
Counter-examples in first-order optimization: a constructive approach

Baptiste Goujaud and Aymeric Dieuleveut and Adrien Taylor

Abstract— While many approaches were developed for obtain-
ing worst-case complexity bounds for first-order optimization
methods in the last years, there remain theoretical gaps in cases
where no such bound can be found. In such cases, it is often
unclear whether no such bound exists (e.g., because the algorithm
might fail to systematically converge) or simply if the current
techniques do not allow finding them. In this work, we propose an
approach to automate the search for cyclic trajectories generated
by first-order methods. This provides a constructive approach
to show that no appropriate complexity bound exists, thereby
complementing approaches providing sufficient conditions for
convergence. Using this tool, we provide ranges of parameters
for which the famous Polyak heavy-ball, Nesterov accelerated
gradient, inexact gradient descent, and three-operator splitting
algorithms fail to systematically converge, and show that it nicely
complements existing tools searching for Lyapunov functions.

I. INTRODUCTION

In the last years, first-order optimization methods (or
algorithms) have attracted a lot of attention due to their
practical success in many applications, including in machine
learning (see, e.g., [5]). Theoretical foundations for those
methods played a crucial role in this success, e.g., by enabling
the development of momentum-type methods (see, e.g., [29],
[27]). Formally, we consider the optimization problem

x⋆ ≜ arg min
x∈Rd

f(x) (OPT)

for a function f belonging to a class of functions F
(e.g., the set of convex functions, or the set of strongly
convex and smooth functions, etc.). Classical first-order
optimization methods for solving this problem include
gradient descent (GD), Nesterov accelerated gradient
method (NAG) [27], and the heavy-ball method (HB) [29].
These families of algorithms are parametrized: for example,
GD is parametrized by a step-size γ and HB is parametrized
by both a step-size γ and a momentum parameter β. We
generically denote by A any such method, for a specific
choice of its parameters. For a given class of function F and
an algorithm A, we typically aim at answering the question

Does A converge on every function of F
to their respective minimum?

B. Goujaud is PhD candidate at CMAP, Ecole Polytechnique, Insti-
tut Polytechnique de Paris, Route de Saclay, 91120 Palaiseau, France.
baptiste.goujaud@gmail.com

A. Dieuleveut is faculty at CMAP, Ecole Polytechnique, Institut
Polytechnique de Paris, Route de Saclay, 91120 Palaiseau, France.
aymeric.dieuleveut@polytechnique.edu

A. Taylor is faculty at INRIA Paris, 2 Rue Simone IFF, 75012 Paris.
adrien.taylor@inria.fr

Common examples of function classes F include the set
Fµ,L of µ-strongly convex and L-smooth functions, and
the set Qµ,L of µ-strongly convex and L-smooth quadratic
functions, for µ,L ≥ 0.

This type of analysis, requiring results to hold on every
function of a given class F is commonly referred to as
worst-case analysis and is the most popular paradigm for
the analysis of optimization algorithms, see, e.g., [27], [12],
[6], [13], [7]. In this context, a very successful technique
for proving worst-case convergence consists in looking for a
decreasing sequence (called Lyapunov sequence [26], [23],
[22]) of expressions Vt of the iterates xt, i.e. such that

∀f ∈ F , ∀t, ∀xt, Vt+1((xs)s≤t+1) ≤ Vt((xs)s≤t), (1)

where some quantity of interest is upper-bounded
by VT ((xs)s≤T) as T goes to infinity. For instance, when
studying GD with step-size 1/L on the class F0,L of
L-smooth convex functions, we prove that ∀f ∈ F0,L,
(t + 1)(f(xt+1) − f(x⋆)) +

1
2∥xt+1 − x⋆∥2 ≤ t(f(xt) −

f(x⋆)) +
1
2∥xt − x⋆∥2. Therefore, Vt((xs)s≤t) = t(f(xt)−

f(x⋆)) +
1
2∥xt − x⋆∥2 defines a decreasing sequence, and

f(xt) − f(x⋆) ≤ Vt((xs)s≤t)/t ≤ V0(x0)/t, proving
convergence of this method on this class of functions.

Due to the simplicity of the underlying proofs, the Lya-
punov approach is particularly popular, e.g., for NAG [27],
[4], and HB [16]. See [3], [13] for surveys on this topic.

Necessary condition for worst-case convergence. While
finding a decreasing Lyapunov sequence guarantees con-
vergence, not finding one does not guarantee anything:
there may still exist a Lyapunov sequence, that the current
analysis was not able to capture, or the method could
converge without the existence of such Lyapunov sequence.
Establishing that a method provably does not admit a worst-
case convergence analysis is therefore critical for avoiding
spending an indefinite amount of time and effort searching
for a non-existent convergence guarantee. The existence of a
cycle for the algorithm on a particular function means that
it diverges on that function: in other words, the absence of
cycle on all functions is a necessary condition for worst-case
convergence. Moreover, a cycle can be observed after only
a finite number of steps of the algorithm, while observing
the divergence of a non periodic sequence is difficult or
impossible. Overall, this makes the search for cycles a
computationally practical way of proving divergence.

In order to discover cycles, we rely on computer-
assisted worst-case analysis. Performance estimation problems
(PEP [11], [33]) provide a systematic approach to obtain
convergence guarantees, including the search for appropriate
Lyapunov arguments. Some packages (especially Pesto [32]

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 278

and Pepit [18]) automate these tasks. We formulate cycle
discovery as a minimization problem that can be cast in a
PEP, and rely on the Pepit package to solve it.

Examples: We demonstrate the applicability of our method
on several examples. In particular, the case of HB illustrates
the potential of our methodology. In fact, the search for
the step-size γ and momentum β parameters leading to the
fastest worst-case convergence over Fµ,L is still an open
problem, and the existence of parameters resulting in an
accelerated rate remains a lingering question. Indeed, [25]
exhibits a smooth and strongly convex function on which
HB cycles, for parameters γ and β optimizing the worst-
case guarantee on Qµ,L. On the other hand, [16] obtains a
worst-case convergence on Fµ,L for other parameters, but
without acceleration. Recently, [34] proposes a very general
procedure to find Lyapunov sequences and extended the region
of parameters γ and β HB provably converges on, leveraging
PEPs. However, outside this region of the parameter space,
the question of the convergence of the HB method remains
open in the absence of a proof of divergence. For this example,
our approach demonstrates that a cycle exists for almost all
parameters for which no Lyapunov is known.

Summary of contributions: This paper proposes a sys-
tematic approach to prove that no worst-case certificate of
convergence can be obtained for a given algorithm A on a
class F . To do so, we establish the existence of a function
in F over which A cycles. We illustrate our approach by
applying it to three famous first-order optimization algorithms,
namely HB, NAG, inexact gradient descent with relatively
bounded error. We further showcase the applicability of the
approach to more general types of problems by studying the
three-operator splitting method for monotone inclusions. For
each method, we describe the set of parameters for which it
is known to converge and the ones where we establish the
existence of a cycle. In the first three examples, our approach
enables to fill the gap: we show the existence of cycles for
all parametrizations not known to result in convergence.

Organization: The rest of the paper is organized as follows.
In Section II, we introduce the concept of a stationary
algorithm and formally define a cycle. In Section III, we
present our methodology to discover cycles, relying on PEP.
Finally, in Section IV, we provide the numerical results.

II. DEFINITIONS AND NOTATIONS

In this section, we consider a subclass of first-order
methods, tailored for our analysis. It is chosen to ensure
the periodicity of an algorithm that cycles once (see Propo-
sition 3.1). The class reduces to “p-stationary canonical
linear iterative optimization algorithms” (p-SCLI, see [2,
Definition 1]) when the dependency to the previous iterates
and gradients is linear which is a particular case of “fixed-
step first-order methods” (FSFOM, see in [33, Definition 4]).
Here, we consider stationary first-order methods (SFOM),
whose iterates are defined as a fixed function of a given
number of lastly observed iterates, as well as output of
some oracles called on those iterates. Examples of such
oracles include gradients, approximate gradients, function

evaluations, proximal step, exact line-search, Frank-Wolfe-
type steps (see [31], [18] for lists of oracles that can be
handled using PEPs). The oracles we use depend on the
setting under consideration.

Definition 2.1 (Stationary first-order method (SFOM)):
A method A is called order-ℓ stationary first-order
method if there exists a deterministic first-order oracle
O(f) and a function A such that the sequence generated
on the function f verifies ∀t ≥ ℓ,

xt = A((xt−s,O(f)(xt−s))s∈J1,ℓK). (SFOM)

For any given function of interest f and any initialization
(xt)t∈J0,ℓ−1K, an order-ℓ (SFOM) A iteratively generates a
sequence (xt)t∈N that we denote A(f, (xt)t∈J0,ℓ−1K).

Definition 2.1 above is very similar to the definition of
a general first-order method. However, the key assumption
here is that the operation A does not depend on the iteration
counter t: the algorithm is stationary. While this assumption
is restrictive, many first-order methods are of the form
(SFOM), including (but not limited to): GD, HB [29] and
NAG [28] with constant step-sizes. On the other hand, any
strategy involving decreasing step-size (e.g. for GD), or
increasing momentum parameter (e.g. for NAG on F0,L

as in [27]) are not in the scope of this definition. Note
that the aforementioned examples use the first-order oracle
O(f)(x) ≜ (∇f(x), f(x)), although our methodology applies
beyond this simple setting, as previously discussed. As an
example, IV-D considers an algorithm relying on the resolvent
(or proximal operation).

Stationarity is essential for being able to prove existence
of a cyclical behavior in a finite number of steps. Next, we
define a cyclic sequence.

Definition 2.2 (Cycle): For any positive integer K ≥
2, a sequence (xt)t≥0 is said to be K-cyclic if ∀t ≥
0, xt = xt+K . A sequence x is said to be cyclic if there
exists K ≥ 2 such that x is K-cyclic.

For any given order-ℓ (SFOM) A, and any function class F ,
we want to address the question

Does there exist a function f ∈ F and an initialization
(xt)t∈J0,ℓ−1K such that A(f, (xt)t∈J0,ℓ−1K) is cyclic?

Example 2.3: In [25, Equation 4.11], the authors answer
positively to this question by providing a cycle of length 3, on
the class Fµ,L with (µ,L) = (1, 25), and for A the heavy-
ball method with step-size γ = (2√

L+
√
µ
)2 and momentum

parameter β = (
√
L−√

µ√
L+

√
µ
)2. Those parameters are natural

candidates, that correspond to the limit of the step-size and
momentum in Chebychev acceleration [14], [24], [35], and
result in an acceleration for quadratic functions.

In Section IV, we extend this result to more parameters.

III. SEARCHING FOR CYCLES

In this section, we show how to find cyclic trajectories.

279

A. Motivation

Finding diverging trajectories for an algorithm A might be
challenging. We thus focus on cycles, as they allow to focus
on a finite sequences of iterates only. Indeed, for an SFOM,
once we observe the cycle to be repeated once, we can easily
extrapolate: this same cycle is repeated again and again. This
statement is formalized in the following proposition.

Proposition 3.1: Let A be a order-ℓ (SFOM), and
(xt)t∈N be any sequence generated by A. Then the
sequence (xt)t∈N is cyclic if and only if there exists
K ≥ 2 such that ∀t ∈ J0, ℓ− 1K, xt = xt+K .

The proof is provided in [17].

B. Approach

We now present the approach used to search for cycles,
based on performance estimation problems (PEPs) [11], [33].
We consider an algorithm A, a function f and initial points
(xt)t∈J0,ℓ−1K, and run A on f starting on (xt)t∈J0,ℓ−1K. This
generates the sequence x = A(f, (xt)t∈J0,ℓ−1K). For any
positive integer K, we then define the non-negative score

sK(A, f, (xt)t∈J0,ℓ−1K) =

ℓ−1∑
t=0

∥xt − xt+K∥2.

From Proposition 3.1, this score is identically zero if and
only if A cycles on f when starting from (xt)t∈J0,ℓ−1K.
This suggests that one can search for cycles of length K
by minimizing the score sK(A, f, (xt)t∈J0,ℓ−1K) w.r.t. the
function f and the initialization (xt)t∈J0,ℓ−1K.

Observe that fixed points of A, that correspond to cycles
of length 1, also cancel this score. Our goal is to search for
cycles of length at least K ≥ 2, that entail that the algorithm
diverges for a particular function and initialization. As any
convergent algorithm must admit the optimizer of f as fixed
point, we have to exclude fixed points. To do so, we add
the constraint that the two first iterates are far from each
other. In most cases of interest, making this constraint can be
done without loss of generality due to the homogeneity of the
underlying problems. We arrive to the following formulation:∣∣∣∣∣∣∣

minimize
d≥1,f∈F,x∈(Rd)N

∑ℓ−1
t=0 ∥xt − xt+K∥2

subject to
{

x = A(f, (xt)t∈J0,ℓ−1K)
∥x1 − x0∥2 ≥ 1.

(P)

As we see in the next sections, this problem can be used
to answer the question of interest by testing the nullity of
the solution of (P).

As is, (P) looks intractable due to the minimization over
the infinite-dimensional space F and its non-convexity. This
can be handled using the techniques proposed in [33], [31],
developed for PEP. It consists in reformulating (P) into a
semi-definite program (SDP) using interpolation / extension
properties for the class F , together with SDP lifting.

Indeed, (P) does not fully depend on f , but only on
O(f)(xt) where t ∈ J0;K + ℓ − 2K. By introducing the

variables Ot ≜ O(f)(xt), we can replace the constraint
x = A(f, (xt)t∈J0,ℓ−1K) of (P) by

xℓ = A((xℓ−s,Oℓ−s)s∈J1,ℓK),
...

xK+ℓ−1 = A((xK+ℓ−1−s,OK+ℓ−1−s)s∈J1,ℓK),

and minimize over the finite dimensional variables
(Ot)0≤t≤K+ℓ−2 instead of f , under the constraint that there
exists a function f ∈ F that interpolates those values, i.e. that
verifies O(f)(xt) = Ot for all t ∈ J0;K + ℓ − 2K. For
some classes F , those interpolation property are equivalent
to tractable inequalities, as in the following example.

Example 3.2 (L-smooth convex functions): If the oracles
are only the gradients and the function values of the objective
function f , denoting fi ≜ f(xi) and gi ≜ ∇f(xi) (i.e. Oi ≜
(gi, fi)), the interpolation conditions of F0,L are provided
in [33] as

∀i, j, fi ≥ fj + ⟨gj , xi − xj⟩+ 1
2L∥gi − gj∥2. (IC)

This function class is considered in three of the four examples
under consideration in the next section (HB, NAG, inexact
GD). However, the methodology described in this paper
applies to many other classes beyond Fµ,L, see for instance
[18, Function classes]: an example of such a class is used
in the fourth example of the following section. Each class
considered must be described by its interpolation conditions,
similar to (IC). Other examples of known interpolations
conditions are provided in [31, Th. 3.4-3.6], [10, Cor.1&2],
[21, Th.1] [19, Th. 2.6]. The key ingredient for a class to enter
in the scope of this paper, is that its interpolation conditions
are expressed as a degree 2 polynomial in xt and Ot, and
that a given variable is not involved both in a monomial of
degree 1 and one of degree 2, as in (IC).

Then, the SDP lifting part consists in introducing a Gram
matrix G [33, Theorem 5] of vectors among xt and Ot that
are involved in degree 2 monomials, so that those quadratic
expressions of xt and Ot are then expressed linearly in term
of G ⪰ 0. Thereby, the problem can be cast a standard SDP.

In the case where the oracle is Ot = (gt, ft), and the class
of interest F is the class of L-smooth convex functions F0,L,
the objective and all the constraints of (P) are written linearly
in terms of (ft)t and quadratically in terms of (xt, gt)t.
Therefore, we define G as the Gram matrix of (xt, gt)t and
F as a vector storing all the values ft leading to an SDP
reformulation of the problem. See, e.g., [18, Section 2] for a
detailed derivation on a simple example.

Setting u ≜ (G,F), (P) is generally rewritten, under above
mentioned key ingredients, as∣∣∣∣∣∣∣∣∣∣

minimize
u∈C

⟨u, vobj⟩

subject to

⟨u, v1⟩ ≥ 0

. . .
⟨u, vn⟩ ≥ 0
⟨u, vaff⟩ ≥ 1.

(SDP-P)

The objective is linear, as well as the first n constraints. The
affine constraint ⟨u, vaff⟩ ≥ 1 enables to discard the trivial
solution u = 0 and corresponds in (P) to the constraint

280

∥x1 − x0∥2 ≥ 1. Finally, the constraint u ∈ C corresponds to
the constraint G ⪰ 0. C is then a closed convex semi-cone.

By definition, if there exists a feasible vector u such that
the objective of (SDP-P) is zero, then it describes a cycle.
Moreover (SDP-P) is convex and efficiently solvable (due to
the existence of a Slater point [33, Theorem 6]).

In the next sections, we numerically apply this methodology
through the Pepit python package [18] which takes care
about the tractable reformulations of (P) into (SDP-P).
(SDP-P) is then solved using through a standard solver [1]
to determine the infimum value of ⟨u, vobj⟩ over the feasible
set of (SDP-P). The next theorem allows to conclude about
the existence of cycles.

Theorem 3.3: Assuming the infimum value of (P) to
be 0, then there exists a cycle.

The proof is provided in [17]

IV. APPLICATION TO FOUR DIFFERENT (SFOM)S

In this section we illustrate this methodology on four
examples: heavy-ball (HB), Nesterov accelerated gradient
(NAG), gradient descent (GD) with inexact gradients, and
three-operator splitting (TOS). For each, we apply the
methodology proposed in Section III. The code is available
in the public github repository https://github.com/
bgoujaud/cycles. Since ingredients are the same as
those of classical PEPs, we also use the python package
Pepit [18]. We perform a grid search over the spaces of
parameters of interest Ω, described in the respective subsec-
tions. We compare the parameter region where Lyapunov
functions can be obtained with the region in which we
establish that the method cannot have a guaranteed worst-
case convergence (due to the existence of cycles). More
precisely, in Figures 1 to 4 below, green regions corresponds to
parameter choices for which the methods converge (existence
of a Lyapunov function, found using the code provided
with [30]). Conversely, in the red regions, our methodology
establishes that the method cycles on at least one function
of F . In short, the algorithms converge in the green regions
and do not converge in the worst-case in the red ones.

Note that some parameters for which the algorithm A
admits a worst-case convergence guarantee could theoretically
exist outside the green region: indeed, in [30], the authors
do not guarantee that they necessarily find convergence.
Similarly, parameters for which A does not admit a worst-case
convergence guarantee could theoretically exist outside of the
red region: indeed (P) is defined for a fixed cycle length K,
and we therefore run it several times with different values
of K. Longer cycles are therefore not detected. Moreover,
the non-existence of cycles does not necessarily imply that
the algorithm always converges.

Interestingly, in practice, we observe on Figures 2 and 3
that the set Ω of parameters is completely filled by the union
of those 2 regions and that it is almost the case on Figure 1 (it
may have been if we had searched for cycles of all lengths).
As a consequence, we fully characterize for which tuning the
algorithms admit a guaranteed worst-case convergence. On

Fig. 1. Heavy-ball (HB). Green area: set of parameters (γ, β) ∈ ΩHB for
which a Lyapunov function exists; Red area: set of parameters (γ, β) ∈ ΩHB

for which (HB) cycles on at least one function in F0,L.

the contrary, there remains a significant gap between the red
and the green regions in our last example, see Figure 4.
A. Heavy-ball

The HB algorithm, as introduced by [29], corresponds
to the following update, for a step-size parameter γ and a
momentum parameter β:

xt+1 = xt + β(xt − xt−1)− γ∇f(xt). (HB)

Therefore (HB) is an order-2 (SFOM).
Set ΩHB of parameters of interest: HB converges on

the set Q0,L if and only if the parameters γ, β verify 0 ≤
γ ≤ 2(1 + β)/L ≤ 4/L [29]. Note this condition enforces
−1 ≤ β ≤ 1. Moreover, we restrict to β ≥ 0 as β < 0 is
not an interesting setting (slowing down convergence with
respect to GD). Therefore, we limit our analysis to this set.

Interpretation. The red area in Figure 1 shows parameters
where cycles of length K ∈ J2; 25K are found by our
methodology. The red color intensity indicates the length
of the shortest cycle. A striking observation is that the space
ΩHB is almost filled by the union of the red area and green
one (where Lyapunov functions exist). Thereby, for almost
all values of the parameters, we have a definitive answer on
the existence of a certificate of convergence in the worst-case.
That being said, there exists a small unfilled region in the
top left corner (see the zoom on Figure 1) In this region, we
do not know how HB behaves, and whether it accelerates.
However, adding longer cycle length may enable to obtain
cycles in that area. Indeed we considered only cycles of
length K ≤ 25, for computational reasons. Recently, [20]
computed the analytical region of cycles of (HB) showing
non-acceleration of the latter.
B. Nesterov accelerated gradient

NAG (also known as the fast gradient method) was
introduced by [28] and corresponds to the following update,
for a step-size parameter γ and a momentum parameter β:{

yt = xt + β(xt − xt−1),
xt+1 = yt − γ∇f(yt).

(NAG)

281

Fig. 2. Nesterov Accelerated gradient (NAG). Green area: set of parameters
(γ, β) ∈ ΩNAG for which a Lyapunov function exists; Red area: set of
(γ, β) ∈ ΩNAG for which (NAG) cycles on at least one function in F0,L.

(NAG) is also written as follows yt+1 = (1 + β)(yt −
γ∇f(yt))− β(yt−1 − γ∇f(yt−1)), and is therefore also an
order-2 (SFOM).

Set ΩNAG of parameters of interest: As for HB, we
consider the set of β and γ for which (NAG) converges
on Q0,L. This corresponds to considering all β, γ verifying
0 ≤ β ≤ 1 and 0 ≤ γ ≤ 2

L
1+β
1+2β .

Interpretation: (NAG) is known to converge, with an ac-
celerated rate, on Fµ,L, for the tuning (γ, β) = (1

L ,
√
L−√

µ√
L+

√
µ
),

that optimizes the convergence rate on Qµ,L. For this
reason, (NAG) is considered to be more “robust” than HB.

Figure 2 shows that (NAG) admits a Lyapunov function for
almost any parameters in ΩNAG. Moreover, our methodology
does not detect any set of parameters at which a cycle of
length K ∈ J2; 25K exists, apart on the boundary {(γ, β), γ =
2
L

1+β
1+2β }. On the boundary, cycles of length 2 are observed,

whose existences are theoretically verified on one-dimensional
quadratic functions. This illustrates the robustness of our
methodology when very few cycles exist.

C. Inexact gradient method

Next, we consider the inexact gradient method, parameter-
ized by γ and ε and the update

Get O(xt) = dt such that ∥dt −∇f(xt)∥ ≤ ε∥∇f(xt)∥,
xt+1 = xt − γdt.

(IGD)
(IGD) is thus an (SFOM) of order 1.

Set ΩIGD of parameters of interest: Since the exact
gradient method converges only for γ < 2

L , we only consider
such steps-sizes. Moreover, ε ≥ 1 allows dt = 0 and thereby
does not make much sense. This motivates considering the
set ΩIGD = {(γ, ε) ∈ [0; 2

L]× [0, 1]}.
Interpretation: We search for cycles of length K ∈ J2; 25K

and use color intensity to show the minimal cycle length.
(IGD) is known to converge for any γ ≤ 2

L(1+ε) (see [9],
[15]). Figure 3 shows that the complementary of this region
of convergence is completely filled by parameters allowing

Fig. 3. Inexact GD (IGD). Green area: set of parameters (γ, ε) ∈ ΩIGD

for which a Lyapunov function exists; Red area: set of (γ, ε) ∈ ΩIGD for
which (IGD) cycles on at least one function in F0,L.

cycles, showing that no other parameters values than the
known ones allow obtaining worst-case convergence of (IGD).

D. Three-operator splitting

The three-operator splitting (TOS) method, introduced
by [8], aims at solving the inclusion problem 0 ∈ Ax +
Bx + ∂f(x), where A is a monotone operator, B is a co-
coercive operator and ∂f denotes the differential of the
smooth (strongly) convex function f . It corresponds to the
following update, for a step-size parameter γ, a smoothing
parameter α and an update parameter β:

xt+1 = JαB(wt),

yt+1 = JαA

(
2xt+1 − wt − γ

β∇f(xt+1)
)
,

wt+1 = wt − β(xt+1 − yt+1),
(TOS)

where JO denotes the resolvent of the operator O, i.e. JO =
(I +O)−1. Note that (TOS) is therefore an order-1 (SFOM).

Fig. 4. Three-operator splitting (TOS). Green area: set of parameters
(γ, β) ∈ ΩTOS for which a Lyapunov function exists; Red area: set of
(γ, β) ∈ ΩTOS for which (TOS) cycles on at least a triplet of operators.

282

Set ΩTOS of parameters of interest: When considering
A, B and ∇f to be linear symmetric and co-diagonalisable
operators, the set of convergence of (TOS) is ΩTOS ={
(γ, β) ∈

[
0, 2

L

]
× [0, 2]

}
, which we therefore consider.

Interpretation: We search for cycles of length K ∈ J2, 25K
and use color intensity to show the minimal cycle length.
Interestingly, there is a gap between the green region and the
red ones. Unlike for (HB), it seems that increasing the length
of the cycle does not help covering this gap and shows that
some algorithms might have no Lyapunov function while not
cycling. Understanding the behavior of (TOS) in the grey
region is therefore still an open question.

V. CONCLUSION

This work proposes a systematic approach for finding
counter-examples to convergence of first-order methods,
bringing a complementary tool to the existing systematic
techniques for finding convergence guarantees (that include
certifications through the existence of Lyapunov functions).
Our approach is based on now classical tools and techniques
used in the field of first-order optimization and a few existing
packages [18], [32] allows for straightforward implementa-
tions of our methodology.

ACKNOWLEDGMENTS.The authors thank Margaux Zaffran
for her feedbacks and fruitful discussions and her assistance in
making plots. The work of B. Goujaud and A. Dieuleveut is partially
supported by ANR-19-CHIA-0002-01/chaire SCAI, and Hi!Paris.
A. Taylor acknowledges support from the European Research
Council (grant SEQUOIA 724063). This work was partly funded
by the French government under management of Agence Nationale
de la Recherche as part of the “Investissements d’avenir” program,
reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute).

REFERENCES

[1] MOSEK ApS. MOSEK Optimizer API for C 9.3.6, 2019.
[2] Yossi Arjevani, Shai Shalev-Shwartz, and Ohad Shamir. On lower

and upper bounds in smooth and strongly convex optimization. The
Journal of Machine Learning Research, 17(1):4303–4353, 2016.

[3] Nikhil Bansal and Anupam Gupta. Potential-function proofs for gradient
methods. Theory of Computing, 15(1):1–32, 2019.

[4] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM journal on imaging
sciences, 2(1):183–202, 2009.

[5] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning.
In Advances in Neural Information Processing Systems (NIPS), 2007.

[6] Sébastien Bubeck. Convex optimization: Algorithms and complexity.
Found. and Trends in Machine Learning, 8(3-4):231–357, 2015.

[7] Antonin Chambolle and Thomas Pock. An introduction to continuous
optimization for imaging. Acta Numerica, 25:161–319, 2016.

[8] Damek Davis and Wotao Yin. A three-operator splitting scheme and
its optimization applications. Set-valued and variational analysis,
25:829–858, 2017.

[9] Etienne De Klerk, Francois Glineur, and Adrien B Taylor. Worst-case
convergence analysis of inexact gradient and newton methods through
semidefinite programming performance estimation. SIAM Journal on
Optimization, 30(3):2053–2082, 2020.

[10] Radu-Alexandru Dragomir, Adrien B. Taylor, Alexandre d’Aspremont,
and Jérôme Bolte. Optimal complexity and certification of Bregman
first-order methods. Math. Programming, pages 1–43, 2021.

[11] Yoel Drori and Marc Teboulle. Performance of first-order methods for
smooth convex minimization: a novel approach. Math. Programming,
145(1):451–482, 2014.

[12] Pavel Dvurechensky, Shimrit Shtern, and Mathias Staudigl. First-order
methods for convex optimization. EURO Journal on Computational
Optimization, 9, 2021.

[13] Alexandre d’Aspremont, Damien Scieur, and Adrien Taylor. Accelera-
tion methods. Found. and Trends in Optimization, 5(1-2), 2021.

[14] Donald A. Flanders and George Shortley. Numerical determination of
fundamental modes. Journal of Applied Physics, 21(12), 1950.

[15] Oran Gannot. A frequency-domain analysis of inexact gradient methods.
Math. Programming, 194(1-2):975–1016, 2022.

[16] Euhanna Ghadimi, Hamid Reza Feyzmahdavian, and Mikael Johansson.
Global convergence of the heavy-ball method for convex optimization.
In 2015 European control conference (ECC), pages 310–315, 2015.

[17] Baptiste Goujaud, Aymeric Dieuleveut, and Adrien Taylor. Counter-
examples in first-order optimization: a constructive approach. preprint
arXiv:2303.10503, 2023. (With appendices).

[18] Baptiste Goujaud, Céline Moucer, François Glineur, Julien Hendrickx,
Adrien Taylor, and Aymeric Dieuleveut. PEPit: computer-assisted worst-
case analyses of first-order optimization methods in Python. preprint
arXiv:2201.04040, 2022.

[19] Baptiste Goujaud, Adrien Taylor, and Aymeric Dieuleveut. Optimal
first-order methods for convex functions with a quadratic upper bound.
arXiv preprint arXiv:2205.15033, 2022.

[20] Baptiste Goujaud, Adrien Taylor, and Aymeric Dieuleveut. Prov-
able non-accelerations of the heavy-ball method. arXiv preprint
arXiv:2307.11291, 2023.

[21] Charles Guille-Escuret, Baptiste Goujaud, Adam Ibrahim, and Ioannis
Mitliagkas. Gradient descent is optimal under lower restricted secant
inequality and upper error bound. In NeurIPS, 2022.

[22] R. E. Kalman and J. E. Bertram. Control System Analysis and Design
Via the “Second Method” of Lyapunov: II—Discrete-time systems.
Journal of Basic Engineering, 82(2):394–400, 06 1960.

[23] R. E. Kalman and J. E. Bertram. Control System Analysis and Design
Via the “Second Method” of Lyapunov: I—Continuous-Time Systems.
Journal of Basic Engineering, 82(2):371–393, 06 1960.

[24] Cornelius Lanczos. Solution of systems of linear equations by. Journal
of research of the National Bureau of Standards, 49(1):33, 1952.

[25] Laurent Lessard, Benjamin Recht, and Andrew Packard. Analysis and
design of optimization algorithms via integral quadratic constraints.
SIAM Journal on Optimization, 26(1):57–95, 2016.

[26] Aleksandr Mikhailovich Lyapunov and A.T. Fuller. The general
problem of the stability of motion. International journal of control,
55(3):531–534, 1992. Original text in Russian, 1892.

[27] Yurii Nesterov. A method of solving a convex programming prob-
lem with convergence rate O(1/k2). Soviet Mathematics Doklady,
27(2):372–376, 1983.

[28] Yurii Nesterov. Introductory Lectures on Convex Optimization. Springer,
2003.

[29] Boris T. Polyak. Gradient methods for the minimisation of functionals.
USSR Computational Mathematics and Mathematical Physics, 3(4),
1963.

[30] Adrien Taylor, Bryan Van Scoy, and Laurent Lessard. Lyapunov func-
tions for first-order methods: Tight automated convergence guarantees.
In International Conference on Machine Learning, 2018.

[31] Adrien B. Taylor, Julien M. Hendrickx, and François Glineur. Exact
worst-case performance of first-order methods for composite convex
optimization. SIAM Journal on Optimization, 27(3):1283–1313, 2017.

[32] Adrien B. Taylor, Julien M. Hendrickx, and François Glineur. Per-
formance estimation toolbox (PESTO): automated worst-case analysis
of first-order optimization methods. In 56th Annual Conference on
Decision and Control (CDC), pages 1278–1283, 2017.

[33] Adrien B. Taylor, Julien M. Hendrickx, and François Glineur. Smooth
strongly convex interpolation and exact worst-case performance of
first-order methods. Math. Programming, 161(1-2):307–345, 2017.

[34] Manu Upadhyaya, Sebastian Banert, Adrien B. Taylor, and Pontus
Giselsson. Automated tight Lyapunov analysis for first-order methods.
preprint arXiv:2302.06713, 2023.

[35] David Young. On Richardson’s method for solving linear systems
with positive definite matrices. Journal of Mathematics and Physics,
32(1-4):243–255, 1953.

283

