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Abstract— A new approach to solving the linear algebraic
equation Ax = b is presented by introducing a leaderless
clustered multi-agent system. Each agent is associated with a
certain submatrix of A and a vector obtained from b by a
certain decomposition process. A distributed algorithm has each
agent processing information solely with its own information
about A and b, but sharing a time-varying estimate of part of the
solution of Ax = b with its neighbors, as defined by a graphical
structure overlaying the agents. This graphical structure divides
the agents into clusters, with agents in one cluster being
associated with one block column of A, and different rows
of that block column; with each intra-cluster graph being
connected. The update law uses consensus within individual
clusters, utilizing their estimated states together with a process
of inter-cluster conservation to ensure that the concatenated
sub-solutions reached by the clusters solve the overall system of
linear equations. Unlike previous literature that uses clustered
multi-agent systems or double-layered networks, this frame-
work does not require the presence of an aggregator or central
node in the network’s clusters. The algorithm demonstrates
exponential convergence, evidenced by both theoretical proof
and numerical simulations.

I. INTRODUCTION

Distributed algorithms for solving linear equations in
multi-agent systems [1]–[10] have recently attracted a sig-
nificant amount of attention due to their extensive applica-
tions in many engineering areas. By decomposing a large
system of linear equations into smaller ones that can be
cooperatively solved by multiple agents, these distributed
algorithms are able to achieve solutions or specific solutions
(such as solution with minimum L1 norm [11] or L2 norm
[12]) to the overall linear equations in a multi-agent setting
with communication constraints [9]. The key idea of these
distributed algorithms is consensus, i.e. each agent solves
its own linear equation while reaching a consensus with all
other agents’ solutions. This naturally requires each agent to
know at least a complete row of the overall linear equation.

To reduce the amount of information that each agent needs
to know and with the aim of developing a more scalable
algorithm, the authors of [13], [14] have further partitioned
the linear equation Ax = b into smaller blocks represented
by Aij , bij as in Fig. 1c and introduced a double-layered
clustered multi-agent systems composed of clusters where
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Fig. 1: Communication network and information distribution:
(a) Single layer clustered multi-agent system used in our
work (b) Double layered clustered multi-agent system used
in [13] (c) Partition of A and b among agents

each cluster consists of one aggregator and a network of
agents, as in Fig. 1b. Each agent ij (i.e. the jth agent in
cluster i) only needs to know Aij , bij and communicates
with its nearby neighbors within the same cluster. Note
that the clustered multi-agent system introduced in [13],
[14] heavily depends on the aggregator in each cluster
and the communication among aggregators in a double-
layered network, i.e. each aggregator serves a central agent in
each cluster by collecting and distributing information with
all agents within the cluster, and also communicate with
aggregators of its nearby clusters. The requirement of an
aggregator as a central node in each cluster in [13], [14],
however, can be a restrictive condition, especially for clusters
with a large number of agents. This motivates us in this paper
to develop a distributed algorithm to solve linear equations
by single-layered clustered multi-agent systems composed
of clusters without aggregators as in Fig. 1a. Such single-
layered clustered multi-agent systems have been deployed in
[15]–[17] for unconstrained consensus, but not for solving
linear equations.

In this paper, we aim to employ the single-layered clus-
tered multi-agent systems to develop a distributed algorithm
for solving linear equations, in which each agent only knows
smaller blocks Aij , bij , which can be two scalars when the
number of partitions is sufficient. Similar to [13], the key
idea of the proposed algorithm comes from the integration
of the classical concept of consensus with conservation [18],
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but leads to a distributed algorithm with more advantages,
as summarized in the following:

1) The proposed algorithm does not require each agent to
know complete rows of the overall equation or agents’
states to be in the same dimension while consensus-
based distributed algorithms for solving linear equa-
tions [1]–[8], [11], [12] do.

2) The proposed algorithm does not require an aggregator
to serve as the central node in each cluster while the
algorithm in [13], [14] does.

Notations: The transpose for vectors and matrices is
denoted by (·)⊤, while ker(·) and Im (·) denote the kernel
and image of a matrix, respectively. A column stack of
vectors xi, i = 1, 2, . . . , r is written as col {x1, . . . , xr}
and diag{A1, . . . , Ar} denotes a block diagonal matrix with
Ai, i = 1, 2, . . . , r as the ith block diagonal entry. The
notation 1r represents a vector in Rr where all its entries are
equal to 1. The symbol ⊗ denotes the Kronecker product. A
square matrix eigenvalue is non-defective when its algebraic
and geometric multiplicities are the same.

II. PROBLEM FORMULATION

We first describe the overall system in graph theoretic
terms. Consider a clustered multi-agent system of p clusters.
Each cluster i = 1, . . . , p, has pi agents, and communi-
cation within this cluster is characterized by a connected
undirected local graph Gi = {Vi, Ei}, where the vertex
set, Vi = {i1, ..., ipi

}, denotes the agents and the edge set,
Ei ⊂ Vi × Vi, denotes the edges between them. For each
agent j in cluster i, we use N l

ij to denote its neighbors in
the local graph Gi. Each cluster includes at least one agent
capable of exchanging information with agents outside their
cluster, referred to as communicators.

The total number of agents in the clustered network is∑p
i=1 pi, denoted by p̄. The communication in the network

as a whole is characterized by an undirected p̄-node global
graph G = {V, E}, where the vertex set, V =

⋃p
i=1 Vi is

the set of all the agents in the network and the edge set,
E ⊂ V × V , denotes the edges between them. Note that the
set E encompasses both communications within the clusters
and communication between the clusters. We define an inter-
cluster graph Gc to be the spanning subgraph of G obtained
by removing all the local intra-cluster edges, thus Gc = G \⋃p

i=1 Ei. The vertex set of Gc remains unchanged from that
of G. The sets of neighboring agents of agent j in cluster
i in the global graph G and the inter-cluster graph Gc are
represented by Nij and N c

ij respectively.
The linear equation we seek to solve is given by Ax = b,

where A ∈ Rm×n and b ∈ Rm. In the given architecture, no
single agent has complete knowledge of either A or b. The
matrix A is decomposed column-wise into matrices Ai ∈
Rm×ni , where

∑p
i=1 ni = n, such that

A =
[
A1 A2 . . . Ap

]
. (1a)

There is no requirement for the Ai to have equal numbers

of columns). The vector b is additively decomposed1 into p-
vectors bi ∈ Rm, chosen arbitrarily with the constraint that

b =

p∑

i=1

bi. (1b)

In our setup, agent j of cluster i is given knowledge of certain
rows of Ai, in particular a matrix Aij ∈ Rmij×ni , and it is
also given knowledge of a vector bij ∈ Rmij , a subvector of
bi (refer to Fig. 1c), so that




Ai1

Ai2

...
Aipi


 = Ai




bi1
bi2
...

bipi


 = bi,

where
∑pi

j=1 mij = m. Each such agent j of cluster i is
also regarded as controlling a time-varying solution state
vector, denoted by xij(t) ∈ Rni . Overall, we aim to attain
convergence of the states of all the agents to a constant vector
x∗
ij ∈ Rni under two conditions-
• Local consensus: Since agents in a given cluster hold

state vectors corresponding to the same subvector of
x (the entries of x multiplied by Ai in the equation
Ax = b), they need to come to a consensus to provide
a common solution x∗

i . This gives the local consensus
condition

x∗
i1 = x∗

i2 = · · · = x∗
ipi

= x∗
i . (2)

• Global conservation: We define x∗ =
col {x∗

1, x
∗
2, . . . , x

∗
p}. For x∗ to be the solution of

the linear equation Ax = b, it has to satisfy the
equation as Ax∗ = b. Using the definitions (1a) and
(1b), the equation Ax∗ = b, can be re-written as∑p

i=1 Aix
∗
i =

∑p
i=1 bi giving us
p∑

i=1

(Aix
∗
i − bi) = 0. (3)

This is the global conservation condition.
Hence our objective is to design a distributed update strategy
that converges to the solution of the given linear system,
satisfying the local consensus (2) and global conservation
condition (3).

III. MAIN RESULTS

In this section, we present the result for solving linear
equations in a decentralized clustered manner without relying
on aggregators. A significant obstacle in developing such
a strategy is ensuring that information can be transmitted
efficiently throughout the network. Additionally, to achieve
global conservation across different clusters, each agent must
estimate the residual error (a concept explained later) from
other clusters that it may not have direct communication
with. To address these issues, our approach utilizes an

1The additive decomposition of b into bis is flexible since any values
of bi can be chosen as long as their sum equals b. The numerical study
suggests that the convergence rate varies depending on the specific choices
of bi values.
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auxiliary state variable that serves two functions: enabling the
flow of information across the entire network and providing
an estimate of the residual error. It is worth noting that only
a portion of the auxiliary state information is employed by
each agent to update its solution state, while the rest is used
for information flow.

We introduce an auxiliary coordination state zij ∈ Rm

associated with each agent. To this end, we define a selector
matrix Eij ∈ Rmij×m which consists of rows of the identity
matrix, such that

Aij = EijAi. (4)

This matrix serves the purpose of determining the location
of the sub-matrix that each individual agent directly uses,
relative to the matrix that the entire cluster is aware of. It
is assumed that every agent is aware of their own selector
matrix. As a result, agent j of cluster i has two states
associated with it: The solution state xij and the auxiliary
coordination state zij .

For agent j of cluster i, we propose the following dis-
tributed update rule2:

ẋij =−A⊤
ij


Aijxij − bij − Eij

∑

īk∈Nij

(zij − zīk)




−
∑

ik∈N l
ij

(xij − xik), (5a)

żij =E⊤
ij (Aijxij − bij)−

∑

īk∈Nij

(zij − zīk). (5b)

One can observe that the summation term of the auxiliary
coordination state can be separated into two components - the
sum over the local graph and the sum over the inter-cluster
graph, as follows-

∑

īk∈Nij

(zij − zīk) =
∑

ik∈N l
ij

(zij − zik)+
∑

īk∈N c
ij

(zij − zīk).

The second term on the right-hand side of this equation will
be zero for all the non-communicators.

Remark 3.1: In equation (5b), the term
∑

īk∈Nij
(zij −

zīk) estimates the residual error of the conservation condition
accessible to agent j in cluster i. Note that the absence of
an aggregator, as in [13], necessitates the dimension of the
auxiliary coordination state zij to be Rm, rather than Rni .

Remark 3.2: In the update law, we observe that the solu-
tion state xij of any one agent is only shared within its own
cluster, thus offering a degree of security and privacy. Only
the auxiliary coordination state zij is shared across the entire
network.

Before presenting the main theorem that guarantees the
exponential convergence of the proposed algorithm to the
exact solution, we first state a lemma that will be utilized in
the proof of the theorem.

2We later introduce certain scalar positive gains in the update law for
inter and intra-cluster communications. However, we omit these gains from
the analysis for the sake of simplicity.

Lemma 3.3: Consider a matrix with the structure

S =

[
−S⊤

1 S1 − S2 S⊤
1 S3S4

S⊤
3 S1 −S4

]
, (6)

where Si are real ∀ i = 1, . . . 4, the matrices S2 and S4 are
positive semidefinite, and S3S

⊤
3 = I . Then all eigenvalues

of S are negative real or 0. Also, if S has 0 as an eigenvalue,
then it must be non-defective.

The lemma’s proof is available in the journal version of
this paper [19]. Next, we state the main theorem along with
its proof.

Theorem 3.4: Suppose the linear equation Ax = b has at
least one solution and the local and global graphs, Gi ∀ i =
1, . . . , p, and G, of the clustered network are connected. Then
the update law given by (5a) and (5b) yields solutions asymp-
totically achieving local consensus and global conservation.
In particular, limt→∞ xij = x∗

i ∀ j (convergence being
exponentially fast) with x∗ = col {x∗

1, x
∗
2, . . . , x

∗
p} satisfying

Ax∗ = b.34

Proof: The proof follows a similar structure to the one
outlined in [13]. It consists of three main steps:

1) The derivation of a simplified and concise form of the
update rules (5a) and (5b), resulting in a large linear
system.

2) The demonstration of the existence of an equilibrium
point for the new linear system and the exponential
convergence of the system towards an equilibrium set.

3) The final step is to show every point in the equilibrium
set satisfies both the local consensus and the global
conservation conditions.

Step 1. Equation (5) specifies the update strategy for
individual agents. By incorporating each matrix in a block
diagonal form and stacking the vectors column-wise, we can
combine these update laws for the entire cluster. We define
xi ∈ Rpini and zi ∈ Rmpi as the combined states of all
agents in cluster i, i.e. the collection of states xij and zij of
all the agents in the cluster as

xi = col {xi1, xi2, . . . , xipi
}; zi = col {zi1, zi2, . . . , zipi

}.

Additionally, let x ∈ Rn̄ where n̄ =
∑p

i=1 pini, and z ∈
Rmp̄ represent the collection of states xi and zi of all clusters
in the clustered multi-agent system, respectively, defined as

x = col {x1, x2, . . . , xp}; z = col {z1, z2, . . . , zp}.

Also, let

Ai = diag {Ai1, Ai2, . . . , Aipi
} ∈ Rm×pini ,

Ei = diag {Ei1, Ei2, . . . , Eipi
} ∈ Rm×mpi ,

LGi = LGi ⊗ Ini ∈ Rpini×pini ,

LG = LG ⊗ Im ∈ Rmp̄×mp̄,

3In cases where there are multiple solutions to the equation Ax = b, the
algorithm will converge to one of those solutions (rather than move within
the set of solutions).

4The auxiliary coordination state zij also converges exponentially to a
fixed value, however, this value is not of much relevance to the problem
being solved.
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where LGi
∈ Rpi×pi and LG ∈ Rp̄×p̄ are the Laplacian

matrix of the connected graphs, Gi and G, respectively. We
use the notation [.]mpi to represent the mpi rows of the
matrix [.] following after the

∑j=i−1
j=1 mpj-th row. Using this

notation the update law (5) can be written as

ẋi = −A
⊤
i

{
Aixi − bi − Ei

[
LGz

]
mpi

}
− LGi

xi, (7a)

żi = E⊤
i (Aixi − bi)−

[
LGz

]
mpi

. (7b)

Next, we define

Â = diag {A1, A2, . . . , Ap} ∈ Rmp×n̄,

b̂ = col {b1, b2, . . . , bp} ∈ Rmp,

E = diag {E1, E2, . . . , Ep} ∈ Rmp×mp̄,

L̂ = diag {LG1 , LG2 , . . . , LGp} ∈ Rn̄×n̄.

With these matrices and rows defined, the update equations
(7a) and (7b) for the individual clusters can be combined to
form an update strategy for the entire network, as follows:

ẋ = −Â⊤
{
Âx− b̂− ELGz

}
− L̂x, (8a)

ż = E⊤(Âx− b̂)− LGz. (8b)

This gives us a simpler and more concise expression of the
update rules (5a) and (5b) for the entire network

[
ẋ
ż

]
= Q

[
x
z

]
+R, (9)

where Q =

[
−Â⊤Â− L̂ Â⊤ELG

E⊤Â −LG

]
and R =

[
Â⊤b̂

−E⊤b̂

]
.

Step 2. Next, we prove that (9) has at least one equi-
librium point and the system converges exponentially to
an equilibrium set. We assumed that Ax = b has at least
one solution and let one such solution be y ∈ Rn. The
vector y can be partitioned to yield yi ∈ Rn

i such that
y = col {y1, y2, . . . , yp}. Hence, using the matrix properties
and definition of Ai and bi, the equation Ay = b can be
re-written as

∑p
i=1(Aiyi − bi) = 0, which can be further

expanded using the definition of Aij and bij a

p∑

i=1







Ai1

Ai2

...
Aipi


 yi −




bi1
bi2
...

bipi





 = 0.

Using the selector matrix, this can be written in a compact
form as

p∑

i=1

pi∑

j=1

E⊤
ij (Aijyi − bij) = 0.

We define yi = 1pi
⊗ yi ∈ Rpini and x =

col {y1, y2, . . . , yp} ∈ Rn̄, which helps in simplifying the
equation as

∑p
i=1(1

⊤
pi

⊗ Im)E⊤
i (Aiyi − bi) = 0. Using the

definition of E, this can be written as a standard linear matrix
equation given by

(1⊤p̄ ⊗ Im)E⊤(Âx− b) = 0. (10)

Recall that we defined LG = LG ⊗ Im where LG was the
Laplacian of the connected global graph G. The Laplacian
property implies that 1p̄ is an eigenvector of LG with zero
eigenvalue, giving us LG1p̄ = 0, which can be re-written as
(1⊤

p̄ ⊗ Im)LG = 0. This can also be stated as Im (LG) =

ker(1⊤
p̄ ⊗ Im). With the use of equation (10), it can be

deduced that E⊤(Âx − b) ∈ Im LG. Hence, there exist
some vector, say z, such that

E⊤(Âx− b)− LGz = 0. (11)

If we pre-multiply by E on both the sides and noting the
fact that EE⊤ = Ipm, we get

Âx− b− ELGz = 0. (12)

Using the definitions of L̂ as the matrix composed of the
diagonal blocks LG1 , LG2 , . . . , LGp and yi as the vector
obtained by stacking the elements of 1pi

⊗ yi, we find that
LGi

yi = 0. This, combined with the definition of x as the
vector obtained by stacking the yi column-wise, leads us to

L̂x = 0. (13)

Using (11), (12), and (13) we see that
[
x⊤ z⊤

]⊤
is an

equilibrium point of linear system (9). We can define the
convergence error as

e(t) =

[
x(t)
z(t)

]
−

[
x
z

]
.

This, along with equation (9) and the fact that [x̄⊤ z̄⊤]⊤ is an
equilibrium point of the same equation, results in the error
dynamics being described as ė = Qe. As both L̂ and LG
are obtained using Laplacian of connected graphs, they are
positive definite. Using the fact that EE⊤ = I , we observe
that the structure of the matrix Q matches the structure in
equation (6). By invoking Lemma 3.3, we can conclude that
all the eigenvalues of Q are either negative real numbers or
0. Also, if there is a 0 eigenvalue, it must be non-defective.
This implies that the error e(t) converges exponentially to
either a zero vector or a constant vector q ∈ ker Q. We
define a set

S =

{[
x∗

z∗

] ∣∣∣∣
[
x∗

z∗

]
=

[
x
z

]
+ q ∀ q ∈ ker Q

}
.

As q lies in the kernel of Q, every point in the set S, namely[
x∗⊤ z∗⊤

]⊤
, is also an equilibrium point of the dynamics

described by equation (9). Hence, the set S serves as the
equilibrium set.

Step 3 To conclude the proof, we demonstrate that any
constant vector

[
x∗⊤ z∗⊤

]⊤ ∈ S adheres to the require-
ments of both local consensus and global conservation. To
do this, we first break down x∗ into components, partitioning
it as x∗ = col {x∗

1, x
∗
2, . . . , x

∗
p}, and then further partitioning

each component as x∗
i = col {x∗

i1, x
∗
i2, . . . , x

∗
ipi

}, where

x∗
i ∈ Rpini and x∗

ij ∈ Rni . Since
[
x∗⊤ z∗⊤

]⊤
is an

359



equilibrium point, we have-

−Â⊤
{
Âx∗ − b̂− ELGz

∗
}
− L̂x∗ = 0, (14a)

E⊤(Âx∗ − b)− LGz
∗ = 0 (14b)

Equation (14a) and (14b) together gives us L̂x∗ = 0, thus
LGix

∗
i = 0. Using the properties of Laplacian and the fact

that LGi = LGi ⊗ Ini , there exist a constant x∗
i ∈ Rni such

that (LGi
⊗Ini

)(1pi
⊗x∗

i ) = 0, which gives us x∗
i = 1pi

⊗x∗
i ,

resulting in-
x∗
i1 = x∗

i2 = · · · = x∗
ipi

= x∗
i ∀ i = 1, 2, . . . p. (15)

This shows that the local consensus condition is satisfied by
every point in the equilibrium set.

Next, if we pre-multiply equation (14b) on both sides by
(1⊤

p̄ ⊗ Im) and using the fact that G is a connected graph,
we get (1⊤p̄ ⊗ Im)E⊤(Âx∗ − b) − (1⊤p̄ ⊗ Im)LGz

∗ = 0.

The second term can be re-written as (1⊤p̄ LG⊗ Im)z∗ which
is zero, resulting in (1⊤

p̄ ⊗ Im)E⊤(Âx∗ − b) = 0. This
can be expressed as a summation of p equations giving us∑p

i=1(1
⊤
pi

⊗ Im)E⊤
i (Aix

∗
i − bi) = 0. Using the fact that

x∗
i = 1pi

⊗ x∗
i , we get

p∑

i=1

pi∑

j=1

E⊤
ij (Aijx

∗
i − bij) = 0, (16)

which can be simplified as
∑p

i=1(Aix
∗
i−bi) = 0. This proves

that every point in the equilibrium set S satisfies the global
conservation condition. This completes our proof.

0 50 100 150 200 250 300
Iteration

−2

−1

0

1

2

3

4

Lo
g 

of
 G

lo
ba

l C
on

se
rv

at
io

n 
Er

ro
r

(a) Global conservation error

0 50 100 150 200 250 300
Iteration

−4

−2

0

2

4

Lo
g 

of
 L

oc
al

 C
on

se
ns

us
 E

rro
rs Cluster 1

Cluster 2
Cluster 3

(b) Local consensus error

Fig. 2: Numerical performance: (a) Evolution of global con-
servation error in log scale, (b) Evolution of local consensus
error in log scale for each cluster of the network.

IV. NUMERICAL SIMULATIONS

For the implementation and numerical per-
formance of the algorithm we use the same
linear equations as used in [13] given by

A =

2
66664

1 2 1 1 2
2 �1 3 �3 0
�6 2 6 1 �2
2 �6 3 7 0
�3 �4 0 �2 6

3
77775

; b =

2
66664

8
8
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�9

3
77775
=

2
66664

8
4
0
�5
�5

3
77775
+

2
66664

0
4
5
�9
�1

3
77775
+

2
66664

0
0
6
�3
�3

3
77775

which has a unique solution. The color blocks indicate
the distribution of matrices and vectors among the clusters
and agents. In order to study the numerical performance

of the algorithm, we introduce two types of errors: Global
conservation and local consensus errors. The global
conservation error measures how close each agent’s solution
estimate is to the unique solution, while the local consensus
error reflects the similarity of solution estimates among
agents within a cluster. The global conservation error is
defined as

eg(t) =
1

2

p∑

i=1

pi∑

j=1

∥xij(t)− x∗
i ∥2,

whereas the local consensus error for ith cluster is defined
as

eli(t) =
1

2

pi∑

j=1

pi∑

k=1

∥xij(t)− xik(t)∥2.

The global conservation error measures the proximity of each
agent’s solution estimate to the unique solution at any given
instant, which reflects the overall accuracy of the estimated
solution. On the other hand, the local consensus error pro-
vides insight into the similarity of solution estimates among
agents within a given cluster, indicating the effectiveness of
intra-cluster communication in achieving consensus.
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Fig. 3: (a)-(b) Other networks considered; (c) Evolution of
global conservation error in log scale for 3 different network
setups.

Using x∗ = [0.77; 2.79; 1.98;−1.10; 0, 38]⊤ as the unique
solution to the linear equation, we evaluate the clustered
multi-agent system in Fig. 1a. The evolution of the global
conservation and local consensus errors in log scale are
presented in Fig. 2a and 2b respectively. Both errors converge
to zero exponentially, consistent with our theoretical findings.
To understand the impact of network structure on the con-
vergence properties, we examined two additional networks
in addition to the one shown in Fig. 1, as depicted in
Fig. 3(a)-3(b). The global conservation error plots in the
log scale are displayed in Fig. 3(c). All three cases exhibit
exponential convergence but at different rates. Analysis of
the results shows that the distance between communicators
within the same cluster plays a crucial role in determining
the convergence rate. In network 2, all the clusters have a
single communicator, which results in the fastest convergence
rate. In contrast, in network 3, the distance between the
two communicators in cluster 2 is the largest among the
considered scenarios, leading to a slower convergence rate.

360



We next modify the update law by introducing three
positive scalar gains for inter and intra-cluster communica-
tions: kx and klz for local communication of state x and
z, respectively, and kgz for inter-cluster communication (for
communicators) of state z.5

TABLE I: Gains for consensus

Case 0 1 2 3 4 5 6 7

kx 1 10 100 1000 1 1 1 100
klz 1 10 100 1000 1 1 100 1
kgz 1 1 1 1 10 100 1 1
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Fig. 4: Effect of different gains on convergence rate

To investigate the impact and relative significance of the
consensus terms on the algorithm’s convergence rate, we
varied the positive gains assigned for inter and intra-cluster
communication. The numerical study results are presented
in Fig. 4, using the parameters listed in Table I. The results
reveal several noteworthy observations. Firstly, Case 1, Case
2, and Case 3 show a significantly improved convergence rate
compared to other cases. In all three scenarios, only the local
communication gains kx and klz were increased while kgz was
kept constant. Intuitively, a high local communication gain
results in quicker local consensus, but numerically it also
leads to quicker conservation. The best convergence rate of
the algorithm is obtained when the local gains are 1000 times
the inter-cluster gains. This behavior can be attributed to the
fact that with high local gain, the cluster behaves as a single
entity, resulting in a quicker communication of state z inside
the graph that governs conservation. Lastly, by comparing
Case 6 and Case 7, we note that a higher local gain for state
z plays a more important role in conservation than for state
x, as it provides an estimate of the residual error.

V. CONCLUSIONS

In this work, we have developed a distributed algorithm to
solve algebraic linear equations in clustered multi-agent sys-
tems. The proposed algorithm has eliminated the requirement
for an aggregator within clusters compared with existing

5In the update law, positive gain kx and klz are added to the term∑
ik∈N l

ij
(xij − xik) and

∑
ik∈N l

ij
(zij − zik) for local intra-cluster

communication of x and z, respectively. A positive gain kgz is added to
the term

∑
īk∈Nc

ij
(zij − zīk) for communication of z among clusters.

Note that positive gains do not affect our theoretical convergence results.

results by introducing an auxiliary coordination state to
facilitate information flow and enforce global conservation.
Future work includes the generalization of the proposed
algorithm for least-squares solutions and for time-varying
networks and the investigation of the impact of different
communication strategies in the inter-cluster and intra-cluster
networks on its convergence.
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