:
• Seek to find or estimate an underlying state and mea-

surement process that, conditioned on the underlying
states, the observations are conditionally independent.

• Build up an augmented HMM QCD representation to
embed the process.

• Apply existing HMM QCD optimal results from [10]
which is a threshold test on the posterior.

We assume that the pre-change and post-change distribu-
tions are known exactly. However, our framework is still of



Fig. 2: An example of QCD in periodic processes case as
a HMM detection problems, where T1 = 2 and T2 = 3.
The probability of transitioning between the two HMMs is
ϱ and the probabilities of transitioning between the states is
represented in Aν .

value when this assumption does not hold since both the
HMM filter and Bayesian detector are known to degrade
gracefully (in terms of performance) in the presence of model
uncertainty and mismatch, as shown in [16] and [17]. For
example, it opens the possibility of employing asymptotically
minimax robust Bayesian QCD solutions when there is un-
certainty about the parameter of the post-change conditional
densities (cf. [17]).

IV. CASE STUDIES

In this section we apply our proposed framework and
elegantly establish optimal rules for important quickest de-
tection problems by showing that they are structured versions
of the general HMM QCD problem solved in [10]. We
also illustrate the performance of our optimal rule on real
air traffic data to verify its simplicity and effectiveness in
detecting changes.

A. Case Study 1: QCD in Statistically Periodic Processes.

Periodic behaviour is present in a wide variety of applica-
tions including: power grid monitoring where the usage of
power varies with low usage during the nighttime hours and
high usage during the daytime hours [18], traffic monitoring
where the intensity of traffic has a periodic behaviour over
days and weeks [19], neural spike patterns in brain-computer
interface studies, social networks, and many more [19].
This problem of QCD in a statistically periodic process
is considered in [19] where they established an algorithm
that can asymptotically minimise the average detection delay
subject to a constraint on the probability of false alarm.
More recently this problem is considered in [20] where they
were able to show that a stopping rule based on a periodic
sequence of thresholds is exactly optimal for their associated
cost under some strict constraints including the pre- and
post-change cycles are the same length and synchronised.
A contribution of this paper is establishing that an optimal
rule for QCD of statistically periodic processes is a simple
threshold test (improving the results of [19] which only
determined asymptotic optimality, and without the cycle
constraints of [20]).

1) Optimal Result: Here we follow the notation of [19]
and set up our model of an independent and periodically
identically distributed (i.p.i.d) stochastic process. Consider a

random variable yk that is independent and has density fk
for k ≥ 1, with period T1 such that fk+T1 = fk ∀k ≥ 1. We
aim to detect a deviation from this periodic behaviour.

Let us consider another set of densities gk for k ≥ 1, with
period T2 such that gk+T2 = gk ∀k ≥ 1. We assume that at
an unknown changes time ν, the process yk changes from be-
ing governed by periodic statistical properties (f1, . . . , fT1

)
to being governed by the new set of densities (g1, . . . gT2

),
where the probability that the modified behaviour begins at
a specific location i in the cycle of the densities (g1, . . . gT2)
is given by the probability mass function pg(i) for i ∈
{1, . . . , T2}. It is assumed the prior distribution of the change
event at time k is described by a geometric prior (1−ρ)k−1ρ,
for some ρ ∈ (0, 1), as introduced by Shiryaev in the context
of the QCD problem [4].

Note that the densities (g1, . . . gT2
) need not be all differ-

ent from the set of pre-change densities (f1, . . . , fT1
), but

we assume that there exists at least one such that gi ̸= fi
for some i. Our goal is to quickly detect when yk ∼ gk by
seeking to design a stopping time that satisfies our desire to
detect this change as early as possible subject to a constraint
on false alarms.

We now show that the problem of quickly detecting a
change in a periodic process can be considered a structured
version of the HMM QCD problem and is solved by the
optimal rule established in Theorem 1 [10].
Theorem 1. For QCD in statistically periodic processes
described in Section IV-A under the cost criterion (3), there
is an optimal rule with stopping time τ∗, and threshold point
h ≥ 0 given by

τ∗ = inf{k ≥ 1 : M̂1
k ≤ h}. (9)

Proof. Let us define our set of periodic spaces Sb =
{eb1, . . . , ebNb

} and Sa = {ea1 , . . . , eaNa
} where Nb = T1

and Na = T2. For k > 0, we consider a random process
Xk whose statistical properties change at some (unknown)
time ν > 1, in the sense that for 0 < k < ν, Xk ∈ Sb,
whilst for k ≥ ν, Xk ∈ Sa. As seen in Figure 2, we model
transitions of Sb as a first-order time-homogeneous Markov
chain described by the Ai,j

b . Note that due to the constrained
nature of the periodic problem Ai+1,i

b = 1 for 1 < i < Nb

and A1,Nb

b = 1, and all other elements 0. For Xk ∈ Sa

transitions between elements of Sa can also be modelled
as a first-order time-homogeneous Markov chain described
by the transition probability Ai,j

a , for 1 ≤ i, j ≤ Na. Once
again, due to the constrained nature of the periodic problem
Ai+1,i

a = 1 for 1 < i < Na and A1,Na
a = 1.

At time k = ν, with probability ρ, the process transitions
between sets according to state change probabilities Ai,j

ν =
pg(i) for 1 ≤ i ≤ Na, and 1 ≤ j ≤ Nb.

Finally, for each k > 0, Xk is indirectly observed
via measurements yk generated by conditional observation
densities bb(yk, i) = fi for 1 ≤ i ≤ T1 and k < ν and
ba(yk, i) = gi for 1 ≤ i ≤ T2 and k ≥ ν. This periodic
process QCD problem can be represented as an augmented
HMM as presented in Section III-B with constrained transi-
tions, and has change event having a state independent prior
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Fig. 3:
(Top) the air traffic counts for days of the week starting the

1st of June 2022. The black dashed lines signify a new
week. (Bottom) the test statistic of our optimal rule (7)

(inverted for presentation) which detects that a change has
occurred on the 3rd of July 2022 with an experimentally

selected threshold of h = 0.6.

πk = (1 − ρ)k−1ρ for some ρ ∈ (0, 1). Applying Theorem
1 [10] thus gives the optimal stopping rule as (9).

This exactly optimal result improves on the asymptotic
results of [19] without the strict cycle constraints of [20].

2) Example on Real Data: We now apply our optimal
rule to real data to demonstrate its effectiveness in detecting
changes. We applied our data to flight counts of daily air traf-
fic in Brisbane, Queensland, Australia (freely accessible via
https://opensky-network.org/). We estimated the pre-change
distributions Nb = 7 (from eb1 = Monday to eb7 = Sunday) as
Gaussian using aircraft counts from training data collected
between 6th July - 31st August 2022. For the post-change
distributions we set Na = 2 possible post-changes states
that were 50 counts above and below the mean pre-change
aircraft count. We set the state transitions as

Ab =



0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0


, Aa =

[
1 0
0 1

]
and

Aν =

[
0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5

]
.

We calculated the test statistic via the HMM filter (8).
Figure 3 (top) shows the air traffic counts for days of

the week starting the 1st of June 2022 to the 5th of July
2022. The counts exhibit periodic behaviour over several
weeks (weeks are illustrated by the black dotted lines).
There is a change in the periodic behaviour from the 3rd
of July 2022, where the aircraft count appears to trend
lower. We believe this corresponds to the July floods [21]
which would have impacted flights and runways. Figure 3
(bottom) illustrates our optimal rule (7) in blue (note we have
inverted the test statistic for presentation), and a threshold

Fig. 4: An example of quickest detection of a moving target
in a sensor network, where L = 3.

of h = 0.6 (experimentally selected). Our optimal rule
effectively detects this change in aircraft counts on the 3rd
of July 2022 (counts appeared to revert to normal after the
6th of July, hence their use as pre-change training data).

B. Case Study 2: Quickest detection of a Moving Target in
a Sensor Network

The problem of quickly detecting a moving target in a
sensor network is significant in various important applica-
tions including intrusion detection in computer networks and
security systems [22]. In [22] it is established that a win-
dowed test based on a generalised likelihood ratio approach
is asymptotically optimal for quickest detection of a moving
target in a sensor network. A contribution of this paper is
establishing that the optimal Bayesian rule for QCD of a
moving target in a sensor network is a simple threshold test (a
non-Bayesian version of this problem is considered in [22],
a Bayesian approach may be advantageous in applications
with prior information or mean time to failure constraints).

1) Optimal Result: Following [22], we formulate the
moving target QCD problem. Consider a sensor network of
L nodes denoted by L = {1, . . . , L}. Let yk = [y1k, . . . , y

L
k ]

′

denote the observation vector at time k where yℓk denotes
the measurement obtained by sensor ℓ ∈ L at time k. For
simplicity of presentation, we consider yℓk as scalar but these
results can be generalised for more complex measurements.
The samples obtained by sensor ℓ are i.i.d. according to
a f ℓ

b (·) for all ℓ ∈ L and are independent across different
sensors. For k < ν, the joint density of y[1,k] is thus

fb(y1, . . . , yk) =

k∏
j=1

L∏
i=1

f i
b(y

i
j) (10)

At time ν a target appears and, at each time instant k ≥
ν, one of the sensors is affected by the target which we
denote by Sk ∈ L. It is assumed the prior distribution of
the target’s appearance is geometric. At the change time, ν,
the probability that the target appears at a specific node i is
given by the probability mass function pL(i). Conditioning
on Sk the joint distribution of yk is given by

f ℓ(yk) ≜

∏
i̸=ℓ

f i
b(y

i
k)

 f ℓ
a(y

ℓ
k) (11)

where f ℓ
a(·) denotes the density of the affected sensor ℓ. We

highlight that at each time instant there is only one target



affected and the affected sensor changes with time as the
target moves around the sensor network. Such that, if an
affected sensor ℓ becomes unaffected, then its distribution
goes back to its pre-change model. We make the assumption
that as the target moves around in the network the affected
sensor evolves as a Markov chain. Our goal is to quickly
detect when a sensor in the network is affected by the target.
To do this we seek to design a stopping time that satisfies
our desire to detect this sensor as early as possible subject
to a constraint on false alarms.

We now show that the problem of quickly detecting a
moving target in a sensor network can be considered a
structured version of the HMM QCD problem and is solved
by the optimal rule from Theorem 1 [10].

Theorem 2. For quickest detection of a moving target in a
sensor network with pre- and post-change densities described
by (10) and (11) respectively. Then, for the cost criterion (3),
there is an optimal rule with stopping time τ∗, and threshold
point h ≥ 0 given by (9).

Proof. We first define our spaces. As seen in Figure 4, let us
model Sb ≜ {eb1} where none of the sensors are affected as
a single state HMM and Sa ≜ {ea1 , . . . , eaNa

} where Na =
L to represent the L possible states that the target could
be. For example let ea1 denote when the target is affecting
sensor ℓ = 1. For k > 0, we consider a random process Xk

whose statistical properties change at some (unknown) time
ν > 1, in the sense that for 0 < k < ν, Xk ∈ Sb, whilst for
k ≥ ν, Xk ∈ Sa. We model transitions of Sa as a first-order
time-homogeneous Markov chain described by the Ai,j

a , for
1 ≤ i, j ≤ Na.

At time k = ν, with probability ρ, the process transitions
between sets according to state change probabilities Ai,j

ν =
pL(B(i)) for 1 ≤ i ≤ Na, and 1 ≤ j ≤ Nb. Finally, for
each k > 0, Xk is indirectly observed by measurements yk
generated by conditional observation densities bb(yk, 1) =
fb(yk) when k < ν and ba(yk, i) = f ℓ(yk) for 1 ≤ i ≤
Na and k ≥ ν. Given that this process can be represented
as an augmented HMM as presented in Section III-B with
constrained transitions, and has change event having a state
independent prior πk = (1 − ρ)k−1ρ for some ρ ∈ (0, 1),
we can apply Theorem 1 [10] which gives that our optimal
stopping rule is (9).

This exactly optimal result contrasts with the non-
Bayesian asymptotic result of [22]. This optimal rule ad-
ditionally has an efficient recursive form compared to the
non-recursive GLR rule of [22].

V. CONCLUSION

In this paper we presented a framework for quickly detect-
ing a change in a general dependent stochastic process and
a process for converting a general dependent QCD problem
into an HMM QCD problem. We investigated case studies
and established that these change detection problems are
structured generalisations of the HMM QCD problem and
can be exactly solved by the optimal HMM QCD rule which

is a threshold test on the posterior efficiently calculated via
a HMM filter recursion.
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