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Abstract— One of the most challenging aspects of nonsmooth
analysis is to overcome nondifferentiability. A possible approach
is to use the generalized notions of the classical gradient and
directional derivatives. In this paper we define a generalized
directional derivative, the Mandalay derivative, based on set-
valued Lie derivatives. For this operator, we derive the ana-
logues to the classical chain rule, superposition rule (for linear
combinations of functions), product rule, and quotient rule in
the form of inequalities, which facilitate the computation of
the Mandalay derivative in the context of nonsmooth system
analysis and design. Moreover, we demonstrate the application
of the Mandalay derivative for both first and high-order
nonsmooth Control Barrier Functions in multiple examples.

I. INTRODUCTION

Nonsmooth functions have been explored in the optimiza-
tion and controls community with the purpose of extending
classical results to broader classes of systems and functions.
Nonsmooth functions have been used in applications from
stability analysis using nonsmooth Lyapunov functions [1]
to multiagent robotic systems [2]–[4] and hybrid systems
[5], [6] to name a few.

When the function of interest is differentiable, its gradient
exists and the Lie derivative is a suitable tool to use. If the
function is nonsmooth, some type of generalized directional
derivative, satisfying the comparison lemma, is sought. One
obvious choice is the Dini derivative. However, Dini deriva-
tives are hard to compute because their associated subdiffer-
entials lack some desirable properties - the subdifferential
can be empty at some points even for locally Lipschitz
functions. It also lacks containment properties, for example,
the subdifferential of the sum of two locally Lipschitz
functions is not contained in the sum of their subdifferentials.
The chain rule for Dini derivatives (in inequality form) is
only available if one of the functions is differentiable. In
this work we use the Mandalay derivative, based on Clarke’s
subdifferentials, which are compact, convex and nonempty
when the function is locally Lipschitz. Special cases of
the Mandalay derivative have been used in the nonsmooth
literature [2], [7], without naming it. Given that we are the
first to consider taking higher order derivatives, we define the
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Mandalay1 derivative as a generalization of these previous
notions and establish a systematic and shared notation.

Additionally, we derive the chain rule, superposition rule,
product rule and the quotient rule of Mandalay derivatives
for locally Lipschitz functions. These rules compute a bound
for the Mandalay derivative of a complex function in terms
of Mandalay derivatives of simpler functions. For these
simpler functions, their Mandalay derivatives consist of max-
imums and minimums of compact intervals. The Mandalay
derivative is a well suited operator for important aspects of
nonsmooth system analysis and design. For example, the
Mandalay derivative can be used, instead of the classical
derivative, to prove system stability using nonsmooth Lya-
punov functions.

In this paper we will focus on its application to CBFs.
CBFs [8]–[11] enforce forward invariance of the constraint
set so that no trajectory initialized within the constraint set
ever leaves or violates the constraint set. Nonsmooth CBFs
functions naturally arise in applications such as multiagent
systems, where they take maximums and minimums of
continuously differentiable functions. In such cases, and with
control-affine systems, we show that using a nonsmooth
CBF allows us to obtain closed form solutions to CBF-
based convex optimization programs. Moreover, we also
demonstrate how the Mandalay derivative can be used to
derive high-order nonsmooth CBFs.

The organization of this paper is the following: Section II
includes key notations and definitions, background materials
from set operations, as well as a review of generalized
derivatives, dynamical systems, and smooth CBFs theory.
Section III presents the main results of this work and its
application in examples with nonsmooth CBFs both first and
high-order. Lastly, Section IV summarizes the contributions
of this work to the existing nonsmooth systems literature.

II. BACKGROUND MATERIALS

A. Abbreviations and Acronyms

For a set S ⊆ R, we use S = supS and S = inf S with
inf, sup : 2R 7→ R, where R = R ∪ ±∞. For a function
h : D → R, D ⊆ Rn, if it is continuously differentiable, we
use ∇h(x) to express the gradient of h and ḣ(x) = ∇h(x)ẋ
when x is understood to be a function of time t ∈ R and
ẋ denotes derivative of x with respect to time. Otherwise,
if h is not differentiable, ∂h(x) ⊆ D∗ is used to express its

1Mandalay is the name of a historical city in Myanmar, the birth place
of one of the authors. The authors chose the name, Mandalay, to encourage
participation in control research from underrepresented countries such as
Myanmar.
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generalized gradient set as defined in [12, Pg. 10], where D∗

is the dual space of D. If S is a set, ∂S denotes the boundary
of S instead. Lastly, R>0 is used to express the positive real
numbers and ∅ refers to the empty set.

B. Operations on Sets

The scalar multiplication of a nonempty set S ⊆ R with
λ ∈ R is defined as λS = {λs ∈ R|s ∈ S}. The sum of
two nonempty sets S1, S2 ⊆ R is the Minkowski sum,
S1 + S2 = {s1 + s2 ∈ R|s1 ∈ S1, s2 ∈ S2}. The Linear
combination of nonempty sets is such that given λ1, . . . , λm,
m ∈ N,

m∑
i=1

λiSi =

{
m∑
i=1

λisi ∈ R|s1 ∈ Si, . . . , sm ∈ Sm

}
. (1)

Let ∆ = {{λi}mi=1 |m ∈ N, λi ≥ 0,
∑m

i=1 λi = 1,∀1 ≤ i ≤ m}.
The convex hull of S ⊆ Rn is defined as

co{S} =

{
m∑
i=1

λisi ∈ Rn| {λi}mi=1 ∈ ∆, si ∈ S

}
. (2)

The product of two nonempty sets X,Y ⊆ R is defined as
X · Y = {xy ∈ R | x ∈ X, y ∈ Y }.

Proposition 1: [13] If a = [a, a] and b = [b, b] are
nonempty compact intervals on R, then

a+ b = [a+ b, a+ b] (3)

a · b = [min{ab, ab, ab, ab},max{ab, ab, ab, ab}]. (4)

C. Regularity, General Derivatives and Dynamical Systems

Definition 1: [12, Def. 2.3.4] Let X,Y be Banach spaces.
The function V : X → Y is said to be regular at x provided
that for all v, the following limit exists and coincides with
the generalized directional derivative V ◦(x, v) [12, Pag. 10
Eq. 1], i.e, limα→0+

V (x+αv)−V (x)
α = V ◦(x, v).

Definition 2: Let F : Rn × Rm → 2R
n

be a set-valued
map and the function h : D → R, D ⊆ Rn, be locally
Lipschitz. The Lower Mandalay derivative of h with respect
to F at (x′, u′), x′ ∈ D, u′ ∈ Rm, is defined as

MFh(x
′, u′) = inf LW

F h(x′, u′).

When h is both regular and locally Lipschitz, the Strong
Lower Mandalay derivative is defined as

MS
Fh(x

′, u′) = inf LS
Fh(x

′, u′).

LW
F h(x′, u′) = {a ∈ R : ∃v ∈ F(x′, u′),∃ξ ∈

∂h(x′)s.t.⟨ξ, v⟩ = a} and LS
Fh(x

′, u′) = {a ∈ R : ∃v ∈
F(x′, u′), s.t.⟨ξ, v⟩ = a,∀ξ ∈ ∂h(x′)}, with x′ ∈ D,
u′ ∈ Rm, are the weak and strong set-valued Lie derivatives
2 [1], [2]. Note that in the remainder of this paper, we will
introduce a slight change of notation for LW

F and use instead:

LW
F h(x′, u′) = {⟨ξ, v⟩ ∈ R | v ∈ F(x′, u′), ξ ∈ ∂h(x′)}.

(5)

2In [1], [2] F is only a function of x′. In this work F is a function of both
x′ and u′ and therefore the arguments of the strong and weak set-valued
Lie derivatives have been modified accordingly.

When inf is replaced by sup, they will be referred to as
Upper Mandalay derivative and Upper Strong-Mandalay
derivative and denoted by MFh and M

S
Fh, respectively.

When MFh(x
′, u′) = MFh(x

′, u′), the function is said
to be Mandalay differentiable with respect to F and its
Mandalay Derivative is denoted by MFh(x

′, u′). When
MS

Fh(x
′, u′) = M

S

Fh(x
′, u′) the function is said to be

strongly Mandalay differentiable and its Strong Mandalay
Derivative will be denoted by MS

Fh(x
′, u′). If there is no

explicit dependence on u′, these generalized derivatives will
simply be denoted as MFh(x

′) and MS
Fh(x

′), MFh(x
′)

and M
S

Fh(x
′).

Remarks: When F is a singleton f and if h is continuously
differentiable, the Mandalay derivative is the classical direc-
tional derivative, which can be written in the Lie derivative
notation as, Mfh(x, u) = Lfh(x, u). Note that both the up-
per and lower Mandalay derivatives can be potentially taken
iteratively, e.g. MF{MFh(x)} is well-defined if MFh(x) is
locally Lipschitz. We will denote by Mk

Fh the kth successive
Mandalay derivative of h with respect to F . We allow MF
and MF to take values in the extended reals, therefore MF
and MF always exist albeit they may take infinite values.
However, when h is locally Lipschitz and F is compact,
LW
F h is compact and nonempty, and MF and MF are finite.
Definition 3: For X : Rd → Rd, define the Filippov set-

valued map [14, Eq. 19] K[X] : Rd → 2R
d

by

K[X](x) ≜
⋂
δ>0

⋂
µ(N)=0

co{X(B(x, δ)\N)}, (6)

where
⋂

µ(N)=0 denotes the intersection over all sets N
of Lebesgue measure zero, co denotes convex closure, and
B(x, δ) is the ball of radius δ centered at x. Note that co
and co are equivalent for any compact subset of Rn.

Definition 4: [1, Def. 6] Given a differential equation
with discontinuous right hand side of the form

ẋ = X(x), (7)

a Filippov solution of (7) on a nondegenerate interval I ⊆
R is a function φ : I → Rn such that φ(·) is absolutely
continuous on any interval [t1, t2] ⊆ I and

φ̇(·) ∈ K[X](φ(t)) for almost all t ∈ I. (8)

According to this definition, Filippov solutions replace the
right hand side of (7) by a differential inclusion defined using
the operator K.

Proposition 2: [14, Prop. 3] Let X : Rd → Rd be
measurable and locally essentially bounded, that is, bounded
on a bounded neighborhood of every point, excluding sets of
measure zero. Then for all x0 ∈ Rd, there exists a Filippov
solution of (7) with initial condition x(0) = x0.

D. Barrier Functions and Control Barrier Functions

Suppose now a closed set S defined as S = {x | h(x) ≥
0}, with boundary ∂S = {x | h(x) = 0}, for some
continuously differentiable function h(x), called a Barrier
Function, with the property that h(x) = 0 implies ∇h(x) ̸=



0. The set S is forward invariant for the system ẋ = f(x),
x ∈ Rn, if for all T > 0, all x0 ∈ S, and all Filippov
solutions x(t) on [0, T ] satisfying x(0) = x0, it holds that
x(t) ∈ S for all t ∈ [0, T ]. If, further, f is Lipschitz
continuous, it holds for all x ∈ ∂S that

S is forward invariant ⇐⇒ ḣ(x) = ∇h(x)T f(x) ≥ 0

which is classically known as Nagumo’s Theorem. In the
barrier function literature, the righthand condition is often
strengthened to

ḣ(x) ≥ −α(h(x)) for all x ∈ Rn (9)

for some locally Lipschitz function α : R → R satisfying
α(0) = 0. The advantage is that this condition, which must
hold for all x rather than only on the boundary of S, more
readily leads to control design techniques. For example,
consider the controlled system

ẋ = f(x) + g(x)u, (10)

with input u ∈ Rm, and the goal of designing a feedback
controller σ(x) such that S is forward invariant. Then,
condition (9) leads to the design criterion that any Lipschitz
continuous feedback controller σ(x) ∈ U(x) where

U(x) = {u | ∇h(x)T (f(x) + g(x)u) ≥ −α(h(x))} (11)

ensures forward invariance of S. Notably, the inequality in
the definition of U(x) is affine in u and, therefore, can be
included in convex optimization programs that compute a
feedback controller σ(x), possibly online at runtime. If such
a feedback controller exists, then h(x) is called a (classical)
Control Barrier Function (CBF).

E. High-Order Control Barrier Functions

A common challenge in standard CBF-based control
design is that, for many physically meaningful systems,
∇h(x)T g(x) can be identically zero so that U(x) becomes
empty for some x. A possible solution is to use the
theory of High-Order Control Barrier Functions (HO-
CBF) [15]–[17] that systematically constructs an alternative
barrier function as follows: initialize ψ1(x) = h(x) and,
as long as ∇ψi(x)

T g(x) ≡ 0, iteratively set ψi+1(x) =
∇ψi(x)

T f(x) + αi(ψi(x)) for some user-chosen Lipschitz
functions αi(·). Suppose the process terminates after r
iterations. Then the resulting final ψr(x) can often (e.g.,
when the system has a well-defined uniform relative degree)
be used as a CBF that guarantees forward invariance of
∩1≤i≤r{x | ψi(x) ≥ 0}, which is a subset of S.

III. MAIN RESULTS

In this paper we focus on systems like (7) and feedback
control laws σ(x) that make the right hand side piecewise
continuous in x. Under these assumptions, Proposition 2
guarantees the existence of Filippov solutions and its Filip-
pov set-valued map takes compact and convex values. More-
over, if x(t) is a Filippov solution, it is absolutely continuous
in time. As discussed previously, potential applications of the
Mandalay derivative are nonsmooth CBFs and nonsmooth

HO-CBFs. Given a locally Lipschitz h : D → R, D ⊆ Rn

at x, h(x(t)) is also absolutely continuous in t. Under these
conditions [2, Thm. 2] shows that h is a valid non-smooth
CBF if there exists a β ∈ R>0 such that

MFh(x, u) ≥ −βh(x). (12)

The Mandalay derivative is in general a nonlinear operator,
and therefore, depending on the function h, computing the
left hand side of (12) may not be straightforward. One
possible solution is to express h as a composite function
and bound it in terms of the Mandalay derivative of simpler
component functions. To do so, in the remainder of this
section, and as the main results of this paper, we derive the
analogues of the classical chain rule, superposition rule (for
linear combinations of functions), product rule, and quotient
rule in the form of inequalities. We also demonstrate that
these tools allow us to derive closed form solutions for
piecewise continuous control laws under mild assumptions
and even Lipschitz control laws in some special cases.

A. Mandalay Derivative Of Composition Of Two Locally
Lipschitz Functions: The Chain Rule.

Lemma 1: Suppose F is defined as in Definition 2 and
takes only nonempty, compact and convex values, and h1 :
R → R, h2 : Rn → R are locally Lipschitz near x. Then the
product, LW

F h2(x, u) · ∂h1(h2(x)), is a nonempty compact
interval.

Proof: If h1, h2 are locally Lipschitz near x, it is
known that ∂h2(x) and ∂h1(h2(x)) are nonempty, compact
and convex [14, Prop. 6]. Since ∂h1(h2(x)) ⊆ R, it is
a compact interval. If F takes only compact and convex
values, LW

F h2(x, u) is the set of inner products of the
elements in two compact and connected subsets of Rn. Thus,
LW
F h2(x, u) is compact and connected. Since LW

F h2(x, u) ⊆
R, it is a compact interval. As a product of two nonempty
compact intervals, LW

F h2(x, u) · ∂h1(h2(x)) is a nonempty
compact interval.

Theorem 1 (Chain Rule): Let h1 : R → R and h2 : D →
R, D ⊆ Rn, be locally Lipschitz. Define h(x) = h1(h2(x)).
If F is defined as in Definition 2 and takes only nonempty,
compact and convex values, then, the following holds ∀x ∈
D

MFh(x, u) ≥ min{MFh2(x, u) ∂h1(h2(x)),

MFh2(x, u) ∂h1(h2(x)),

MFh2(x, u) ∂h1(h2(x)),

MFh2(x, u) ∂h1(h2(x))}. (13)

Moreover, the equality holds if F is a singleton, h2 is
continuously differentiable and h1 is regular.

Proof: From Clarke’s first Chain Rule [12, Thm. 2.3.9]

∂h(x) ⊆ co{αζ | α ∈ ∂h1(h2(x)), ζ ∈ ∂h2(x)}. (14)

Note that co and co are equivalent for any compact subset
of Rn. Since ∂h1(h2(x)) and ∂h2(x) are compact, the set
{αζ | α ∈ ∂h1(h2(x)), ζ ∈ ∂h2(x)} is a continuous image
of a compact set. Therefore, it is a compact set. Define



now the set, W, where W = {⟨v, θ⟩ ∈ R | v ∈
F(x, u), θ ∈ co {αζ | α ∈ ∂h1(h2(x)), ζ ∈ ∂h2(x)}}, and
note that LW

F h(x, u) ⊆ W. Using (2) W can also be
expressed as

W ={⟨v,
m∑
i=1

λiαiζi⟩ ∈ R |

{λi} ∈ ∆, v ∈ F(x, u), αi ∈ ∂h1(h2(x)), ζi ∈ ∂h2(x)}

={
m∑
i=1

λi⟨v, ζi⟩αi ∈ R | (15)

{λi} ∈ ∆, v ∈ F(x, u), αi ∈ ∂h1(h2(x)), ζi ∈ ∂h2(x)}.

In (15), αi is a scalar and it can scale the bilinear product.
By definition of the co, (15) is equivalent to

W =
⋃
v∈F

co {⟨v, ζ⟩α ∈ R | α ∈ ∂h1(h2(x)), ζ ∈ ∂h2(x)}

⊆ co {⟨v, ζ⟩α ∈ R | v ∈ F(x, u), α ∈ ∂h1(h2(x)), ζ ∈ ∂h2(x)}
(16)

= co {{⟨v, ζ⟩ ∈ R | v ∈ F(x, u), ζ ∈ ∂h2(x)} · ∂h1(h2(x))}
= co

{
LW
F h2(x, u) · ∂h1(h2(x))

}
. (17)

Taking now the infimum of both sides in (17)

infW ≥ inf
{
co

{
LW
F h2(x, u) · ∂h1(h2(x))

}}
= inf

{
LW
F h2(x, u) · ∂h1(h2(x))

}
=min{MFh2(x, u) ∂h1(h2(x)),

MFh2(x, u) ∂h1(h2(x)),

MFh2(x, u) ∂h1(h2(x)),

MFh2(x, u) ∂h1(h2(x))}. (18)

Equation (18) follows from Lemma 1 and Proposition 1.
Since LW

F h(x, u) ⊆ W, MFh(x, u) = inf
{
LW
F h(x, u)

}
≥

infW, the result follows. If F is a singleton, equality is
obtained in (16). If h1 is regular and h2 is continuously
differentiable, by [12, Thm. 2.3.9], equality holds in (14)
and LW

F h(x, u) = W.
Proposition 3: Consider the system in (10), with piece-

wise continuous feedback controller σ(x), and let F(x, σ(x))
be the Filippov operator generated. Suppose ẋi = fi(x) are
continuous ∀i ∈ I ⊂ {1, . . . , n}, and also suppose h : Rn →
R is continuously differentiable in x and ∂h

∂xi
= 0,∀i ∈ IC ,

then h is Mandalay differentiable with respect to F and
MFh(x) = ḣ.

Proof: For any v ∈ F ,

⟨v,∇h⟩ =
n∑

i=1

vi
∂h

∂xi
=

∑
i∈I

ẋi
∂h

∂xi
+

∑
i∈IC

vi
�
�
�7
0

∂h

∂xi

=

n∑
i=1

ẋi
∂h

∂xi
= ∇hẋ = ḣ. (19)

As h is continuously differentiable in x, ∂h(x) = {∇h(x)}.
The weak set-valued Lie derivative (5) of h equals

LW
F h(x) = {⟨v,∇h(x)⟩ ∈ R | v ∈ F(x, σ(x))}.

From (19) ⟨v,∇h(x)⟩ = ḣ for all v ∈ F(x, σ(x)). Thus,
LW
F h(x) = {ḣ}, which yields MFh(x) = MFh(x) =

MFh(x) = ḣ.
Thanks to Proposition 3, Theorem 1 can be now simplified

as shown in Corollary 1.
Corollary 1: In Theorem 1, if h2 is Mandalay differen-

tiable, ∀x ∈ D

MFh(x, u) ≥

{
MFh2(x, u) ∂h1(h2(x)), MFh2(x, u) ≥ 0

MFh2(x, u) ∂h1(h2(x)), MFh2(x, u) < 0.

Proof: If h2 is Mandalay differentiable, MFh2(x) =
MFh2(x) =MFh2(x). Thus, by Theorem 1, ∀x ∈ D,

MFh(x, u) ≥ min{MFh2(x, u) ∂h1(h2(x)),

MFh2(x, u) ∂h1(h2(x))}

MFh(x, u) ≥

{
MFh2(x, u) ∂h1(h2(x)), MFh2(x, u) ≥ 0

MFh2(x, u) ∂h1(h2(x)), MFh2(x, u) < 0.

B. Application: Lipschitz CBF Using Chain Rule

Consider the system

ẋ1 = x2 , ẋ2 = u (20)

which satisfies Proposition 3. Consider as well a candidate
nonsmooth CBF h = L− x2− | x21 − x1 |, with L ∈ R>0. h
can also be expressed as h = h0+h1(h2), where h0 = L−x2
is continuously differentiable and h1(h2) = − | x21 − x1 |=
− | h2 |, which satisfies the set up of Theorem 1. Thus, at
points where x21 − x1 = 0, ∂h1 = [−1, 1], ∂h2 = ∇h2, and
∂h0 = ∇h0. Also note that h2 satisfies Proposition 3, which
implies MFh2(x) = ḣ2. Using now Corollary 1, at points
where x21 − x1 = 0,

MF (h1(h2))(x) ≥

{
−ḣ2(x), ḣ2(x) ≥ 0

ḣ2(x), ḣ2(x) < 0,
(21)

which yields, MF (h1(h2))(x) ≥ −|ḣ2(x)|. The Mandalay
derivative of h is therefore

MFh(x, u) ≥


−u− (2x1x2 − x2), x21 − x1 > 0

−u+ (2x1x2 − x2), x21 − x1 < 0

−u− |2x1x2 − x2|, x21 − x1 = 0.

(22)

It is clear that a piecewise continuous feedback controller
satisfying MFh(x, u) ≥ −βh(x) can be derived from (22).
As we have an affine system, given a Lipschitz feedback
controller unom, we can choose u(x) to minimize ∥u(x) −
unom(x)∥2 subject to u(x) ∈ U(x) = {u | MFh ≥ −βh},
β ∈ R>0. The results are shown in Figure 1, in which the
safe region is the interior of the two intersected parabolas.
The trajectory using h as a CBF successfully remains within
the safe region (solid red line).
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Fig. 1. The safe region corresponds to the inside area delimited by the solid
black line. The initial condition of the system is represented with a square,
and the final position with an asterisk. The nominal trajectory (dashed blue
line), without the barrier function filter violates safety whereas the trajectory
obtained with the Lipschitz CBF (solid red line) successfully avoids the
unsafe region.

C. Mandalay Derivative Of Linear Combinations Of Locally
Lipschitz Functions: The Superposition Rule.

Lemma 2: Let hi : D → R, D ⊆ Rn be locally Lipschitz
∀1 ≤ i ≤ N . Let h =

∑N
i=1 sihi, si > 0,∀1 ≤ i ≤ N .

If F is defined as in Definition 2 and takes only nonempty,
compact and convex values, the following inequality holds
∀x ∈ D

MFh(x, u) ≥
N∑
i=1

siMFhi(x, u). (23)

Proof: First, define the set W

W = {⟨v, ξ⟩ ∈ R | v ∈ F(x, u), ξ ∈
N∑
i=1

si∂hi(x)}

= {⟨v,
N∑
i=1

siξi⟩ ∈ R | v ∈ F(x, u), ξi ∈ ∂hi(x)}

⊆
N∑
i=1

si{⟨v, ξi⟩ ∈ R | v ∈ F(x, u), ξi ∈ ∂hi(x)} (24)

=

N∑
i=1

siL
W
F hi(x, u). (25)

Since all si > 0, taking the infimum of both sides in (25)

infW ≥
N∑
i=1

si inf L
W
F hi(x, u) =

N∑
i=1

siMFhi(x, u).

According to [12, Cor. 2, Pg. 39]:

∂h(x) ⊆
N∑
i=1

si∂hi(x). (26)

Thus, LW
F h(x, u) ⊆ W, which implies inf LW

f h(x, u) ≥
infW, and MFh(x, u) ≥

∑N
i=1 siMFhi(x, u).

Corollary 2: In Lemma 2, if si < 0,∀1 ≤ i ≤ N . Then
the following inequality holds ∀x ∈ D

MFh(x, u) ≥
N∑
i=1

siMFhi(x, u). (27)

Proof: The proof is exactly the same as that of
Lemma 2 noting that when a nonempty compact set S ⊆ R
is multiplied by a negative number, inf becomes sup.

Theorem 2: Let hi : D → R, D ⊆ Rn be locally Lipschitz
∀1 ≤ i ≤ N . Let h =

∑N
i=1 sihi, where si > 0,∀i ∈ I ⊆

{1, . . . , N} and si < 0,∀i ∈ IC = {1, · · · , N} \ I . If F is
defined as in Definition 2 and takes only nonempty, compact
and convex values, the following inequality holds ∀x ∈ D

MFh(x, u) ≥
∑
i∈I

siMFhi(x, u) +
∑
i∈IC

siMFhi(x, u).

Moreover, equality holds if F is a singleton, IC is empty
and hi are regular ∀i ∈ I .

Proof: The proof follows directly from Lemma 2 and
Corollary 2. The claim of equality can be readily verified by
noting that the equality holds in (24) if F is a singleton, and
also in (26) for regular hi and si > 0, according to [12, Cor.
3, Pg. 40].

D. Application: Recursive Nonsmooth HO-CBFs

In this example we now show how the property of Man-
dalay derivative in Theorem 2 is particularly helpful to define
HO-CBFs that are nonsmooth and Lipschitz recursively.
Given the system:

ẋ1 = −x31 , ẋ2 = x3 , ẋ3 = u (28)

and the candidate nonsmooth CBF h = L− x2+ | x1 | with
L ∈ R>0, we can observe that the relative degree between
h and u is two, and thus the system requires a HO-CBF.
This new HO-CBF is built as, ψ1 = L − x2+ | x1 |, ψ2 =
Mfψ1 + β1ψ1 , β1 ∈ R>0. Taking Mandalay derivative of
ψ2 yields, Mfψ2 = Mf (Mfψ1 + β1ψ1). From Theorem 2
we know that

Mf (Mfψ1 + β1ψ1) ≥M2
fψ1 + β1Mfψ1. (29)

The right hand side is easier to compute and in this case
yields, ∀x ∈ D, Mfψ1 = −x3− | x31 |, M2

fψ1 = −u+ |
3x51 |. We can now conclude that, if M2

fψ1 + β1Mfψ1 ≥
−β2ψ2 then the CBF inequality Mfψ2 ≥ −β2ψ2 is also
satisfied. As we have an affine system, given a Lipschitz
feedback controller unom, we can choose u(x) to minimize
∥u(x)−unom(x)∥2 subject to u(x) ∈ U(x) = {u |M2

fψ1+
β1Mfψ1 ≥ −β2ψ2}, β1, β2 ∈ R>0. The results obtained are
shown Figure 2. The safe region corresponds to the outside of
the inverted triangle. The trajectory obtained with the safe
controller u successfully avoids violating safety (red solid
trajectory).
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Fig. 2. The safe region corresponds to the outside of the inverted triangle.
The initial condition of the system is represented with a square, and the final
position with an asterisk. The nominal trajectory (dashed blue line), without
the barrier function filter violates safety whereas the trajectory obtained with
the Lipschitz CBF (solid red line) successfully avoids the unsafe region.

E. Product and Quotient Rules

Lastly, we derive the Mandalay derivative of products and
quotients of Lipschitz functions.

Theorem 3: Suppose F is defined as in Definition 2
and takes only nonempty, compact and convex values. Let
h1, h2 : Rn → R, D ⊆ Rn be locally Lipschitz at a point
x′ ∈ D. Then h = h1 · h2 satisfies

MFh(x
′, u) ≥

min{h2(x′)MFh1(x
′, u) + h1(x

′)MFh2(x
′, u),

h2(x
′)MFh1(x

′, u) + h1(x
′)MFh2(x

′, u),

h2(x
′)MFh1(x

′, u) + h1(x
′)MFh2(x

′, u),

h2(x
′)MFh1(x

′, u) + h1(x
′)MFh2(x

′, u)}. (30)

Moreover, equality holds if F is a singleton, h1, h2 are
regular at x′ and h1(x′) > 0, h2(x

′) > 0.
Proof Sketch 1: Using [14, Pag. 21 Eq. 40] given lo-

cally Lipschitz functions h1, h2 : Rn → R at a point
x′ ∈ Rn, the composite function h3 = h1 · h2 satisfies
LW
F h3(x

′, u) ⊆ S(x′, u), where S(x′, u) = {⟨v, ξ⟩ ∈ R | v ∈
F(x′), ξ ∈ (h2(x

′)∂h1(x
′) + h1(x

′)∂h2(x
′))}. Therefore

MFh3(x
′, u) ≥ inf S(x′, u).

Theorem 4: Suppose F is defined as in Definition 2
and takes only nonempty, compact and convex values. Let
h1, h2 : Rn → R, D ⊆ Rn be locally Lipschitz at a point
x′ ∈ D and h2(x′) ̸= 0. Then h = h1

h2
satisfies

MFh(x
′, u) ≥ (31)

1

h2(x′)2
min{h2(x′)MFh1(x

′, u)− h1(x
′)MFh2(x

′, u),

h2(x
′)MFh1(x

′, u)− h1(x
′)MFh2(x

′, u),

h2(x
′)MFh1(x

′, u)− h1(x
′)MFh2(x

′, u),

h2(x
′)MFh1(x

′, u)− h1(x
′)MFh2(x

′, u)}.

Moreover, equality holds when F is a singleton, h1 and −h2
are regular at x′ and h1(x′) > 0 and h2(x′) > 0.

Proof Sketch 2: The proof can be derived similarly to the
proof of Theorem 3 but using [14, Pag. 21 Eq. 41] instead.

IV. CONCLUSIONS

In this paper we presented the Mandalay derivative, a
generalized directional derivative, based on set-valued Lie
derivatives to handle nondifferentiability in nonsmooth anal-
ysis. We derived the analogues to the classical chain rule,
superposition rule, product rule, and quotient rule in the form
of inequalities. Having a new set of rules to compute the
Mandalay derivative of more complex functions facilitates
using nonsmooth functions for system analysis and design, as
demonstrated in our applications with nonsmooth CBFs and
HO-CBFs. Additionally, our results are derived from well-
established interval operations and connect the Mandalay
derivative to the emerging field of interval arithmetic.
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