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Abstract— By monitoring the set of reachable outputs, safety
can be verified. However, to compute the reachable set of real-
world systems, we require models that are able to produce all
possible system behaviors. These kinds of models are called
reachset-conformant, and their identification is a promising new
research direction. While many existing reachset-conformant
identification techniques require the computation of the halfspace
representation of the zonotopic reachable sets, we propose an
approach that leads to the same optimal identification results
using the more scalable generator representation. Thus, our
approach offers greater efficiency for high-dimensional systems
and long time horizons. The scalability and accuracy of both
approaches are compared in numerical experiments with linear
time-variant systems.

I. INTRODUCTION

The synthesis and verification of controllers for real
systems require conformant models that can capture all
possible system behaviors [1]. Considering all real-world
effects in mathematical modeling, such as friction or a
temperature dependence of model parameters, would lead to
complex models unsuitable for formal controller synthesis or
verification. Thus, one often identifies simple models with
bounded uncertainties from data.

With set-membership approaches, we can compute the
set of parameters compatible with the model structure, the
measurements, and the error bounds. The computations can
be done using interval methods [2]–[4] or overapproximating
the set of feasible parameters by ellipsoids [5]. For additive
zonotopic uncertainties, the set of models consistent with the
data can be computed as a matrix zonotope [6]. However,
these approaches require that overapproximations of the
uncertainty bounds are known, as we might not find a
nonempty set of parameters otherwise.

Alternatively, we can determine the system model with
reachset-conformant identification methods. The main idea is
to directly identify the model and the uncertainty bounds from
real-world data, such that all measured system trajectories
are contained in the reachable set of the model, as illustrated
in Fig. 1. Because this research area emerged recently, only
a limited amount of previous work exists: In [7], a piecewise
linear model of an analog circuit is identified, and reachset
conformance is achieved by adapting the additive model and
measurement errors. The estimation of reachset-conformant
disturbance sets and system matrices of a linear system can
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Fig. 1. Reachset-conformant identification of the uncertainty sets X (0)
and U(k) of a linear time-variant model.

be formulated as a convex programming problem, which min-
imizes the volume of the disturbance set [8]. To obtain tight
reachable sets, we can also directly minimize the size of the
reachable set: By converting the reachable set represented with
zonotopes to its halfspace representation, reachset-conformant
disturbance sets for linear systems can be identified using
linear programming [9], [10]. A nonlinear programming layer
can be added to estimate unknown model parameters. This
idea has been extended to simultaneously identify the initial
state uncertainty set [11]. Depending on the chosen norm for
evaluating the size of the reachable set, the problem can be
solved with linear or quadratic programming. However, the
above reachset-conformant identification methods are only
valid for linear time-invariant systems and do not scale well
with increasing system dimensions.

This paper presents the following contributions:
1) We generalize the state-of-the-art reachset-conformant

identification approach [10], [11] to linear time-variant
systems.

2) We propose a new reachset-conformant identification
method for linear time-invariant or time-variant systems,
which does not require the halfspace representation
of zonotopes as in [10], [11] and, thus, significantly
improves the scalability with respect to the system
dimension and the time horizon.

3) We compare the computational complexity of both
identification approaches.

4) We conduct numerical experiments to demonstrate the
scalability and accuracy of the proposed approaches.

Sec. II presents fundamentals on reachability analysis and
zonotopes and introduces the problem statement. In Sec. III,
we describe two approaches to identify the uncertainty
bounds of linear time-variant systems. Sec. IV compares
the computational complexity of the proposed approaches.
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In Sec. V, we demonstrate the scalability and accuracy of our
approaches with experiments. Sec. VI concludes this work.

II. PRELIMINARIES

A. Notation

We denote sets by calligraphic letters, matrices by up-
percase letters, and vectors and scalars by lowercase letters.
The symbols 1, I, and 0 represent a vector filled with ones,
the identity matrix, and a matrix of zeros of appropriate
dimensions, respectively. The matrix dimensions can be
explicitly mentioned in the subscript. We use diag(v) for a
diagonal matrix whose diagonal are the elements of the vector
v, diag(A1, A2, ..., An) is a blockdiagonal matrix where
the matrices A1, A2, ..., An are concatenated diagonally,
and diagn(A1, A2, ..., An) represents a blockdiagonal matrix
where n copies of the matrix diag(A1, A2, ..., An) are
concatenated diagonally. The expression vertn(A) is the
vertical concatenation of n copies of the matrix A.

We further introduce three important set operations: A
linear transformation of a set S ⊂ Rn with a matrix A ∈
Rm×n is defined as AS = {As|s ∈ S}. The Minkowski
sum of two sets Sa, Sb ⊂ Rn is defined as Sa ⊕ Sb =
{sa + sb|sa ∈ Sa, sb ∈ Sb}, and the Cartesian product is
defined as Sa × Sb = {[s⊤a s⊤b ]

⊤ | sa ∈ Sa, sb ∈ Sb}.

B. Reachability Analysis

We use reachability analysis to compute the set of outputs
that is reachable for a system starting at an uncertain initial
state and subject to uncertain inputs. Our data is given in the
form of test cases:

Definition 1 (Test Case): The m-th test case, m = 1, ..., nm,
consists of a nominal initial state x(m)

∗ (0) ∈ Rnx , the nominal
input trajectory u

(m)
∗ (k) ∈ Rnu , k = 0, ..., nk − 1, and the

measured output trajectory y(m)(k) ∈ Rny , k = 0, ..., nk−1.

Due to real-world uncertainties, the actual initial state
x(m)(0) and input trajectory u(m)(·) deviate from the nominal
signals x(m)

∗ (0) and u
(m)
∗ (·). We assume that these deviations

can be described by the initial state uncertainty X0 and the
constant input uncertainty Uc such that

x(m)(0) ∈ X (m)(0),

∀k : u(m)(k) ∈ U (m)(k),

where X (m)(0) := x
(m)
∗ (0)⊕X0, U (m)(k) := u

(m)
∗ (k)⊕Uc.

Definition 2 (Reachable Set): The reachable set Y(m)(k) of
the system S for the m-th test case is defined as

Y(m)(k) =
{
τ(k;x(0), u(·))

∣∣ x(0) ∈ X (m)(0),

u(k̃) ∈ U (m)(k̃), k̃ = 0, ..., k
}
,

where τ(k;x(0), u(·)) is the output of system S at time step
k starting at the initial state x(0) and applying the input
trajectory u(·).

In this work, we consider linear time-variant (LTV),
discrete-time systems SLTV of the form

x(k + 1) = A(k)x(k) +B(k)u(k) (1a)
y(k) = C(k)x(k) +D(k)u(k). (1b)

Proposition 1 (Reachability Analysis for LTV Systems):
The reachable set of the system SLTV can be computed as

Y(m)(k) = y
(m)
∗ (k)⊕ Ya(k) (2)

with the nominal output

y
(m)
∗ (k) = C̄(k)x

(m)
∗ (0) +

k∑
j=0

D̄j(k)u
(m)
∗ (j),

the set of possible deviations from the true output to the
nominal output due to uncertainties

Ya(k) = C̄(k)X0 ⊕
k⊕

j=0

D̄j(k)Uc, (3)

and the time-varying matrices

C̄(k) = C(k)

k∏
i=1

A(k − i),

D̄j(k) =

{
C(k)

(∏k−j−1
i=1 A(k − i)

)
B(j) 0 ≤ j < k,

D(k) j = k.

Proof. By recursively applying (1a) and inserting the result
in (1b), we obtain

y(k) = C̄(k)x(0) +

k∑
j=0

D̄j(k)u(k). (4)

A set-based evaluation of (4) with x(0) ∈ x
(m)
∗ (0)⊕X0 and

u(k) ∈ u
(m)
∗ (k)⊕ Uc results in (2).

Please denote that we do not restrict the model space by
only considering input and initial state uncertainties. Models
with additive process disturbance w ∈ W and measurement
noise v ∈ V can be written as in (1) by defining the input
vector as [u⊤ w⊤ v⊤]⊤ ∈ U × W × V and augmenting
the input and feedthrough matrix to [B I 0] and [D 0 I],
respectively. The nominal signal corresponding to w and v
can be set to zero.

C. Zonotopes

In this paper, we represent reachable sets with zonotopes.

Definition 3 (Generator Representation of Zonotopes [12]):
A zonotope Z ⊂ Rn can be described by

Z =

{
c+

η∑
i=1

λigi

∣∣∣∣∣λi ∈ [−1, 1]

}
= ⟨c,G⟩,

where c = cen(Z) ∈ Rn is the zonotope center, G =
gen(Z) = [g1 ... gη] ∈ Rn×η is the generator matrix, and η
is the number of generators.

Alternatively, a zonotope can be described by its halfspace
representation:



Definition 4 (Halfspace Representation of Zonotopes [13]):
A zonotope can be represented as the intersection of a finite
number of halfspaces:

Z = {x ∈ Rn|Nx ≤ d},

where the rows of N ∈ Rh×n contain the normal vectors of
each halfspace, the corresponding element in d ∈ Rh is the
offset to the origin, and h is the number of halfspaces.

A zonotope in generator representation can be converted
to its halfspace representation by computing the halfspace
normal vectors N with [13, Thm. 7] and the offset as

d = Nc+ |NG|1. (5)

The number of halfspaces h = 2
(

η
n−1

)
grows exponentially

with the dimension n [13], so the generator representation is
often preferred. Furthermore, many set operations can be effi-
ciently performed in generator representation [14]: Given two
zonotopes Za = ⟨ca, Ga⟩ and Zb = ⟨cb, Gb⟩, the Minkowski
sum can be computed as Za⊕Zb = ⟨ca+cb, [Ga Gb]⟩, and the
Cartesian product as Za × Zb = ⟨[c⊤a c⊤b ]

⊤,diag(Ga, Gb)⟩.
The linear transformation of Za with a matrix A can be
computed as AZa = ⟨Aca, AGa⟩.

To evaluate the size of a zonotope, we will use the interval
norm in this work:

Definition 5 (Interval Norm of Zonotopes [11]): The
interval norm for the zonotope Z = ⟨c,G⟩ is defined as
the absolute sum over all elements of G:

∥Z∥I = 1⊤|G|1.
Verifying whether a point z ∈ Rn is contained in a

zonotope can be done for the halfspace representation by
checking whether Nz ≤ d holds. Similarly, we can use
the definition of the generator representation leading to the
containment constraint

z ∈ Z = ⟨c,G⟩ ⇔ ∃λ ∈ Rη : |λ| ≤ 1, z = c+Gλ. (6)

D. Problem Statement

In our work, the uncertainty sets X0 and Uc for the reachset-
conformant model are represented by the zonotopes

X0 = ⟨cx, Gxdiag(αx)⟩, αx ∈ Rηx

≥0, (7a)

Uc = ⟨cu, Gudiag(αu)⟩, αu ∈ Rηu

≥0. (7b)

The generator templates Gx ∈ Rnx×ηx and Gu ∈ Rnu×ηu

can be chosen arbitrarily. Initial states or inputs without
uncertainty can be modeled by setting the corresponding
rows in Gx or Gu to zero. To shorten the notation, we will
write α for the stacked scaling factors [α⊤

x α⊤
u ]

⊤ and c for
the stacked center vectors [c⊤x c⊤u ]

⊤. Furthermore, we will
often refrain from explicitly mentioning the index m of the
test case in the superscript.

By establishing reachset conformance, we can transfer
safety properties from a simulation model to the real system
despite uncertainties [1]. Thus, we want to identify optimal
scaling factors α and center vectors c, such that all measure-
ments of the system are contained in the reachable set of the

model, while minimizing the interval norm of the reachable
set:

Problem 1 (Reachset-conformant Identification). Given test
cases m = 1, ..., nm of the real system, the scaling factors
α and center vectors c of a reachset-conformant model are
identified by solving

argmin
α,c

nm∑
m=1

nk−1∑
k=0

w(k)∥Y(m)(k)∥I (8a)

s.t. ∀k,∀m : y(m)(k) ∈ Y(m)(k), (8b)

where Y(m)(k) is the reachable set of the model, y(m)(k)
are measurements of the real system, and w(k) is the weight
for time step k.

Approaches to efficiently solve Prob. 1 for LTV models
SLTV are developed in the following section.

III. REACHSET-CONFORMANT IDENTIFICATION OF LTV
SYSTEMS

In this section, we present two linear programs that solve
Prob. 1. First, we derive a linear cost function that describes
the interval norm of the reachable sets. Then, we describe
two linear programs that use the derived cost function but
different formulations of the conformance constraints (8b).

To simplify later computations, we briefly derive the
generator representation of Y(m)(k) from Prop. 1 using the
uncertainty sets from (7): Insertion of (7) in (3) yields the
zonotope

Y(m)(k) = ⟨y(m)
∗ (k) + cen

(
Ya(k)

)
, gen

(
Ya(k)

)
⟩ (9)

with

cen
(
Ya(k)

)
= C̄(k)cx +

k∑
j=0

D̄j(k)cu, (10a)

gen
(
Ya(k)

)
= gen′

(
Ya(k)

)
diag

([
α⊤
x α⊤

u · · · α⊤
u

]⊤)
,

(10b)

where

gen′
(
Ya(k)

)
=

[
C̄(k)Gx D̄0(k)Gu · · · D̄k(k)Gu

]
.

A. Cost Function

A linear formulation of (8a) can be derived by adapting
the approach from [10] to LTV systems:

Lemma 1 (Linear Cost Function): The sum over the interval
norms of the reachable sets can be expressed linearly in the
scaling factors α:

nk−1∑
k=0

w(k)∥Y(k)∥I = γα, (11)

where α ≥ 0 and

γ =

nk−1∑
k=0

w(k)1⊤
[
|C̄(k)Gx|

∑k
j=0 |D̄j(k)Gu|

]
.



Proof. Applying the interval norm from Def. 5 on the
reachable set Y(k) from (2) and using the assumption α ≥ 0
leads to

∥Y(k)∥I (9)
=1⊤ ∣∣gen(Ya(k)

)∣∣1
(10b)
= 1⊤ ∣∣[C̄(k)Gx D̄0(k)Gu · · · D̄k(k)Gu

]∣∣
diag

([
α⊤
x α⊤

u · · · α⊤
u

]⊤)
1

=1T
[
|C̄(k)Gx|

k∑
j=0

|D̄j(k)Gu|
] [

αx

αu

]
.

Multiplying with the weight w(k) and summing over k results
in (11).

B. Halfspace Constraints
We can use the halfspace representation of the reachable set

Y(k) to formulate the containment constraints (8b) as linear
inequalities [10]. For LTV systems, we obtain the following
identification approach:

Theorem 1 (Identification using Halfspace Constraints):
The scaling factors α∗ and the center vectors c∗ solv-
ing Prob. 1 for SLTV can be computed by the following
linear program:

p∗ = argmin
p

[
γ 0

]
p (12a)

s.t. ∀k : max
m

(
N(k)y(m)

a (k))
)
≤

[
Pα(k) Pc(k)

]
p, (12b)

0 ≤
[
I 0

]
p, (12c)

where γ can be computed with Lem. 1, p = [α⊤ c⊤]⊤,
y
(m)
a (k) = y(m)(k)− y

(m)
∗ (k), and

Pα(k) =
[
|N(k)C̄(k)Gx|

∑k
j=0 |N(k)D̄j(k)Gu|

]
,

Pc(k) =
[
N(k)C̄(k) N(k)

∑k
j=0 D̄j(k)

]
.

The rows of N(k) are the normal vectors of the halfspace
representation of Ya(k), which can be obtained using [13,
Thm. 7].

Proof. The containment constraint (8b) can be equivalently
formulated as

y(m)(k) ∈ Y(m)(k)
Prop. 1⇔ y(m)

a (k) ∈ Ya(k)
Def. 4⇔ N(k)y(m)

a (k) ≤ d(k).

The halfspace normal vectors N(k) of Ya(k) can be computed
with [13, Thm. 7] and, as shown in [9, Lemma 3], are
independent of the scaling factor α. The vector d(k) can
be computed as

d(k)
(5)
= N(k)cen

(
Ya(k)

)
+ |N(k)gen

(
Ya(k)

)
|1

(10)
= N(k)

(
C̄(k)cx +

k∑
j=0

D̄j(k)cu

)
+
∣∣∣N(k)

[
C̄(k)Gx D̄0(k)Gu · · · D̄k(k)Gu

] ∣∣∣
diag

([
α⊤
x α⊤

u · · · α⊤
u

]⊤)
1

= Pc(k)
[
c⊤x c⊤u

]⊤
+ Pα(k)

[
α⊤
x α⊤

u

]⊤
,

where we used the constraint α ≥ 0 in the first step, which
is enforced by (12c). As d(k) does not depend on the test
case m, we can reduce the computational complexity by
considering only the measurement closest to the halfspaces
N(k), i.e., we enforce maxm

(
N(k)y

(m)
a (k)

)
≤ d(k), which

results in (12b).

C. Generator Constraints

As the number of halfspaces increases exponentially with
the measurement dimension, we propose a novel approach
that enforces the containment constraints via the generator
representation of the reachable sets:

Theorem 2 (Identification using Generator Constraints):
The scaling factors α∗ and the center vectors c∗ solv-
ing Prob. 1 for SLTV can be computed by the following
linear program:

p∗ = argmin
p

[
γ 0 0

]
p (13a)

s.t. ỹa =
[
0 Qc Qβ

]
p, (13b)

0 ≤

Rα 0 I
Rα 0 −I
I 0 0

 p, (13c)

where γ can be computed with Lem. 1, p = [α⊤ c⊤ β⊤]⊤,
and β is a vector of additional optimization variables to
enforce the containment constraint. The vector of stacked
measurement deviations ỹa can be obtained with

ỹa =


ỹ
(1)
a

...
ỹ
(nm)
a

 with ỹ(m)
a =


y
(m)
a (0)

...
y
(m)
a (nk − 1)

 . (14)

The constraint matrices are

Qc = vertnm


 C̄(0)

∑0
j=0 D̄j(0)

...
...

C̄(nk − 1)
∑nk−1

j=0 D̄j(nk − 1)


 ,

Qβ = diagnm

(
gen′

(
Ya(0)

)
, · · · , gen′

(
Ya(nk − 1)

))
,

Rα = vertnm


 Rα,0

...
Rα,nk−1


 , (15a)

with Rα,k =

[
Iηx 0ηx×ηu

0(k+1)ηu×ηx
vertk+1 (Iηu)

]
. (15b)

Proof. As in Thm. 1, we use the cost function from Lem. 1
but formulate the containment constraints with the generator
representation as

y(m)(k) ∈ Y(m)(k)
Prop. 1⇔ y(m)

a (k) ∈ Ya(k)
(6)⇔ ∃λ(m)

k ∈ Rηx+(k+1)ηu :

|λ(m)
k | ≤ 1,

y(m)
a (k) = cen

(
Ya(k)

)
+ gen

(
Ya(k)

)
λ
(m)
k



TABLE I
NUMBER OF OPTIMIZATION VARIABLES (OV), EQUALITY CONSTRAINTS

(EC), AND INEQUALITY CONSTRAINTS (IC) IN THM. 1 AND IN THM. 2.

# OV # EC # IC

Thm. 1 O(ny) - O(n
ny

k )
Thm. 2 O(n2

knmny) O(nknmny) O(n2
knmny)

(10)⇔ ∃β(m)
k ∈ Rηx+(k+1)ηu :

|β(m)
k | ≤

[
α⊤
x α⊤

u · · · α⊤
u

]⊤
, (16a)

y(m)
a (k) =

[
C̄(k)

∑k
j=0 D̄j(k) gen′

(
Ya(k)

)]
[
c⊤x c⊤u β

(m)⊤
k

]⊤
, (16b)

where we define β
(m)
k := diag([α⊤

x α⊤
u · · · α⊤

u ]
⊤)λ

(m)
k

in the last step. By stacking the vectors β
(m)
k for all

measurements and time steps, i.e.,

β =

 β(1)

...
β(nm)

 with β(m) =


β
(m)
0
...

β
(m)
nk−1

 ,

we obtain the equality constraint (13b) from (16b) and the
inequality constraint (13c) from (16a) with α ≥ 0.

IV. COMPUTATIONAL COMPLEXITY

Next, we analyze the computational complexity of the
proposed linear programs, assuming a linear dependence of
ηx, ηu, nx, and nu on the output dimension ny .

Proposition 2 (Computational Complexity): The number
of optimization variables, equality constraints, and inequality
constraints in Thm. 1 and in Thm. 2 are as displayed in Tab. I.

Proof. In Thm. 1, we have the optimization variables
p = [α⊤ c⊤]⊤ ∈ Rηx+ηu+nx+nu . As we assume that ηx,
ηu, nx, and nu depend linearly on ny, the number of
optimization variables is O(ny). We do not have equality
constraints, but the number of inequality constraints in
(12b) equals the number of halfspaces summed over all
time steps. At time step k, the number of halfspaces
is 2

(ηy(k)

ny−1

)
[13], where ηy(k) = ηx + (k + 1)ηu is the

number of generators of Y(k). Using Stirling’s formula
(ny − 1)! ≥ ((ny − 1)/e)

ny−1 [15], the binomial coefficient
can be upper-bounded by

(ηy(k)

ny−1

)
≤

(
ηy(k)e/(ny − 1)

)ny−1
.

As ηy(k) is proportional to (k + 1)ny, we obtain
O((k + 1)ny−1) for the number of halfspaces at time step
k. Using the Faulhabersche formula [16, p. 106], the
number of inequality constraints for k = 0, ..., nk − 1 is
O(

∑nk−1
k=0 (k + 1)ny−1) = O(n

ny

k ).
Thm. 2 optimizes p = [α⊤ c⊤ β⊤]⊤, where β has

nm

∑nk−1
k=0 (ηx + (k + 1)ηu) = nmnk (ηx + ηu(nk + 1)/2)

elements [16, p. 34]. Thus, the number of optimization
variables is O(n2

knmny). As Qc has nknmny rows, the
number of equality constraints is O(nknmny). Furthermore,
we have two inequality constraints for each element of β

and one additional inequality for each element of α. Thus,
the number of inequality constraints is O(n2

knmny).

The number of optimization variables and constraints of the
approach using halfspace constraints (Thm. 1) is independent
of the number of test cases nm and, hence, leads to low
computational complexity for a large number of test cases.
However, the linear program using generator constraints, as in
Thm. 2, is more efficient for large measurement dimensions
ny or large time horizons nk.

V. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the proposed
approaches for the reachset-conformant identification of LTV
systems. All computations are carried out in MATLAB on an
i9-12900HK processor (2.5GHz) with 64GB memory. The
code to reproduce the results will be integrated into the next
release of the toolbox CORA [17]. Since the identification
results of Thm. 1 and Thm. 2 are identical, we focus on the
scalability of both approaches.

In our experiments, we use the vehicle platooning system
from [18] with uncertain inputs. Assuming a constant velocity
of the leader vehicle, the dynamics of the follower vehicle i,
i = 1, ..., nv , can be described by

ẋ3i−2 = −ξi(t)x3i−2 + ξi(t)ui

ẋ3i−1 = x3i

ẋ3i =

{
−x3i−2 if i = 1,

x3i−5 − x3i−2 else,

where nv is the number of follower vehicles. The state
x3i−2 represents the acceleration of vehicle i, x3i−1 is the
distance between vehicle i and vehicle i− 1, and x3i is the
first derivative of this distance. The input ui describes the
control signal for vehicle i. The parameters ξi(t) represent
the drivetrain dynamics and are assumed to be time-variant.
We assume we can measure all states, i.e., ny = 3nv. The
dynamics are discretized with the forward Euler method. The
true uncertainty sets, used for creating the test cases via
the simulation of the system dynamics, consist of a random
center vector and a random diagonal generator matrix. For
our identification, we assume that the generator templates
Gx and Gu are identity matrices, as this assumption usually
leads to good results.

The computation times of Thm. 1 and Thm. 2 for varying
time horizons nk, a varying number of test cases nm, and a
varying measurement dimension ny , via changing the number
of vehicles nv, are shown in Tab. II. Increasing the number
of test cases nm influences the computational complexity
of Thm. 1 only slightly since we consider just the sample
y
(m)
a closest to each halfspace. However, as the halfspace

conversion scales exponentially with the dimension of the
reachable set, Thm. 1 can only be used for systems with
small measurement dimension ny and small time horizons
nk. In contrast, Thm. 2 using the generator constraints is
efficient for high-dimensional systems and long time horizons.
Although its computational complexity depends substantially



TABLE II
COMPUTATION TIMES FOR IDENTIFYING A REACHSET-CONFORMANT

MODEL OF A VEHICLE PLATOON CONSISTING OF ny /3 VEHICLES, USING

nm TEST CASES WITH THE TIME HORIZON nk .

Computation time [s]
nk nm ny Thm. 1 Thm. 2

6 20 3 0.02 0.03
6 20 6 0.11 0.06
6 20 9 29.15 0.09
6 20 90 >120.00 6.40
6 10 6 0.12 0.04
6 100 6 0.12 0.48
6 1000 6 0.21 47.19
6 10000 6 1.02 >120.00
4 20 6 0.04 0.03
8 20 6 0.46 0.09

12 20 6 13.48 0.22
48 20 6 >120.00 13.20

Ya,gen(k) Ya,half(k) ya(k) ya,val(k)

-0.6 -0.4 -0.2 0 0.2 0.4
ya,1

6

7

8

9

y a
,2

(a) k = 0.

-1.3 -1.2 -1.1 -1 -0.9 -0.8
ya,1

6

8

10

12

y a
,2

(b) k = 3.

-1.3 -1.2 -1.1 -1 -0.9
ya,1

10

15

20

y a
,2

(c) k = 7.

-1.3 -1.2 -1.1 -1 -0.9
ya,1

40

50

60

70

y a
,2

(d) k = 19.

Fig. 2. Identification results of the setup (nk = 8, nm = 20, ny =
6) for different time steps k: Measurement deviation sets Ya,half(k) and
Ya,gen(k) that were predicted with the identified uncertainty sets from Thm. 1
and Thm. 2, respectively, measurement deviations ya(k), k = 0, ..., 7, of
the 20 test cases that were used in the identification, and measurement
deviations ya,val(k), k = 0, ..., 19, of 100 test cases that were not used in
the identification.

on the number of test cases nm, this is not a significant
drawback: The containment constraints are usually just active
for a small number of test cases (particularly relevant test
cases), and removing all the other test cases would not change
the identification results. Thus, by applying test case selection
strategies, which automatically find the particularly relevant
test cases, before starting the uncertainty identification, we
generally end up with a small number of test cases nm.

Furthermore, we visualize the results for the first two output
dimensions of the setup (nk = 8, nm = 20, ny = 6) in Fig. 2.
The figure shows that the identified uncertainty sets lead to
tight reachable sets, which also contain unseen test cases,
even for time steps k ≥ nk.

VI. CONCLUSION

In this work, we present two novel reachset-conformant
identification approaches for linear time-variant systems. One

approach is based on the halfspace representation of zonotopes
and scales well with regard to the number of measurements.
The second approach uses the generator representation and,
thus, is more efficient for high-dimensional systems and long
time horizons. As demonstrated by numerical experiments,
both approaches are able to estimate conformant disturbance
sets that lead to tight reachable sets. By ensuring that the
identified model accurately captures the behavior of the real-
world system, safety properties can be transferred from the
model domain to the actual system. Therefore, this work
paves the way for the safe application of formal methods to
real-world systems.
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