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Scalable, Pairwise Collaborations in Heterogeneous Multi-Robot Teams
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Abstract—This paper introduces a finite state machine
(FSM) for encoding collaborative interactions among robots.
The resulting novel architecture is particularly designed with
heterogeneous multi-robot teams in mind, where pairwise
collaborative arrangements can result in new capabilities for
the participants. To ensure scalability, the proposed FSM’s
complexity does not depend on the overall team size for
individuals’ decisions. Additionally, we explore various selection
strategies to facilitate the pairing of robots and demonstrate
the framework’s efficacy on a team of mobile robots with tasks
requiring collaboration for their successful completion.

I. INTRODUCTION

Heterogeneous multi-robot systems can be found in a
multitude of settings, including applications such as cooper-
ative transportation [1], coverage control [2], environmental
monitoring [3], or search and rescue [4]. Typically, hetero-
geneous teams are deployed to achieve complex objectives
that require resilient and distributed solutions [5].

The standard approach to heterogeneous robot teams is
to divide them into subteams based on their capabilities
and then have these teams coordinate their activities with
each other to try to complete the overall mission [6]. This
approach works well in many scenarios, but the arrangement
does not typically lead to truly new capabilities in that the
robots do not obtain new functionalities through collabo-
ration that did not already manifest individually. However,
heterogeneous robots can acquire new capabilities when
working together, as observed in [7], [8]; e.g., a strong
robot could help launch a small robot through a window,
or an amphibious vehicle could ferry a ground robot across
a waterway.

One way to capture the capabilities of various types of
robots is through control barrier functions (CBFs), whose
purpose is to ensure that a dynamical system remains within
a safe set [9]. Through collaborative arrangements, these sets
can be made to expand as a function of the new capabilities
[10]. If a robot finds itself in a situation where help is
required, e.g., to traverse a region it could not by itself, it
needs to expand its safe set through collaboration and must
recruit a suitable teammate to make this happen. One way
to approach this type of pairwise collaborative scenario is
to enumerate all possible collaborations each robot might
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participate in. But that would result in a decision-making
strategy whose complexity grows with the total team size,
which should be avoided in large teams [11].

We approach this problem of scalable, pairwise interac-
tions through a finite state machine (FSM) model [12]. Such
FSMs have been extensively employed as decision-making
formalisms to encode intricate robot behaviors [13]-[15]. To
that end, we propose a novel and scalable architecture for
pairwise collaborations in teams of heterogeneous robots,
employing an FSM for decision-making together with a
centralized queue to assign pairwise collaboration partners.

This letter builds upon the work developed in [10], where
the idea of encoding pairwise collaborations through CBFs
was introduced. The main contribution of this letter is in
the proposed architecture — an FSM design that results
in scalable decision-making, i.e., each individual’s FSM is
independent of the overall team’s size, and a centralized
queue, termed the “‘help queue”, to form suitable collabora-
tive arrangements between help-needing and help-providing
robots based on the preferred selection prioritization strategy
of a user.

The remainder of this letter is organized as follows:
Section II shows how one can enumerate all pairwise collab-
orative interactions for robots in a team using FSMs, together
with the relevant background material on multi-robot collab-
oration using barrier functions. Section III provides a scalable
decision model that utilizes an FSM for encoding pairwise
collaborations between heterogeneous robots. Section IV
explores different selection prioritization strategies using a
centralized queue to match robots for pairwise collabora-
tions. Section V demonstrates the proposed collaborative
control architecture on a team of mobile robots, and Section
VI contains concluding remarks.

II. BACKGROUND

This section shows how FSMs can be applied to describe
pairwise collaborations between robots, together with the
relevant background on barrier functions for use in scenarios
of multi-robot collaboration, as was done in [10].

A. Enumerating Pairwise Collaborations

Consider the setting of /N robots placed into M distinct
categories based on capability, where each robot can accom-
plish a specific task in its safe operating region. Safety, as
will be further elaborated on in Section IIB, defines the part
of the state space where a robot can operate without help,
e.g., the regions that a robot can traverse effectively by itself.
Moreover, by exploiting the capabilities of others, individual
robots can expand the areas in which they can operate



Fig. 1: Aquatic robot 1’s FSM: Enumerates all possibilities, every individual
and pairwise collaboration discrete state, for the scenario of N robots placed
into aquatic or ground (M = 2) capability categories.

safely by collaborating. What collaboration entails is the
ability to enhance an individual’s capabilities by exploiting
the functionalities of another robot type. For example, an
aquatic robot can ferry a ground robot across water, whereas
a ground robot can carry an aquatic robot over land.

Given this setup, the pairwise collaborations between
heterogeneous robots can be encoded through an FSM —
represented as a 5-tuple (E, =, &, d, IT) [12]; where E is the
set of events (finite and non-empty), = is the set of discrete
states (finite and non-empty), £y € = is the initial discrete
state, § : = x E — = is the discrete state transition function
which provides a map from the current to a new discrete state
within the FSM, and II C = is the set of final (or terminal)
discrete states (finite and possibly empty), where no further
discrete state transitions are performed by the FSM once
£ell

Consider an example scenario with /N robots placed into
M = 2 capability categories. Specifically, we consider n
ground robots (abbreviated by ‘g’) and m aquatic robots
(abbreviated by ‘a’) such that N = n 4+ m. In Fig. 1, we
enumerate all possibilities for an aquatic robot, i.e., every
individual or pairwise collaboration discrete state, where the
discrete states that the robot ¢ can operate in are:

o W;, ‘Wait’: Robot 7 waits for a task to be assigned;

o I;, ‘Individual Task’: Robot ¢ attempts to complete its

task by itself;

o S/, ‘Stuck’: Robot i is unable to progress towards their

task, so it awaits the help of robot j;
o R}, ‘Receiving Help’: Robot i receives help from robot
Js

« Aj, ‘Approach’: Robot i approaches robot j, who is

unable to progress towards their task, to help it;

. PJ?, ‘Providing Help’: Robot ¢ provides help to robot j.
Here, we adopt the notational convention that superscripts
and subscripts of the discrete states denote the robot provid-
ing and receiving help, respectively. Furthermore, for each
robot’s FSM, such as the one outlined in Fig. 1, we designate
W, as the initial discrete state and the only final discrete state,
ie., & = W; and II = {WW,}, respectively.

The FSM’s discrete states can be related to the collab-
oration framework in [10], which proposed three high-level
operating modes: ‘Individual Tasks’ (mode ¢;; robots attempt
to complete their tasks independently), ‘Collaboration Setup’
(mode g5; robots prepare themselves for pairwise collabora-
tion), and ‘Collaborative Act’ (mode g3; robots work together
such that a robot can expand its safe operating region). In
particular, mode g; corresponds to the discrete state I;, while
mode g2 corresponds to the discrete states Sf and A;, and
mode g3 to the discrete states Rf and Pj for robot 1.

The FSM complexity for the aquatic robot in Fig. 1 and
a ground robot, whose FSM can be defined similarly to Fig.
1, is taken as the total number (cardinality, | - |) of discrete
states [16], given by

Eul=2+2n+2n+2(m—-1)+2(m—-1), (1)

AN -2,
Eql=24+2m+2m+2(n—-1)+2(n—-1), (2
— 4N -2,

respectively. As such, we have

|Ea1| = O(N)a 3
Zg,| = O(N), 4)

i.e., linear complexity. In other words, each robot’s FSM
complexity is a function of the overall team size. Moreover,
the individual robots must perform their selection computa-
tions locally, which is also a function of the overall team size.
However, this is not a desirable quality in scalable algorithms
[11]. To that end, what is needed is an alternative formulation
to overcome this issue, which we will discuss in Section III.

B. Modes of Operation

We have just seen how the decision-making mechanism
of the individual robots can be captured by an FSM, albeit,
currently, one that exhibits a too great complexity. However,
before introducing the new, scalable FSM design, we must
first formally define the robots’ discrete states, £ € =, and
events, e € E, using barrier functions, as was similarly done
in [10].

Assume, as before, that there are N robots, with N/ =
{1,..., N} (index set of robots), placed into M different
capability categories. We suppose that the dynamics of each
robot i € N is given by

& = fiq, (%) + Giq, (Ti)Us, )

where x; € X; C R% is the (continuous) state and u; € U; C
RPi is the control input. Additionally, ¢, € {q1,¢2,q3} are
the collaboration framework’s high-level operating modes,
and f; q, (i), giq,(z:) are locally Lipschitz vector fields
that can exhibit a different structure within each operating
mode; e.g., the dynamics of a ground robot and an aquatic
robot working independently may differ from when a ground
robot carries an aquatic robot.

Moreover, when viewed in isolation, robot ¢ can operate
effectively in its safe region, S;; the zero-superlevel set to a
continuously differentiable function, h; : X; — R, known as



a control barrier function (CBF) [9]. For our problem setting,
CBFs are used to capture the safe regions that robot ¢ can
operate in by itself. Then, as long as robot ¢ is initialized
within its safe set, i.e., z;(tp) € S;, forward invariance of
the safe set can be ensured, provided that

hi(zi, i) > —a(hi(x;)) (6)
is satisfied for all time, where «(-) is an extended class K
function [17].

However, the safe operating region of robot ¢ can expand
due to the presence of other robots. By assuming robot
interactions are pairwise, the influence that robot j at x;
has on robot 7 at x; can be captured through the pairwise
barrier function h;;(z;, ;). The use of pairwise CBFs is
not new, e.g., collision avoidance [18], [19], but they are
defined differently here. In particular, h;;(z;, ;) is positive
if the collaboration between robots is potentially helpful in
the states x; and x; when robot ¢ belongs to its unsafe region,
ie., hl(l'z) < 0.

The individual and pairwise barrier functions can then be
composed to form a new barrier function, where robot ¢ can
be made safe due to the help of robot j, given by

Hi(zi,x5) = hi(x;) + hij(xq, x5), (N

as done in [10].
The new safe set for robot ¢, which includes the regions
that a particular robot j can help robot i, is defined as

Sij ={xi € Xj| Fxj € & s.t. Hi(wy,x5) >0} C A (8)

The existential quantifier, 3, encodes that if a particular
robot j is in the state x;, the corresponding state x; for
robot ¢ would be rendered safe thanks to robot j’s help. The
interpretation is that a region can be made safe if a suitable
collaborative arrangement can be identified.

Next, we introduce the nominal dynamics of robot i, i.e.,
the behavior it would exhibit when attempting to accomplish
its objective within mode ¢; (‘Individual Tasks’) while
ignoring safety constraints, given by

Tj nom = fi,q1 (JUL) + Gi,qu (xi)ﬂia &)

where 4; is robot ¢’s nominal controller.

For each high-level operating mode, it is assumed that
the individual robots, either help-providing or help-needing,
have a nominal controller, #;, designed to have them progress
towards an objective without considering any safety con-
straints. For example, @; when & = Pj (‘Providing Help’)
may differ from 4; when & = Rg (‘Receiving Help’) in
mode ¢s.

Now, we define the event-triggered collaboration signal
condition, given by

<Vhi(xi)7:ti,n0m> <0 A hz(ifz) = 0, (10)

which enables robot ¢ to discern if it requires assistance.
Namely, (10) provides a robot with the ability to check if
it would enter an unsafe region when following its nominal
dynamics, &; nom, While on the boundary of its safe set, 9S;.

At last, we can formally describe robot ¢’s discrete states,
& € =;, from the FSM discussed in Section IIA, to be

Wi 1 =0Ahi(x;) >0 (11)
I 1 =1Ahi(x;) >0 (12)
S): i =1ATi=1Ahi(z;) =0Ahi(z;) >0A (13)
hij(xi,z;) =0 A(Vhi(z;), i nom) < 0;
R : 7 =1ATj=1Ahi(z;) <OAhj(z;) >0 A (14)
hij(xi, x5) > 0N Hi(z,25) > 0;
Al i =1AT =1Ahi(z;) > 0Ah(z;) =0 A (15)
hji(xzj,x;) =0 A(Vhj(z;),Z)nom) <0;
Pl =1A7; =1Ahi(z;) > 0Ahj(z;) <OA (16)
hji(xj,x;) > 0N Hj(z;, ;) > 0;

where 7; € {0,1} is a logical variable representing whether
or not robot ¢ has an assigned task. Moreover, for the discrete
states A; and P; (or S} and R}), we let 7, = 1 (or
7; = 1) if there is an unaccomplished objective or a pairwise
collaboration assignment for robot ¢ (or robot j).

As previously mentioned, the discrete states are con-
stituents of the collaboration framework’s high-level oper-
ating modes: ¢, € {qi,q2,q3}. That is, §& € {I;} for
mode ¢; (‘Individual Tasks’); &; € {Sf,A;} for mode ¢
(‘Collaboration Setup’); and &; € {Rf 7Pj} for mode ¢3
(‘Collaborative Act’). For instance, robot ¢ will transition
from mode ¢; to qo, i.e., from I; to Sf or from I; to A;,
when either the conditions in (13) or (15) hold; robot i will
transition from mode g3 to g3, i.e., from S} to R’ or from
A’ to P}, when either the conditions in (14) or (16) hold;
and robot ¢ will transition from mode g3 to g1, i.e., from Rf
to I; or from P; to I;, when the conditions in (12) hold.

It is important to note that the pairwise partners undertak-
ing a collaborative endeavor must first be identified before
robots can operate in either mode ¢o or gs. Section IV
provides details on how such robot pairings for collaboration
can be made.

To guarantee the robots remain safe, we impose a certifi-

cate of safety, which, for robot ¢, is given by
Hi(x,u) > —a(H;(z)), a7

where H;(z,u) = LyH;(x) + L,H;(z)u with L;H;(z) =
VH;(x) - fg,(z) and LyH;(x) = VH;(x) - gq,(z) using

Lie derivative notation. Here, z = [z],...,z\]" and u =
[ul,...,ul]" are the stacked states and inputs, respectively.

A safety-critical controller, which guarantees each robot
remains forward invariant within its safe set while attempting
to track their nominal controller, 4;, as closely as possible,
is formulated as a Quadratic Program (QP) [17], given by

1
* : ~ 112
u* = argmin — u; — Us
gu 9 Z; [ wi ill2
i=

st ai(z)u < bi(x),

(18)

Vie N

where we have a linear constraint, enabling collaborative
interactions to take place between robots, which defines the



half-space a;(x) = —LgH;(z) and bj(x) = LsH;(z) +
a(H;(z)). In addition, the actual and nominal control signals
are denoted as u; (decision variable) and #;, respectively.

III. SCALABLE DECISION MODEL

This section describes the scalable decision model pro-
posed to encode pairwise collaborations using a centralized
queue.

In light of complexity being O(N) for the decision-
making architecture presented in Fig. 1, we propose the
“dispatch model” — a FSM design that encodes pairwise col-
laborations in a scalable fashion by establishing a centralized
queue, termed the “help queue”, as portrayed in Fig. 2.

The dispatch model’s FSM contains six discrete states,
rather than 4N — 2 discrete states when all possibilities are
enumerated, in Which a robot can operate. Namely, we have
g ={W. I, S, R, Az», Pj}, along with 6o = W; and
I € {W,}, defined as in Section ITA. Then, as before,
the discrete state transition function, §(&;, e;), maps to new
discrete states, &; € =;, whenever a particular event, e; € Fj,
triggers a transition that is dependent on the conditions in
(11)-(16), as discussed in Section IIB.

To ensure the FSM design is scalable, we employ a help
queue — a key component of the dispatch model — enabling
the individual robots’ discrete states to avoid growing with
the overall team’s size. Since the help queue is centralized,
each robot can add and remove information stored on it and
maintain continual communication with it, which facilitates
the dispatch of help to robots requesting assistance.

If a robot requires assistance, it is paired with a suitable
partner by the help queue, which performs much of the com-
putational and communication overheads, where we assume
the help queue has the resources, i.e., processing power and
bandwidth, needed to perform such overheads. Thus, with
the help queue established, the individual robots will have
their decision-making and selection computations, together
with communication, decoupled from the overall team’s size.
Whereas, without the help queue established, each individual
requires continual communication with all other robots, as in
Fig. 1, and would need to perform its decision-making and
selection computations locally.

The FSM complexity for robot ¢ in the dispatch model
(Fig. 2), can be obtained by computing the total number of
discrete states (cardinality, | - |) [16], given by

) (19)
Then, we have
(20)

i.e., constant complexity — no matter a robot’s capability
type. Thus, the cardinality of each robot’s discrete states is
independent of the team’s size.

As such, the dispatch model results in scalable decision-
making, even as the number of robots increases, due to
having a centralized queue to decouple the team’s size
from computational and communication overheads. Thus, the

Help Queue:

-—

Fig. 2: Dispatch Model: Utilizes a finite state machine for decision-making
and a centralized queue for matching.

dispatch model lends itself well to large-sized teams imple-
menting pairwise control strategies. However, now arises the
issue of how to employ the help queue to pair robots together
for collaboration. To that end, we provide potential selection
prioritization strategies that leverage the help queue to form
collaborative partnerships.

IV. SELECTION PRIORITIZATION STRATEGIES

This section explores potential selection prioritization
strategies that robots can employ in the dispatch model,
shown in Fig. 2, to determine their partner for pairwise
collaboration. In particular, we discuss: A) first in, first
out; B) importance functions; and C) matching algorithms,
which leverage the help queue to act as the matchmaking
mechanism that dispatches robots to help any individuals
requesting assistance. Moreover, we discuss the algorithmic
complexity [20] — both the run-time complexity, i.e., the
execution time of an algorithm, and space complexity, i.e.,
the memory usage for an algorithm — for pairing c help-
providing robots and k help-needing robots with the men-
tioned selection strategies.

A. First In, First Out

A first in, first out queue is a simple, low-complexity
selection prioritization strategy that does not require sort-
ing to pair the help-needing robots and the help-providing
robots. Particularly, the help-providing robots will have a
pre-assigned priority for being dispatched to help-needing
individuals. Thus, the space and run-time complexity are
both constant, i.e., O(1). The disadvantage of this method
is that a feasible selection can exist, but it may be poor;
e.g., paired robots at distant locations would spend excessive
energy and time during collaboration compared to paired
robots at nearby locations.

B. Importance Functions

Importance functions is a medium-complexity selection
prioritization strategy that sorts help-needing and help-
providing robots based on relative importance. Particularly,
for both individuals requesting and providing help, one can
define a function to capture some notion of importance,



e.g., mass, energy, time, and task credit score. The help-
needing and help-providing robots are sorted, relative to each
other, from highest to lowest priority by their importance
functions. Then, the help-providing robot with the highest
priority is paired with the help-needing robot with the highest
priority. However, it is possible that sorting is needed to
properly compare the queue of the robots providing help
to the queue of the robots receiving help, depending on the
choice of importance measure. Thus, the space and run-time
complexity are linear, i.e., O(c + k), and quasilinear, i.e.,
O(clog(c) + klog(k)), respectively.

C. Matching Algorithms

Matching algorithms is a high-complexity selection pri-
oritization strategy that pairs robots receiving and providing
help based on the solution of the so-called matching problem
in optimization [21]. This method is particularly suited for
when one desires to compute the best, i.e., the (global)
optimal, match between help-needing and help-providing
while considering constraints such as the robots’ barrier
functions and selection preferences. However, as the number
of constraints grows, so does the complexity, which makes
obtaining an optimal solution substantially more difficult.
Thus, the space and run-time complexity are quadratic, i.e.,
O((c+k)?), and polynomial, i.e., O((c+ k)?), respectively,
when employing the Hungarian algorithm [22], for example.

V. EXPERIMENTAL RESULTS

This section presents an experiment conducted in the
Robotarium [23], where teams of differential-drive robots
can perform coordinated control strategies within a 3.6 m
X 2.4 m testbed.

For this experiment, the robots attempt to reach goal points
within a workspace comprised of water regions (Dyyer) and
land regions (Dana), illustrated in Fig. 3(a), while employing
the dispatch model (Fig. 2) in Section IIIA. We consider a
team of N = 5 mobile robots: three ground robots, referred
to as “rabbits”, and two amphibious robots, referred to as
“turtles”. The turtles can safely traverse Diyng and Dygger
alone, whereas the rabbits can safely traverse Dj,,g alone.
Therefore, each rabbit must receive help from a turtle to
traverse Dyaer. As such, we assume the turtles can reach
the rabbits from anywhere, i.e., their individual safe sets are
path-connected.

Each robot’s position states and control inputs are defined
as r; = [pi,z,pi,y]T e X; C R2 and u; € U; C Rz,
respectively, for all ¢ € N. The rabbits are indexed as
i € {1,2,3}, whereas turtles are indexed as i € {4,5}.
In addition, we assume that each robot has single-integrator
dynamics, i.e., ©; = u;, since we can abstract differential-
drive robots as single integrators by using a near-identity
diffeomorphism [24], and tasked with driving to a goal
location, z{ € X;, in the workspace.

The nominal controller — designed with this particular
experiment in mind — that robot ¢ executes to progress
towards its objective, whether it collaborates or not, is given

by
Ot if & € (Wi}
o JEie! —w), G e{n} Q1)
’ Ki(z] — ), ifgie{Sf,Rf}’
Ki(wj — ), if & € {A}, Pi}

where K; > 0 is a proportional gain and §; € =; is a discrete
state of the FSM. Moreover, it is assumed that each robot has
a maximum speed threshold, u;, where its nominal controller,
;, is scaled down appropriately when ||i;||2 > ;.

The barrier functions used to encode the safe operating
regions of each rabbit and turtle are given by

he(zr) = 074 = (€/2)%, (22)
—p? 0/2)2 if , = Dyater
o) = Fre H 2 2 =0 € Puae
0, else
and
ht(xt) = htr(ztaxr) =0, 24)

respectively, where ¢ is the width of Dyye;.

It is important to mention that, due to the collision
avoidance safety constraints of the Robotarium [23], the
turtle cannot physically carry the rabbit across its unsafe
region. Therefore, we depict “carrying” as when the turtle
and rabbit move together in close proximity. In particular,
the nominal controller, given by (21), was designed such
that the turtle (help-provider) trails behind the rabbit (help-
receiver) as they progress toward the rabbit’s goal location
during pairwise collaboration.

For this experiment, we utilized importance functions as
the selection strategy. Each rabbit requesting help is asso-
ciated with an importance function defined as the distance
between its current and goal location. The rabbits’ impor-
tance functions are sorted from highest priority (smallest
distances) to lowest priority (largest distances). Similarly,
each turtle is associated with an importance function defined
as the distance between their current position and the highest-
priority rabbit, i.e., closest to its goal location. We then pair
the rabbit and turtle with the highest priority together. If more
than one rabbit requests help, the selection process continues
until matching robots becomes infeasible.

The experimental parameters are a(r) = 10073 (extended
class K, function), K; = Ioxo Vi € N (proportional gain),
¢ =1.07 m (width of Dyaer), @, = 0.18 m/s and @, = 0.14
m/s (max velocity threshold of rabbits and turtles without
collaboration), and u%, = 4; = 0.105 m/s (max velocity
threshold of rabbits and turtles with collaboration).

Fig. 3(a)-(e) portrays snapshots of the mobile robots dur-
ing the experiment. Fig 3(a) shows the initial configuration
of the rabbits and turtles. Fig 3(b) shows turtles 1 and 2
approaching rabbits 1 and 3, respectively, while rabbit 2 is
stuck waiting for help. Fig 3(c) shows turtles 1 and 2 helping
rabbits 1 and 3, respectively. Fig 3(d) shows rabbits 1 and 3
at their respective goal points, whereas turtle 2 navigates
towards its goal point, while turtle 1 helps rabbit 2. Fig



(a) Time Elapsed 0.3 s
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Fig. 3: (a)-(e) provides snapshots of an experiment conducted in the Robotarium in which three ground robots (“rabbits”) and two amphibious robots
(“turtles”) are tasked with safely reaching their respective goal points within an environment comprised of land terrain (Dj,q; brown pixels) and water
terrain (Dywater; blue pixels). [Supplemental Video: https://youtu.be/myaprkpNT6M]. (f) shows each robot’s collaborative barrier function.

3(e) shows rabbit 2 and turtle 1 navigating towards their
respective goal points while the others have already reached
their respective goal points. Fig. 3(f) portrays each robot’s
composed collaborative barrier function, highlighting that the
robots reached their respective goal points while remaining
safe throughout the experiment, i.e., H;(xz(t)) > 0 Vt, even
during pairwise collaborations.

VI. CONCLUSION

finite state machine (FSM) to encode the decision-making
of individual robots and establishes a centralized queue,
termed the “help queue”, to pair robots for collaboration. Fur-
thermore, we showed that the FSM complexity of individual
robots employing the dispatch model is decoupled from the
overall team’s size when using the help queue. In addition,
we discussed potential selection prioritization strategies with
varying levels of algorithmic complexity, i.e., run-time and
space, when pairing the help-providing and help-needing
robots to collaborate. Lastly, we validated the effectiveness
of the dispatch model on a team of mobile robots in the
Robotarium.
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