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Abstract— We develop a data-driven approach to Pareto
optimal control of large-scale systems, where decision makers
know only their local dynamics. Using reinforcement learning,
we design a control strategy that optimally balances multi-
ple objectives. The proposed method achieves near-optimal
performance and scales well with the total dimension of the
system. Experimental results demonstrate the effectiveness of
our approach in managing multi-area power systems.

I. INTRODUCTION

Large-scale systems, which encompass a wide range of
applications from power grids to autonomous vehicles, pose
unique challenges to control engineers. These systems often
exhibit complex interactions, nonlinearities, and uncertain-
ties, making them difficult to model accurately. Traditional
control strategies relying on well-defined models struggle to
address these challenges effectively. One of the traditional
methods to tackle such challenging problems is Pareto opti-
mality. The pursuit of Pareto optimality in control represents
a significant advancement in the field, as it seeks to simulta-
neously optimize multiple, often conflicting, objectives. This
concept is particularly relevant in large-scale systems, where
control actions must balance objectives such as stability,
performance, and energy efficiency.

Previous work [1] introduced adaptive control laws
through which we can learn the control of the model from
the input-output data. Over the years, the increase in the
momentum of reinforcement learning [2] has opened up the
different possibilities of learning the controller. For example
[3] enhances off-policy natural actor-critic algorithms by
establishing improved finite-sample convergence guarantees
and [4] addresses the challenge of high variance in deep
reinforcement learning algorithms focusing on enhancing
the robustness of general actor-critic methods. Adaptive
Dynamic Programming is one of the first learning techniques
in reinforcement learning. It uses an iteration method with
a change in variables to find the optimal control gain [5].
In general, learning methods such as Q-learning [6], and
Actor-Critic [7]–[9] have been effective in learning the
controller for continuous-time systems when the dynamics
of the model is unknown. Additionally, the previous works
[6], [7] mostly focus on learning the dynamics of the system
using offline data. This approach does not cope well if
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exogenous disturbances are affecting the system. To tackle
this issue, [10] proposes to train the closed-loop model on
the running data in an online fashion. However, in these
cases, they provide an insight on how to optimize the entire
system which is a challenging task for large-scale systems.
Also, [11] focuses on robust control against disturbances for
nonlinear systems with unknown dynamics, using off-policy
reinforcement learning.

In an attempt to develop scalable optimal control algo-
rithms, the work in [12] employs a singular perturbation
method to decompose the system based on time scales. In this
case, the controller is learned for the dominant slow-time-
scale dynamics, assuming that the fast-time-scale dynamics
are asymptotically stable and, hence, ignored. This resulted
in lower dimensional and computationally efficient control
systems. In this work, we follow the same spirit as [12]
and solve a Pareto optimal control problem but with the
relaxation of the assumption that the fast dynamics are
asymptotically stable. In this way, we enlarge the class
of applicable systems and simultaneously keep track of
how the slow- and fast-time scale decomposition affects the
implementation of the controller based on feedback from the
system’s original data. Moreover, our proposed approach is
based on the multi-area modeling scheme pioneered in [13],
where the decision-maker of each area utilizes a simplified
model of the whole system. However, relative to [13], we em-
ploy a learning-based approach to solve the control problem
when the coupled slow dynamics of all areas are unknown.
Overall, The contribution of the paper can be summarized
as follows: First, we propose a systematic design procedure
for control of large-scale systems when the global coupled
dynamics are not known while the local dynamics may be
unstable. Second, the proposed strategy is scalable in the
sense that the computational complexity and size of the local
controllers are not affected by the large size of the overall
system. Third, we follow a singular and regular perturbation
approach to show that the closed-loop performance of the
proposed strategy approaches that of a centralized model-
based optimal controller as the time-scale difference among
the system dynamics becomes stark and coupling among the
different local dynamics becomes weak.

The remainder of this paper is organized as follows.
Section II describes the system setup and formulation of the
problem. Section III describes the two-time scale reduction
of the original problem. Section IV outlines the offline learn-
ing algorithm to estimate the control gains of the system.
We provide a simulation example in Section V. Section VI
provides the final remarks.
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II. PROBLEM FORMULATION

Consider a large-scale dynamic system with N intercon-
nected areas, modeled in the form

ẋ =Aox+

N∑
j=1

Aojzj +

N∑
j=1

Bojuj , x(0) = xo, (1)

εiżi =Aiox+Aiizi +
∑
j ̸=i

εijAijzj +Biiui, zi(0) = zio,

(2)

where x ∈ Rno , zi ∈ Rni for i = 1, . . . , N, are state vectors,
A and B are constant matrices of appropriate dimensions
and ui ∈ Rmi is the input. 0 < εi < 1 is a small
(unknown) parameter that represents the time constants for
each subsystem, while εij is a small (unknown) parameter
that represents a weak coupling between the subsystems.

The system (1)-(2) has strongly coupled slow (x) dynamics
and weakly coupled fast (zi) dynamics, with every area has
a decision maker ui. This model represents many systems,
such as power systems [14] and clustered networks [15],
[16]. In this work, we assume that each decision-maker has
a full knowledge of the local dynamics but does not know
the global dynamics. More specifically, we assume that the
matrices Ao, Aoj , Boj and Aij are unknown.

Consider the case that decision-makers cooperate to min-
imize a global cost function

J = γ1J1 + · · ·+ γkJk + · · ·+ γNJN , (3)

where γ1 + · · ·+ γN = 1, 0 < γi < 1, for i = 1, . . . , N,

Jk =
1

2

∫ ∞

0

(y′kQkyk + u′kRkuk) dt,

yk =Cokx+ Ckkzk, Qk = C ′
kCk, Rk > 0.

(4)

Therefore, a controller uk is sought for each area k such that
(3) is minimized under the assumption that the shares γi of
all other controllers are known a-priori and using feedback
from the slow (global) state x and fast (local) state zk.

The optimal strategy for (1)-(2) can be obtained had all
the system matrices are known. It takes the form [17]

u∗k = − 1

γk
R−1

k B′
kP

∗x̂, (5)

where
P ∗A+A′P ∗ +Q− P ∗SP ∗ = 0, (6)

A =


Ao Ao1 Ao2 ...
A1o

ε1
A11

ε1
ε12A12

ε1
...

A2o

ε2
ε21A21

ε2
A22

ε2
...

...
...

...

 , x̂ =


x
z1
...
zN

 ,

B1 =


Bo1
B11

ε1
0
...

 , . . . , BN =


BoN

0
...

BNN

εN

 , S =
1

γ1
S1+

1

γ2
S2+. . . ,

Q = γ1Q1 + γ2Q2 + . . . , Sk = BkR
−1
k B′

k.

The optimal controller (5) for each area requires knowl-
edge of the entire system. In the sequel, we will follow a
singular perturbation method to relax this requirement and
achieve a performance close to the optimal one.

III. SINGULAR AND REGULAR PERTURBATION-BASED
DESIGN

For a linear system consisting of k control areas, a
simplified model of the entire system can be obtained from
the perspective of the decision maker of the kth subsystem.
For this purpose, assume that the decision maker of the
kth subsystem ignores all other fast (local) dynamics and
weak coupling with other subsystems. This implies setting
εj = 0 for j ̸= k and εij = 0 in (1)-(2). This, in turn, leads
to the kth subsystem approximate model

ẋk = Akxk +Aokzk +Bokuk +
∑
j ̸=k

Bkjuj , (7)

εkżk = Akoxk +Akkzk +Bkkuk, (8)

where Ak = Ao −
∑

j ̸=k AojA
−
jj1Ajo, Bkj = Boj −

AojA−
jj1Bjj .

Assumption 1: The matrix Aii is invertible.
Under Assumption 1, system (7)-(8) is in the standard
singular perturbation form. This allows the use of the singular
perturbation method to design a control strategy for each
decision maker by solving two separate sub-problems; one
in the slow time scale and one in a fast time scale [18]. By
setting εk = 0 in (7)-(8), we get the reduced order model

ẋs = Asxs +

N∑
k=1

Bksuks, xs(0) = xo, (9)

with zks = −A−1
kk (Akoxs +Bkkuks) and where As = Ao −∑N

i=1AoiA
−1
ii Aio, Bks = Bok−AokA

−1
kkBkk and uks is the

slow controller. The boundary layer model can be obtained
by using the change of variables zkf = zks +A−1

kk (Akoxs +
Bkkuks) and letting τk = t/εk to get

dzkf
dτk

= Akkzkf +Bkkukf , (10)

with ukf being the fast control.
Assumption 2: The pairs (As, Bs), where Bs =

(B1s, . . . , BNs), and (Akk, Bkk) are stabilzable.
Following this approach, each decision maker can solve

for the slow controller uks =: Gksxs using (9) and fast
controller ukf =: Gkfzkf using (10), where Gks and Gkf

are controller matrices to be designed. The implementable
controller can then be taken as the composite of these two
controls, which takes the form

uk = [(I +GkfA
−1
kkBkk)Gks +GkfA

−1
kkAko]x+Gkfzk.

(11)
Notice that all area controllers affect (9), whereas (10)
indicates that the fast control problem is decoupled.

The following theorem adopted from [19] describes the
behavior of the slow (9) and fast (10) subsystems compared
to the actual system (1)-(2) under feedback control.



Theorem 1: Let Assumptions 1 and 2 hold. If ukf =
Gkfzkf are designed to stabilize the subsystem (10) and
uks =: Gksxs are designed to stabilize the subsystem (9)
then there exists a positive scalar σ such that ∀ 0 < ||ε|| ≤ σ
and ∀ t ≥ 0 we have

x(t) = xs(t) +O(∥ε∥),
z1(t) = −A−1

11 (A1o +B11G1s)xs(t) + z1f (t/ε1) +O(∥ε∥),
...

zN (t) = −A−1
NN (ANo +BNNGNs)xs(t) + zNf (t/εN ) +O(∥ε∥).

(12)

where ε is an ordered vector of all the parameters εi and
εij with i ̸= j and i = 1, . . . , N .

In the following, we will follow a data-driven approach
to solve the Pareto optimal control of the slow subsystem
and combine that with a stabilizing controller for the fast
subsystem. We will show that this composite controller will
achieve a performance that converges to the one obtained
had we known the coupled models.

Notation Definitions: The notation (·)∗ denotes the optimal
values of the parameters. Parameters denoted by (·) are
those derived from the singular perturbation-based design.
We use (̃·) to represent parameters that are estimated based
on learning from the xs (assuming we have access to it), and
(̄·) to denote parameters learned using the actual x data.

IV. MAIN RESULT

To solve the control problem, we will follow the singular
perturbation method discussed in the previous section. For
the slow sub-problem and given (9), decision-makers need
to cooperate to optimize the cost function

Js = γ1J1s + γ2J2s + . . .++γNJNs, (13)

where

Jks =
1

2

∫ ∞

0

(x′sC
′
ksCksxs + 2u′ksD

′
ksCksxs

+ u′ksRksuks)dt,

Cks = Cok − CkkA
−1
kkAko,

Dks = −CkkA
−1
kkBkk, Rks = Rk +D′

ksDks.

(14)

The solution of this problem is given as

uks = −R−1
ks (D

′
ksCks +

1

γk
B′

ksPs)xs, (15)

with Ps is the positive semidefinite stabilizing solution of
the Riccati equation

PsÂs + Â′
sPs +

N∑
i=1

[
−1

γi
PsBisR

−1
is B

′
isPs

+γiC
′
is(I −DisR

−1
is D

′
is)Cis] = 0,

(16)

which can be written in the compact form

PsÂs + Â′
sPs − PsBsR

−1
s B′

sPs +Qs = 0, (17)

where

Âs = As −
k∑

i=1

BisR
−1
is D

′
isCis,

Bs = [B1s B2s ... Bks],

Qs =

k∑
i=1

γiC
′
is(I −DisR

−1
is D

′
is)Cis,

Rs = diag(R1sγ1, R2sγ2, ..., Rksγi).

(18)

The reduced order model (9) can also be written in this form
as

ẋs = Âsxs +BsU, U = us +Mxs, (19)

where Âs = As −BsM , us = [uT1s uT2s ... uTks]
T , and

M =


R−1

1s D
′
1sC1s

R−1
2s D

′
2sC2s

...
R−1

NsD
′
NsCNs

 . (20)

We now have the following assumption.
Assumption 3: The pairs (As, Cs), where Cs =

(C1s, . . . , CNs), and (Akk, Ckk) are detectable.
For the fast subproblem (10), we consider the cost function

Jkf =
1

2

∫ ∞

0

(z′kfC
′
kkCkkzkf + u′kfRkukf ) dτk. (21)

with the minimizing controller

ukf = −R−1
k B′

kkPkfzkf , (22)

where Kkf is the positive semidefinite stabilizing solution
of the Riccati equation

PkfAkk +A′
kkPkf + C ′

kkCkk − PkfBkkR
−1
k B′

kkPkf = 0.
(23)

Going forward, we employ Adaptive Dynamic Program-
ming (ADP) using Kleinman’s iteration [5] to learn the
controller (15). This method focuses on finding optimal
control policies by solving the Bellman equation directly and
is distinct from traditional reinforcement learning methodolo-
gies that typically rely on Markov Decision Processes [20].

By defining Aj = Âs −BsK̃
j
a for the Lyapunov equation

(24) we can obtain the optimal value Ka so that we have
U = −Kaxs to be used for (19). In the following algorithm
the superscript (·)j denotes the iteration number.

Kleinmann’s Algorithm
1) Solve the Lyapunov equation below for P j

s :

P̃ j
sA

j +Aj′ P̃ j
s + P̃ j

sBsR
−1
s B′

sP̃
j
s +Qs = 0. (24)

2) Update the feedback gain:

K̃j+1
a = R−1

s B′
sP̃

j
s . (25)

To eliminate the dynamics of the system from (24), and
(25), First, we define an arbitrary excitation signal uo such
that the system states remain bounded [12]. By substituting
us = uo − K̃j

axs + K̃j
axs into the slow subsystem (19), we

get:
ẋs = (Aj −BsK̃

j
a)xs +Bs(uo + K̃j

axs). (26)



By taking the derivative of the Lyapunov function V j
(xs)

=

xTs P̃
j
s xs we get

V̇ j = ẋTs (P̃
j
s xs) + xTs P̃

j
s (ẋ). (27)

By substituting reduced model (19) into (27)

V̇ j =[xjs(Âs −BsK̃
j
a)

T +BT
s (uo + K̃j

axs)
T ](P̃ j

s xs)

+ xTs P̃
j
s [(Âs −BsK̃

j
a)xs + (uo + K̃j

axs)Bs].
(28)

By defining e = uo + K̃j
axs and using the definition of Aj ,

we can write (28) as

V̇ j = xTs (A
jT P̃ j

s + P̃ j
sA

j)xs + 2eTBT
s P̃

j
s xs. (29)

from (25) we know BT
s P̃

j
s = RsK̃

j+1
a , and using (24) we

define

Qj = −(AjT P̃ j
s + P̃ j

sA
j) = −Qs − (K̃j+1

a )TRsK̃
j+1
a .

(30)

Now, by substituting (30) into (29) we get

d

dt
(xTs P̃

j
s xs) = −xTs Qjxs + 2eTRsK̃

j+1
a xs. (31)

Notice that the system dynamics are eliminated from (24) and
(25). Moreover, (31) is fully independent of the dynamics of
the slow sub-system. To get to the offline policy iteration we
integrate both sides of (31) on the small interval [τ, τ + δτ ]

xTs (τ + δτ)P̃ j
s xs(τ + δτ)− xTs (τ)P̃

j
s xs(τ)

= 2

∫ τ+δτ

τ

eTRsK̃
j+1
a xsdw −

∫ τ+δτ

τ

xTs Qjxsdw.
(32)

using (32) we can write the offline policy iteration in the
compact form below

ψ̃

[
vec(P̃ j

s )

vec(K̃j+1
a )

]
= Γ̃, (33)

where

ψ̃ = [δ̃xx,−2Ĩxx(In ⊗ (K̃j
a)

TRs)− 2Ĩxuo
(In ⊗Rs)],

Γ̃ = δ̃xxvec(Qj),

δ̃xx =
[
xTs ⊗ xTs

∣∣∣τ1+δτ

τ1
, ..., xTs ⊗ xTs

∣∣∣τj+δτ

τj

]T
,

Ĩxx =
[ ∫ τ1+δτ

τ1

xTs ⊗ xTs dw, ...,

∫ τj+δτ

τj

xTs ⊗ xTs dw]
T ,

Ĩxuo
=

[ ∫ τ1+δτ

τ1

xTs ⊗ uTo dw, ...,

∫ τj+δτ

τj

xTs ⊗ uTo dw]
T .

(34)
(⊗) indicates the Kronecker product of two matrices and
vec(·) denotes the vectorization of a matrix.

Before proceeding further, it should be emphasized that
the learning in the above steps is based on the slow state
system xs, however, in practice, we only have access to the
original state information x. With the help of Theorem 1
[13], we will show later that the learning procedure is robust
to this variation as only the original state of the system is
used for learning.

When collecting the data for the offline policy iteration
we continue collecting x data until the [Ixx Ixuo ] matrix

reaches full rank and rank([Ixx Ixuo
]) = n(n+1)

2 +mn on
the sampling interval δτ for the period [τi, τj ] [21]. n is the
dimension of the slow subsystem and m is the number of
inputs or the number of fast subsystems.

The pseudocode for the learning algorithm is given in
Algorithm 1. After collecting enough data, the offline policy
iteration is going to check the effectiveness of the current
policy and update the policy if a pre-defined threshold is not
met.

Algorithm 1 Offline policy iteration

while rank
([
Īxx Īxu0

])
< n(n+1)

2 +mn do
Collect the data x(t) with the excitation signal ūa = uo
Construct the matrices δ̄xx, Īxx, and Īxu0

end while
Initialize K̄a > 0
while |P̄ j

s − P̄ j+1
s | < Threshold do

Estimate the values of P̄ j
s and K̄j+1

a through (33)
end while
U = −K̄j+1

a x

When the learning is complete, we can use the learned K̄a

and P̄s to calculate U = −K̄ax. By utilizing the calculated
ukf and ūs = U − Mx we write the optimal learned
controller ūk as

ūk =[(I −R−1
k B′

kkPkfA
−1
kkBkk)ūks

+R−1
k B′

kkPkfA
−1
kkAko]x+ ukfzk.

(35)

Theorem 2: Let Assumptions 1-3 hold and consider the
closed-loop system (1)-(2) with (35) and the resulting cost
functional J̄k we have

lim
∥ε∥→0

(J̄k − J∗
k ) = 0, k = 1, 2, . . . , n.

where J∗
k is obtained by applying u∗k from (5) on the actual

system (1)-(2).
Remark 1: Theorem 2 describes how the performance of

the closed-loop system (1)-(2) with (35) approximates the
performance of the closed-loop system (1)-(2) with (5) as the
perturbation parameters get small leading to a near-optimal
performance.

Towards proving Theorem 2, we will present a couple of
lemmas adopted from [21] that show relative convergence
and closeness of the leaning-based approach.

Lemma 1: At the end of the learning process, when using
the original system state x(t), the matrix P̄ j

s converges as
follows:

lim
j→∞

P̄ j
s = P ∗

s +O(∥ε∥),

where P ∗
s is the solution to the Riccati equation (6).

Lemma 2: During learning, when the reduced states xs(t)
are replaced by the original states x(t) the control system
parameters undergo perturbed changes in the form

P̄ j
s = P̃ j

s +O(∥ε∥).
Equipped with these lemmas, we can now proceed to the

proof for Theorem 2.



Proof: To avoid unboundedness as ∥ε∥ → 0, we write
the solution to the Riccati equation (6) P ∗ in this form.

P ∗ =


Poo ε1Po1 ε2Po2 . . .
ε1P

′
1o ε1P11

√
ε1ε2P12 . . .

ε2P
′
o2

√
ε1ε2P

′
12 ε2P22 . . .

...
...

...

 (36)

By defining αij = lim
(

ϵi
ϵj

)
, i, j = 1, 2, . . . , N it can be

shown that

Poo(0) =Ps, Pii(0) = siPf , Pij(0) = 0, (37)

Pok(0) = Poo(0)Êk − γkẼk. (38)

where Êk =
(
S̃okPkf −Aok

)
(Akk − SkkPkf )

−1
, and

Ẽk = (A′
koPkf + C ′

okCkk) (Akk − SkkPkf )
−1
. As shown

in [13], the above solution does not depend on αij , and the
limits of Pij(0) are uniquely defined.

Using Lemma 1 and Lemma 2, we can now rewrite the
bound of Poo as Poo(0) = P̄s +O(∥ε∥). The limit of J∗

k as
∥ε∥ → 0 is J∗

k = 1
2 x̂

′
oMx̂o, where M satisfies

M(A− SP ) + (A− SP )′M +Qk +
1

γ2k
PSkP = 0. (39)

Also, to evaluate the actual cost J̄k we express (35) as

ūk = − 1

γk
R−1

k B′
kLx̂+O(∥ε∥), (40)

where

L =


Ps 0 0 . . .

ε1P
′
1m ε1γ1Pf 0 . . .

ε2P
′
2m 0 ε2γ2Pf . . .
...

...
...


and Pm = P̄sÊk − γkẼk + O(∥ε∥) = Pk0(0) + O(∥ε∥). When
ūk is applied to (1), we have J̄k = 1

2
x̂′
oNx̂o, where N satisfies

the Lyapunov equation

N(A−SL)+(A−SL)′N+Qk+
1

γ2
k

L′SkL+O(∥ε∥) = 0. (41)

To get J̄k − J∗
k , we calculate W (k) = N (k) − M (k) for each

area k. Next by subtracting (41) from (39) we get

W (k)(A− SL) + (A− SL)′W (k) +
1

γ2
k

L′SkL− 1

γ2
k

PSkP

+M (k)(S)(P − L) + (P − L)′SM (k) +O(∥ε∥) = 0.
(42)

By writing W (k) in the form of (36), it can be shown that
lim∥ε∥→0 W

(k)
ij = 0. This completes the proof.

V. APPLICATION EXAMPLE: TWO-AREA POWER SYSTEM

Consider a power system consisting of two automatic
load frequency control areas, which are connected with
weak tie-lines and have identical characteristics. Although
an actual power system control has multiple components and
controllers we assume that each automatic load frequency
control consists of a generator, governor and a non-reheat
steam turbine. The goal is to maintain the steady frequency
and control the tie-line flows.

The power system equations for the two interconnected
areas are given as [22], [14]

v̇k =(ACE)k = ∆Ptiek + bs∆fk, (43)

∆ḟk =
1

T
[−∆fk +

1

D
(∆PGk

−∆Pd −∆Ptiek)], (44)

∆Ṗ12 =T12(∆f1 −∆f2), (45)

∆ṖGk
=

1

Tt
[−∆PGk

+∆ak], (46)

∆ȧk =
1

Tt
[−∆PGk

+∆ak], (47)

where (N = 2 and k = 1, 2) and ∆P12 = ∆Ptie1 =
−∆Ptie2 . ∆f is the frequency error, ∆Ptie is the tie line
power flow variation and vk is the integral of the area control
error (ACE)k, ∆a is the turbine valve position variation,
∆PG is the turbine output variation and the ∆Pc is variation
in the speed changer.

The system parameters are given as follows: inertia time
constant T = 20, synchronizing power flow coefficient
T12 = 32.7, turbine time constant Tt = 0.2, and governor
time constant TG = 0.1. Assuming a constant load distur-
bance ∆Pd = 0 we define speed regulation r = 0.25, bias
factor bs = 4.5 and D = 0.5. In addition, we define

εi =
max(TGi , Tti)

Ti
, (48)

leading to ε1 = ε2 = 0.2
20 = 0.01, which is a small number

relative to TG and Tt (i.e. TG = 10εi, Tti = 20εi). Also,
ε12 = ε21 = 0.

Accordingly, the slow and fast states are defined as

x = (v1, v2,∆f1,∆f2,∆P12), (49)

zk = (∆PGk
,∆ak), k = 1, 2. (50)

The system matrices in (1) are given as:

Ao =


0 0 bs 0 1
0 0 0 bs −1
0 0 − 1

T
0 − 1

TD

0 0 0 − 1
T

1
TD

0 0 T12 −T12 0

 ,

A1o =

[
0 0 0 0 0
0 0 1

rTG
0 0

]
, A2o =

[
0 0 0 0 0
0 0 0 1

rTG
0

]
,

Ao1 =


0 0
0 0
1

TD
0

0 0
0 0

 , Ao2 =


0 0
0 0
0 0
1

TD
0

0 0

 , Bo1 = Bo2 =
[
0
]
,

A11 = A22 =

[
− 1

Tt

1
Tt

0 − 1
TG

]
, B11 = B22 =

[
0
1

TG

]
.

Suppose γ1 = γ2 = 0.5, R1 = R2 = 20, and

Co1 = Co2 =

[
I(5×5)

0(4×5)

]
, C11 =

0(5×2)

I(2×2)

0(2×2)

 , C22 =

0(5×2)

0(2×2)

I(2×2)

 .

Following Section IV, we implemented Algorithm 1 considering
a sampling interval δτ = 0.1s, with the initial states being 0.1.
Using Qs and Rs from (17) we were able to learn the controller



ūs using different εi values. By writing (21) and solving the Riccati
equation (23) we get the solution for the fast subsystem as ukf =
[−0.0162,−0.0326]. Then using (35) we calculate the controller
ūk.

Fig. 1: x1 and x3 states trajectory using for different con-
trollers

Figure 1 shows the x1 and x3 states trajectory when applying
the optimal controller (5), using the MATLAB command lqr for the
system (1)-(2), and controller based on learning (35) with different
εi values over 30 seconds. It can be seen that the state trajectories
using the learned controller get closer to the optimal controller as
∥ε∥ decreases. It is worth stressing that the optimal controller is
designed based on a system of dimension 9. However, the learning
controller has dimension 5 as it makes use of state vector (49). In
addition, the fast controller is designed based on a subsystem of
dimension 2. So it can be seen that the proposed method achieves
comparable results while significantly reducing the complexity of
the problem and, hence, computational costs.

Control Area1 Control Area2 Overall Cost
(J∗

1 , J̄1) (J∗
2 , J̄2) (J∗, J̄)

Optimal Value 0.3445 0.3472 0.3459
Learning Based Value 0.3514 0.3532 0.3523

Error Percentage 2.0077% 1.7160% 1.8613%

TABLE I: Average cost function values over 15 seconds

Table I validates the result presented in Theorem 2, where it
shows that the learning-based values J̄k get closer to the optimal
cost J∗

k as ∥ε∥ decreases. With ε1 = ε2 = 10−7, the overall cost
value of the learning-based controller is within 1.8613% of the
optimal cost value.

VI. CONCLUSION

We presented a model-free learning method to solve a Pareto op-
timal control in large-scale systems with unknown slow dynamics.
This approach scales well as the size of the system gets large as the
learning is performed based on a reduced-order model and is done
on the level of each area. In addition, the proposed method leads to
a near-optimal performance. In future work, it would be interesting
to investigate the effectiveness of the proposed approach when con-
sidering nonlinear and stochastic nature of systems. Furthermore, it
is worth pointing out that this paper presents a general framework
that facilitates learning by exploiting time scale separation of the
system dynamics. This peaks interest in comparing the proposed
learning method with others in terms of computational costs.
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