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DISTRIBUTED MODEL PREDICTIVE CONTROLLER FOR THERMAL ENERGY
MANAGEMENT SYSTEM OF BATTERY ELECTRIC VEHICLES

Prashant Lokur2, Nikolce Murgovskil, and Kristian Nicklasson?

Abstract— This paper proposes a distributed model predic-
tive controller (DMPC) that utilizes the alternating direction
method of multipliers for the thermal energy management
system of a battery electric vehicle. The system comprises a
heating, ventilation, and air conditioning unit along with a heat
pump. Comparison of the optimal results from a centralized
model predictive controller (MPC) and DMPC with those
obtained through a rule-based strategy indicate that both the
centralized MPC and DMPC deliver energy savings of 9.85 %
and 2.21 %, respectively.

I. INTRODUCTION

The road transport industry plays a significant role in
achieving the goal of net zero CO4 emissions by 2050, given
that it currently contributes 16 % of global emissions [1].
One of the primary solutions to reduce emissions is through
the use of zero-emission vehicles (ZEVs). Several countries
have already taken measures to facilitate the deployment of
ZEVs. For example, the United States has set a target of 50 %
of light-duty vehicle (LDV) sales being electric vehicles by
2030, while Canada aims to achieve 100 % ZEV LDV sales
by 2035. The European Union has mandated that all new
cars and vans sold from 2035 to be ZEVs [1]. Among ZEVs,
battery electric vehicles (BEVs) are considered the future of
passenger vehicles.

A long driving range is a highly desirable feature for
prospective buyers of BEVs. However, the limited driving
range, which can lead to range anxiety, is a significant
concern for non-BEV owners considering a purchase [2].
Although fitting a larger battery may seem like an attractive
solution to this issue, it is not a practical option. Doing
so would significantly raise the cost, potentially making
BEVs less cost-competitive when compared to conventional
vehicles. A more cost-effective approach to increasing the
driving range is to enhance the system efficiency, which is
directly related to reducing energy consumption.

After traction energy, thermal energy management (TEM)
system is the second most significant energy consumer in
BEVs. The main goal of the TEM system is to meet
the thermal demands of the passenger cabin, battery, and
electric drive (ED). The TEM’s energy consumption becomes
prominent in harsh weather conditions, which may result in
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reducing the electric range by 30-35% [3]. In addition to
decreasing driving range, high energy consumption can also
increase the number of charging and discharging cycles of
the battery, also known as cycle aging. Thus, high system
efficiency can also reduce battery degradation and prolong
the battery’s life during operation.

Several studies have investigated ways to reduce ther-
mal energy consumption in BEVs, mostly focusing on
component-level improvements for the battery thermal man-
agement system (BTMS) [4-6] and the heating, ventilation,
and air conditioning (HVAC) system [7-13]. While some
studies have examined integrated systems, such as [14, 15],
they do not reflect the current setup of modern BEVs, which
incorporates the HVAC and a heat pump into the TEM
system. The system is designed to allow thermal energy
transfer between the cabin, battery, and electric drivetrain,
which enables the utilization of heat losses from the battery
and electric drivetrain. Studies have shown that this setup can
be more energy efficient than the conventional system [16—
19]. The Tesla Model Y, Polestar 2, and Volvo XC 40,
among other modern BEVs, are equipped with a similar TEM
system that utilizes an HVAC with a heat pump.

Optimization methods have shown promising results in
reducing energy consumption in BEVs. In [6] Pontryagin’s
maximum principle is investigated to optimize the BTMS.
Model Predictive Control (MPC) has emerged as a promis-
ing method for energy-optimized control of automotive air
conditioning systems [7, 8, 11, 14, 15, 20]. However, in [7,
8, 11, 15, 20], the MPC method is only utilized for the
HVAC system rather than for a complete thermal system.
One of the challenges in using MPC to control the complete
TEM system is the computational demand that arises due to
complexity and nonlinearities in the TEM system, making it
difficult to operate in real-time in automotive control units.

To reduce computational demand, the authors in [14] pro-
pose a decentralized MPC approach for solving the BTMS
and HVAC system in a hierarchical manner. However, the
results showed that this approach led to a cabin temperature
that was 1.5 °C higher than the centralized solution and the
battery cooling rate was slow. Additionally, the study steered
the battery temperature towards a reference temperature
that is not necessarily the optimal battery temperature that
minimizes energy consumption subject to temperature limits.

To address the above mentioned shortcomings, this article
pioneers the integration of a distributed model predictive con-
troller (DMPC) into the novel TEM system that comprises
the battery and HVAC with a heat pump system. The pro-
posed approach utilizes a DMPC that employs the alternating

8357



EXV
Chiller

Recirculation Door

. Chi“@ N From Ambient _»~ From Cabin
Fomm— - - :
'Battery Coolant . From Ambient
1Pump !
i — EXV
i Compressor Evaporator
H ¥ ED Coolant
| - Pump
i =
R Evaporator
3=
| [ | - E
‘ ) Bun
R H Electric B X
Motor Fan Cabin
Fan gond
Refrigerant Circuit Radiator wee oo
ED Coolant Circuit ’ Cond Fan

Condenser "\

-~ Battery Coolant Circuit - g
Radiator

Fig. 1. An architectural overview of the CEVT thermal energy management
system (CTEM). The CTEM comprises three circuits: battery coolant (blue
circuit), electric drive coolant (yellow circuit), and refrigeration coolant
(green circuit). EXV refers to the electronic expansion valve, WCC stands
for water cooled condenser and Evap and Cond denote evaporator and
condenser, respectively.

direction multipliers method (ADMM) to solve the DMPC
problem separately for each subsystem (battery and HVAC)
with local information about the other subsystem in order
to find optimal operating points for the system for a given
scenario. The HVAC subsystem’s objective is to minimize the
energy consumption of its actuators and track the deviation
between the cabin air temperature and the comfortable tem-
perature for passengers. The battery subsystem’s objective is
to minimize its actuator’s energy consumption and regulate
battery temperature. This implementation method simplifies
the process of addressing nonlinear problems by facilitating
parallel computations across different electronic controller
units within the vehicle, enhancing its suitability for real-
time implementation and potentially reducing computation
time.

We apply the optimal controller to a novel architecture
developed by the China Euro Vehicle Technology AB, which
has some unique features compared to commonly used
HVAC and heat pump systems. In particular, the refrigerant
loop of the novel system has the potential to be more energy
efficient due to the ability to operate in an exhaust heat pump
mode [21] — a feature that, e.g., Tesla vehicles do not yet
possess.

The paper is organized as follows: Section II introduces
the modelling and problem formulation. In Section III, de-
composition of the coupled system and ADMM algorithm is
presented. Results from solving the problem in a distributed
and centralized manner are discussed in Section IV. Finally,
Section V draws conclusions from the study and discusses
future work.

II. MODELLING AND PROBLEM FORMULATION

China Euro Vehicle Technology AB has developed a novel
architecture for a battery electric vehicle thermal energy
management system (CTEM), as illustrated in Fig. 1. The
CTEM system is comprised of three circuits: a battery
coolant circuit, an electric drive (ED) coolant circuit, and
a refrigeration circuit. The battery coolant circuit includes

a battery pump, a cooling plate located beneath the bat-
tery pack, and a chiller that transfers heat energy between
the coolant and refrigerant circuit. The refrigerant circuit
comprises a compressor, a water-cooled condenser, an air
condenser, an evaporator, and two expansion valves. The
ED coolant circuit consists of a radiator, an electric motor,
and an ED coolant pump. Additionally, the CTEM system
is equipped with two 4-way valves, enabling thermal energy
exchange between different circuits.

This study focuses on a harsh cool-down scenario where
the ambient temperature exceeds 45 °C. In this scenario, the
battery and cabin are actively cooled using the chiller and
the evaporator, respectively, while the ED is passively cooled
with the assistance of the radiator. The position of the valves
are fixed for the entire drive cycle. The ED circuit is not
considered in the study, and the ED coolant temperature and
flow rate at the water-cooled condenser inlet are assumed to
be at a steady-state. The optimization technique presented
in this study utilizes the nonlinear continuous model for
the CTEM system in this configuration, which was derived
in [21].

The CTEM system in the studied configuration consists of
two dynamically coupled subsystems: the battery subsystem
and the HVAC subsystem. The cooling rate of the battery
is influenced by the coolant temperature at the outlet of the
chiller, which is determined by the refrigerant temperature
at the inlet of the chiller. Additionally, the refrigerant tem-
perature at the compressor inlet depends on the amount of
thermal energy absorbed by the refrigerant from the coolant
in the chiller, which is determined by the battery temperature.

A. Battery and HVAC subsystems

The nonlinear dynamics of the battery subsystem are
expressed as

(1a)
(1b)

&y = fi (b, up, e, , Ue, d)
Ip = [SOC Tb]T, Up = [Wcl} )

where x}, is the battery state vector consisting of the battery
state of charge SOC and the battery temperature 73, up
is the control vector consisting of coolant mass flow rate
We, xc, is the subset of HVAC subsystem state vector
consisting of refrigerant temperature 7¢, and pressure p,, at
the compressor inlet, u. is the HVAC subsystem control input
vector and d is the deterministic disturbance that includes
traction power demand. The battery subsystem also includes
the compressor and heat exchanger models from the HVAC
subsystem. The battery subsystem utilizes information from
T, and u. to compute the refrigerant inlet temperature at
the chiller.

Notice that variables’ dependency on time ¢ and planning
along the horizon 7 € [0,7T] is omitted in the notation for
the sake of simplicity, except later in (9), when the entire
problem is summarized. Additionally, in the remainder of
the paper, constants are represented with an underline for
ease of identification.

8358



The nonlinear dynamics of the HVAC subsystem are
expressed as

Te= fc (:UC,UC,(EbS,Ub), (2a)
T

Te = [Tca Tt T Tty pcin] s (2b)

Ue = [Ape Wc Wac Wae Wrc] i 5 (ZC)

where x. is the HVAC state vector consisting of cabin
air temperature 7.,, cabin interior surface temperature 7g¢,
cabin interior mass temperature 71y, refrigerant temperature
T, and pressure p., at the compressor inlet, u. is the
HVAC control vector consisting of pressure drop across
the expansion valve Ap,, refrigerant mass flow rate at the
compressor W, air mass flow rate at the condenser fan W,
air mass flow rate at the evaporator fan W, W, refrigerant
mass flow rate at the chiller, W,., and x1,, = T}, is subset of

the battery state vector.

B. Problem formulation

The goal of the TEM system is to minimize energy
costs related to the battery and HVAC subsystems. The cost
function for the battery subsystem can be expressed as

t+T
To() = Vo (2) + / (Pop (We) + ppd2) dr, 3)
t

where (-) is a compact notation for a function of multiple

variables, V4, (;vb) is the terminal cost for the battery subsys-

tem, P, is the power consumption of the battery coolant

pump, d, is the slack variable used to soften bounds on the

battery temperature, and py, is a coefficient that is tuned to

penalize violations of battery temperature bounds,
Thpin < Tb £0b < T,

“4)

where Ty, and T, are minimum and maximum battery
temperature, respectively. The relaxation of the temperature
bounds is especially important in hot climate conditions
when the initial battery temperature could be above the
allowed limit.

The cost function for the HVAC subsystem can be ex-
pressed as

max

t+T
']C() =V (xc) + / (Pcomp (Wcorm Apcom) + Pfev (Wae)
t

+ P, (Wae) + @(Tea - Tcamf)Q))dTv
(5

where Peomp, Fr., and P are the power consumption of the
compressor, evaporator fan and condenser fan, respectively,
Tta,. 1s a reference cabin air temperature, p, is the penalty
on the deviation of the cabin air temperature from the
reference, and VC(LL’C) is the terminal cost for the HVAC
subsystem.

The terminal cost for both subsystems is a quadratic
function expressed as

Vz(xz) = (SxiTPi 0x;, i € [b, ]

0T; = i — Tisp

(6)
)

where P; > 0 is the solution to the Discrete Algebraic Riccati
Equation (DARE) [22] obtained by linearizing the nonlinear
subsystems around setpoints, such as z; gp.

The two coupled subsystems can be equivalently written
in the centralized form

&= F(z,u,d), 8)
T T T
F:[bT fCT] ,m:[xg a:CT] ,u:[ug uﬂ .
The optimization problem can now be formulated as
T
min V(2(T) + / T (2(7), u(r)) dr 92)
u,0p 0
st. & =F (x,u,d), 2(0) = xq (9b)
MRS [xminvxmax]v (9C)
u € [umina umax]a (9d)
g(z,u) <0, (9e)
where
V= Z ‘/l(xl)v J(x,u) = Z Ji(xiaui)a
1€[b,c] 1€[b,c]

xo is the initial state and g(x,u) represents all inequality
constraints that ensure safe operation of the CTEM system.
The states and control inputs are subjected to upper and lower
bounds as expressed in (9c) and (9d).

III. DISTRIBUTED MPC

It can be noticed that the cost function (9a) of the
CTEM system is separable, but coupling between the two
subsystems exist in the dynamics (9b) and general inequality
constraints (9¢). The aim of this section is to decouple the
subsystems and then solve the CTEM system in a distributed
manner, using ADMM.

A. Decomposition into subsystems

One way to separate the coupled dynamics of the two
subsystems is by incorporating a vector of local copies of
the coupling state and control variables in each subsystem
[23]. Let
L., )
; 1D

denote the local copies in the battery and HVAC subsystem,
respectively. Here, It, Iy, lap 5 lwes lwaes lw,. are the
local copies of Tt , De;s APexvs Wes Wac, Wae and Wi
respectively, while [, and [y, are the local copies of T,
and W, respectively. The battery subsystem is coupled with
the T, and pe,, states and Apexy, We, Wae, Wae and Wi
control inputs from the HVAC subsystem, so [}, consists of
local copies of these variables. Similarly, the local copy I.
for the HVAC subsystem consists of local copy of the battery
temperature 7, and W¢,. Then, the dynamics of the battery
(1a) and HVAC (2a) subsystems can be rewritten as

Iy = [ZT I lap lw. Lwa. lw,.

lc = [le lwcl] ’

(12a)
(12b)

jjb = fb (fb,“b,lb,d) )

j;c = fc (.’EC,UC, lc) .
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Fig. 2. [Illustration of the interdependent subsystems of the CTEM system,
with local copies denoted as [}, and [ utilized to decouple the coupled
subsystems. The coordination variable z is employed to bring the local
copies into consensus with the true values of each subsystem.

and inequality constraints (9e) can be rewritten as
(T, Ub, Ip) < 0 and gc(xc, e, lc) < 0.

As the two subsystems now include only copies of the true
variables of the other subsystem, a form of negation between
the subsystems is needed until consensus is reached on a
common value of the local variables [24]. The negotiation is
here achieved by introducing coordination variables for each
of the local copies

T
z= [sz Zwg AT Zp RAp Awe ZFwae Pwae zrc}

and imposing consistency constraints

2T = 1, 217 = Tc;na Zp = Pcins RAp — Apea ZwWae — Wae

Zw, = We, BWae — Wac, 2Zre = Wie, Zwea — Wely

(13a)
ZbT = le7 2T = lT7 Zp = Zp7 ZAp = lApa Rw, = lwca
Zwae = bwaes Zre = lwye Zwa = Wely 2Zwae = lwae-

(13b)

The overview of the coupled subsystems, including local
copies of variables and coordination variables shared be-
tween the two subsystems, is illustrated in Fig. 2.

B. ADMM algorithm

The ADMM algorithm can be now be applied in a
general setting. It is configured to minimize an augmented
Lagrangian for (9),

9 T
L) = A0+ 1+ Y [ 0ul)T 6(0) - )
i=170

(2() — w, ()" + M) T (2(8) = 1(0))

+ 5 (=) = 1(2)) )dr,

NI

(14)

where the consistency constraints (13a) and (13b) are
adjoined to the cost function (14) by the means of dual
variables vectors A\, and \; associated to the each consistency
constraint. In addition, the consistency constraints are
penalized using penalty parameters p > 0. Here, w, =
[Tb Wa Tci,, Peiy Ape We Wae Wae Wrc] ’
are stacked state and control variables involved in the
consistency constraints (13a) and [ = [I] [} }T, are

b}

stacked local copies of both subsystems involved in the
consistency constraints (13b).

The augmented Lagrangian (14) can be assigned as the
cost function to each subsystem individually. The optimiza-
tion subproblem for the battery subsystem can be formulated
as

min L, (v, ub, b, 2, Az, A1) (15a)
Ub,lb,0b

s.t. Tp = fb (l’b, Up, lb,uc, d) s Ib(O) = Tp, (15b)

Ty € [ajbmin"rbmax]’ (15¢)

up € [ubmin7 ubnlax]’ (15d)

b (Tb, up, ) <0, (15¢)

where gy, (-) are the general inequality constraints associated
with the battery subsystem.

Similarly for the HVAC subsystem the optimization sub-
problem can be formulated as

min L, (zc, Uc, lc, 2, Az A1) (16a)
s.t. '/*.EC = fc (‘rC7 uCa le 'LLb) Y IC(O) = xCo (16b)
L € [xcmin7xcmax]’ (160)
Ue € [Ucpin s Ucpma s (16d)
e (T, U, lc) <0, (16e)

where g¢.(-) are the general inequality constraints associated
with the HVAC subsystem.

The optimization subproblems (15) and (16) can now be
solved in a distributed manner using the separable augmented
Lagrangian (14) [24].

The ADMM iterations consist of a minimization step for
the primal variables wuy,, u. and local variables [, [., a
minimization step for the coordination variables z, and an
update step for the dual variables \,, A\;. The z coordination
variable minimization step can be analytically solved, as z
is not involved in the system dynamics (12a), (12b). The z
minimization step for k" iteration can be expressed as

2R = % (wf“ 4 [ % (\E + A{“)) V)

The convergence of the ADMM algorithm is determined
by evaluating the progress of z, )\,, and \; between two
iterations, which is a direct measure of the residual of
the consistency constraints (13). This is achieved using a
stopping criterion based on the norm of the current iteration
x, and a constant e > 0 [23]. Selecting the appropriate value
of e can help achieving the desired accuracy, however, a
lower value of e requires more iterations.

Within the MPC framework, the ADMM algorithm has
to be iterated until the stopping criterion is met in each
MPC step, as summarized in Algorithm 1. To differentiate
the iterations of the MPC update variables from the iteration
in ADMM, a superscript h is assigned to MPC iterations,
e.g., " and «”, while a superscript k is assigned to ADMM
iterations. For the first MPC step, 20, )\2, and /\? are
initialized with appropriate values. In subsequent MPC steps,
the values rely on solutions from the previous step.
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Algorithm 1 ADMM for a single MPC step h

. b .h Jgh
Input: Thys Teyo d

Output: ul', u}

if h == 0 then
Initialization: A2, \?, 20, p > 0 (penalty term),
e > 0 (stopping criterion) and M (maximum itera-

tions)
end if
for K =1to M do

Compute uﬁ“, l’g“ and xﬁ“ by solving (15)
utilizing

N, 2K and o .

Compute u**!, 51 and 25+ by solving (16)
utilizing

AEUNF, 2F and 2

Compute zF 1 using (17) with wr*1, (¥ \F and AF.
Update the dual variables

A+L Nk —|—p(2k+1 _ wk-i-l)

)\{chl e AE g (R — ey

Skl Lk

if |[ A Ak
A= F ||
uf  uftt
ult — ylktt
break

end if

end for

< e||wfT|| then

IV. RESULTS

This section presents and discusses the results obtained
from applying the ADMM-based DMPC method and cen-
tralized optimization approaches.

A. Simulation Setup

The simulations were conducted on the Worldwide har-
monized Light vehicles Test Cycle (WLTC) with an ambi-
ent temperature of 46 °C. The traction power demand was
obtained from the WLTC simulation data. The T, , was
set to 21°C, and T}, and T}, bounds for the battery
temperature were set to 12 °C and 26 °C, respectively.

The centralized optimal control problem (9) and the sub-
problems (15) and (16) were discretized using the Runge-
Kutta 4th order method with a sampling time of 1s to form
NLPs in a standard form. To solve the discretized NLP
problems, a direct multiple shooting method was employed
with the help of CasADi in MATLAB and the problem
was then solved with the Interior Point Optimizer (IPOPT)
solver [25]. The NLP problems were executed on a laptop
PC equipped with an Intel Core i7 processor operating at
2.6 GHz and 32 GB RAM.

max

B. Optimal results

We analyze the optimal solution of the centralized and
distributed MPC by comparing with a rule-based strategy
that regulates the battery and cabin air temperatures. Fig. 3
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Fig. 3. The state trajectories obtained using the centralized and DMPC
control strategy on the CTEM. Both solutions are compared with the rule-
based strategy.

illustrates the trajectories of these states obtained by the three
strategies. The battery temperature trajectory obtained using
DMPC follows a similar trend to the centralized method,
but it exhibits a much faster cooling rate. Consequently,
the DMPC method reaches the upper bound of the battery
temperature earlier than the centralized method. However,
due to the minimum coolant flow rate constraint, the battery
temperature continues to decrease.

The cabin air temperature trajectory obtained using DMPC
is also similar to the one obtained from the centralized solu-
tion, with a maximum deviation of 0.12 °C from the reference
temperature. This is well within the acceptable deviation
range, which is not surprising, since the cabin temperature
regulation appears directly in the cost function and upon
convergence DMPC tends to reach the target temperature
similarly as the centralized MPC. In addition to maintaining
the reference temperature in the cabin, it is also important
that the cabin is cooled to the reference temperature as
soon as possible. The T, in DMPC method takes a similar
amount of time to reach the reference temperature as in the
centralized solution.
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Fig. 4. The energy consumption of the CTEM system is regulated by
the three different methods. The energy consumption here includes the
energy consumption of the compressor, battery coolant pump, evaporator,
and condenser fan.

The centralized and DMPC algorithms resulted in an en-
ergy reduction of 9.85 % and 2.21 %, respectively, compared
to the rule-based strategy. The energy reduction achieved is
mainly due to the higher cooling rate for the battery tem-
perature at the beginning of the drive cycle. This results in
a lower energy consumption for the battery and compressor
for the rest of the drive cycle. It is important to note that in

8361



the given harsh scenario, the system operates at its limits as
it has to cool down both the battery and the cabin, which
doesn’t provide much freedom for energy reduction.

Most importantly, the DMPC method can offer computa-
tional efficiency over the centralized approach by allowing
the subsystems to be solved separately. The battery and
HVAC subsystems, which have 2 and 5 states respectively,
require fewer states than the 7 states in the centralized
approach, leading to a reduction in computational effort. This
can be advantageous in real-time applications, where fast and
efficient solutions are required.

V. CONCLUSION AND FUTURE WORK

This paper presents a DMPC method for optimizing a
novel thermal management system for BEVs. By decoupling
the battery and HVAC subsystems using dual decomposi-
tion and ADMM, the proposed distributed method reduces
the computation demand on the electronic controller unit,
enabling it to be implemented in real-time. Compared to a
rule-based strategy, the results demonstrate that the proposed
DMPC method can reduce energy consumption by 2.21 %,
which in turn would increase the driving range of BEVs.
Moreover, this method is not limited to the studied CTEM
system and can directly be applied to other thermal manage-
ment systems in BEVs.

The extension of the proposed method to include the ED
coolant circuit presents an exciting opportunity for future
research in this area. Additionally, exploring the impact of
the stopping criterion on the convergence of the algorithm
will provide further insights into the performance of the
proposed method.

REFERENCES

[1] L. Paoli, A. Dasgupta, and S. McBain, “Electric vehicles,” 2022.
[Online]. Available: https://www.iea.org/reports/electric-vehicles

[2] D. Pevec, J. Babic, A. Carvalho, Y. Ghiassi-Farrokhfal, W. Ketter,
and V. Podobnik, “A survey-based assessment of how existing and
potential electric vehicle owners perceive range anxiety,” Journal of
cleaner Production, vol. 276, p. 122779, 2020.

[3] P.E and D. G. M. M. G. M. U. et al., “Experimental test campaign
on a battery electric vehicle: On-road test results (part 2),” SAE Int.
J. Alt. Power., vol. 4(2), pp. 277-292, 2015.

[4] S. Park and C. Ahn, “Computationally efficient stochastic model pre-
dictive controller for battery thermal management of electric vehicle,”
IEEE Transactions on Vehicular Technology, vol. 69, no. 8, pp. 8407—
8419, 2020.

[5] J. Lopez-Sanz, C. Ocampo-Martinez, J. Alvarez-Florez, M. Moreno-
Eguilaz, R. Ruiz-Mansilla, J. Kalmus, M. Gréeber, and G. Lux, “Non-
linear model predictive control for thermal management in plug-in
hybrid electric vehicles,” IEEE Transactions on Vehicular Technology,
vol. 66, no. 5, pp. 3632-3644, 2017.

[6] S. Bauer, A. Suchaneck, and F. Puente Le6n, “Thermal
and energy battery management optimization in electric
vehicles using pontryagin’s maximum principle,” Journal of

Power Sources, vol. 246, pp. 808-818, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0378775313013591

[7]1 S. Schaut and O. Sawodny, “Thermal management for the cabin
of a battery electric vehicle considering passengers’ comfort,” IEEE
Transactions on Control Systems Technology, vol. 28, no. 4, pp. 1476~
1492, 2019.

[8] D. Kibalama, Y. Liu, S. Stockar, and M. Canova, “Model predictive
control for automotive climate control systems via value function
approximation,” IEEE Control Systems Letters, vol. 6, pp. 1820-1825,
2022.

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

8362

Y. Xie, Z. Liu, K. Li, J. Liu, Y. Zhang, D. Dan, C. Wu,
P. Wang, and X. Wang, “An improved intelligent model predictive
controller for cooling system of electric vehicle,” Applied Thermal
Engineering, vol. 182, p. 116084, 2021. [Online]. Available:
https://doi.org/10.1016/j.applthermaleng.2020.116084

M. Alizadeh, S. Dhale, and A. Emadi, “Model predictive control of
HVAC system in a battery electric vehicle with fan power adaptation
for improved efficiency and online estimation of ambient temperature,”
in IECON 2021 — 47th Annual Conference of the IEEE Industrial
Electronics Society, 2021, pp. 1-6.

F. Ju, N. Murgovski, W. Zhuang, and L. Wang, “Integrated
propulsion and cabin-cooling management for electric vehicles,”
Actuators, vol. 11, mno. 12, 2022. [Online]. Available:
https://www.mdpi.com/2076-0825/11/12/356

M. A. Jeffers, L. Chaney, and J. P. Rugh, “Climate control load
reduction strategies for electric drive vehicles in cold weather,” SAE
International Journal of Passenger Cars-Mechanical Systems, vol. 9,
no. 2016-01-0262, pp. 75-82, 2016.

K. Kambly and T. H. Bradley, “Geographical and
temporal differences in electric  vehicle range due to
cabin conditioning energy consumption,” Journal of Power
Sources, vol. 275, pp. 468-475, 2015. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0378775314017613
M. R. Amini, H. Wang, X. Gong, D. Liao-McPherson, I. Kolmanovsky,
and J. Sun, “Cabin and battery thermal management of connected
and automated hevs for improved energy efficiency using hierarchical
model predictive control,” I[EEE Transactions on Control Systems
Technology, vol. 28, no. 5, pp. 1711-1726, 2019.

H. Wang, Y. Meng, Q. Zhang, M. R. Amini, I. Kolmanovsky, J. Sun,
and M. Jennings, “Mpc-based precision cooling strategy (pcs) for
efficient thermal management of automotive air conditioning system,”
in 2019 IEEE Conference on Control Technology and Applications
(CCTA), 2019, pp. 573-578.

Z. Zhang, D. Wang, C. Zhang, and J. Chen, “Electric
vehicle range extension strategies based on improved ac
system in cold climate — a review,” International Journal of

Refrigeration, vol. 88, pp. 141-150, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0140700718300033
J. J. Meyer, J. Lustbader, N. Agathocleous, A. Vespa, J. Rugh, and
G. Titov, “Range extension opportunities while heating a battery
electric vehicle,” SAE Technical Paper, 2018. [Online]. Available:
https://doi.org/10.4271/2018-01-0066

T. Kondo, A. Katayama, H. Suetake, and M. Morishita, “Development
of automotive air-conditioning systems by heat pump technology,”
Mitsubishi Heavy Industries Technical Review, vol. 48, no. 2, pp. 27—
32, 2011.

S. Osborne, J. Kopinsky, S. Norton, A. Sutherland, D. Lancaster,
E. Nielsen, A. Isenstadt, and J. German, “Automotive thermal man-
agement technology,” Automotive News, 2015.

Y. Huang, A. Khajepour, F. Bagheri, and M. Bahrami, “Modelling
and optimal energy-saving control of automotive air-conditioning and
refrigeration systems,” Proceedings of the Institution of Mechanical
Engineers, Part D: Journal of Automobile Engineering, vol. 231, no. 3,
pp. 291-309, 2017.

P. Lokur, K. Nicklasson, L. Verde, M. Larsson, and N. Murgovski,
“Modeling of the thermal energy management system for battery elec-
tric vehicles,” in 2022 IEEE Vehicle Power and Propulsion Conference
(VPPC), 2022, pp. 1-7.

J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model predictive control:
theory, computation, and design. Nob Hill Publishing Madison, WI,
2017, vol. 2.

A. Bestler and K. Graichen, “Distributed model predictive control
for continuous-time nonlinear systems based on suboptimal ADMM,”
Optimal Control Applications and Methods, vol. 40, pp. 1-23, 2019.
S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Dis-
tributed optimization and statistical learning via the alternating di-
rection method of multipliers,” Foundations and Trends® in Machine
learning, vol. 3, no. 1, pp. 1-122, 2011.

J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“Casadi: a software framework for nonlinear optimization and optimal
control,” Mathematical Programming Computation, vol. 11, pp. 1-36,
2019.



