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Abstract— This letter is concerned with a compositional
data-driven approach for stability certificate of interconnected
homogeneous networks with (partially) unknown dynamics
while providing 100% correctness guarantees (as opposed
to probabilistic confidence). The proposed framework enjoys
input-to-state stability (ISS) properties of subsystems described
by ISS Lyapunov functions. In our data-driven scheme, we
first reformulate the corresponding conditions of ISS Lyapunov
functions as a robust optimization program (ROP). Due to
appearing unknown dynamics of subsystems in the constraint
of ROP, we propose a scenario optimization program (SOP) by
collecting data from trajectories of each unknown subsystem.
We solve SOP and construct an ISS Lyapunov function for each
subsystem with unknown dynamics. We accordingly leverage
a compositional technique based on max-type small-gain rea-
soning and construct a Lyapunov function for an unknown
interconnected network based on ISS Lyapunov functions of
individual subsystems. We demonstrate the efficacy of our data-
driven approach over a room temperature network containing
1000 rooms with unknown dynamics. Given collected data from
each unknown room, we verify that the unknown interconnected
network is globally asymptotically stable (GAS) with 100%
correctness guarantee.

I. INTRODUCTION

In the past few years, data-driven optimization approaches
have received remarkable attentions due to their ubiquitous
applications in real-life engineering systems. In particular,
given that closed-form mathematical models for many real-
world systems are not available in general, two different
types of direct and indirect data-driven techniques have been
proposed in the relevant literature for formal verification
and controller synthesis of complex systems with unknown
dynamics. More specifically, indirect data-driven techniques
are those which leverage system identification to learn ap-
proximate models of unknown systems, followed by model-
based controller analysis approaches. On the downside, most
identification techniques are mainly limited to linear or
some specific classes of nonlinear systems, and accordingly,
acquiring an accurate model for complex systems via those
indirect techniques could be complicated, time-consuming
and expensive (e.g., [1, and references herein]). In compari-
son, direct data-driven techniques are those that bypass the
identification stage and directly leverage measurements to
provide a verification and controller design framework for
unknown complex systems.
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State-of-the-Art. In the past two decades, there have
been several works on data-driven optimization techniques.
Existing results include proposing a scenario approach to
solve a semi-infinite convex program by randomly sampling
from constraints [2]; presenting a random convex program
with a quantified bound on the upper-tail probability of vio-
lation [3]; establishing a probabilistic bridge between optimal
values of scenario and robust convex programs [4]; and
establishing an approximation bridge between an infinite-
dimensional linear programming and a finite convex pro-
gram [5], to name a few. There have been also several
works on data-driven verification and controller synthesis
of complex systems with unknown models. Existing results
include stability analysis based on data for unknown linear
switched systems via constructing, respectively, common and
sum of squares Lyapunov functions [6], [7]; data-driven sta-
bility verification of continuous-time unknown systems [8];
a predictive control scheme for linear systems with noise-
corrupted input/output data [9]; a data-driven technique for
stability analysis of homogeneous systems [10]; and a data-
driven scheme based on persistency of excitation for stability
analysis of linear-feedback systems [11].

In comparison with our work, we propose here, for the
first time, a compositional data-driven technique for the
stability certificate of interconnected homogeneous networks
with unknown dynamics, whereas the results in [6]- [11]
are all tailored to monolithic systems and suffer severely
from the, so-called, sample complexity when dealing with
large-dimensional systems. In addition, the stability guar-
antee in [6]- [10] is provided over unknown systems with
some probabilistic level of confidence, whereas the stability
certificate in our work is offered with 100% correctness
guarantees under some Lipschitz continuity assumptions. A
similar idea of utilizing such an assumption but in the context
of constructing control barrier certificates from data has been
recently used in [12].

Contribution. Our main contribution is to develop a
compositional data-driven technique for the stability cer-
tificate of interconnected homogeneous networks with un-
known dynamics. The proposed scheme leverages input-
to-state stability (ISS) properties of subsystems described
by ISS Lyapunov functions. In our data-driven framework,
we first cast conditions of ISS Lyapunov functions as a
robust optimization program (ROP). Due to unknown models
appearing in the constraint of ROP, we collect data from
each unknown subsystem and provide a scenario optimiza-
tion program (SOP) pertaining to ROP. We solve SOP
and construct an ISS Lyapunov function for each unknown
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subsystem with 100% correctness guarantee. We accordingly
utilize a compositional technique based on max-type small-
gain reasoning to construct a Lyapunov function for the
interconnected network via ISS Lyapunov functions of indi-
vidual subsystems. We demonstrate the efficacy of our data-
driven approach over an unknown room temperature network
containing 1000 rooms.

II. PROBLEM DESCRIPTION

A. Notation and Preliminaries
Symbols R,R+, and R+

0 , respectively, denote sets of
real, positive, and non-negative real numbers. Sets of non-
negative and positive integers are represented, respectively,
by N := {0, 1, 2, . . .} and N+ = {1, 2, . . .}. Considering N
vectors xi ∈ Rni , we denote a column vector of dimension∑
i ni by x = [x1; . . . ;xN ]. Cartesian product of sets

Xi, i ∈ {1, . . . , N}, is represented by
∏N
i=1Xi. Given any

symmetric matrix A, its maximum eigenvalue is represented
by λmax(A). A function β : R+

0 → R+
0 is a class K function

if it is continuous, strictly increasing, and β(0) = 0. A class
K function β(·) is a class K∞ if β(s) → ∞ as s → ∞. A
function β : R+

0 × R
+
0 → R+

0 belongs to class KL if, for
each fixed s, the map β(r, s) is a class K with respect to r
and, for each fixed r > 0, the map β(r, s) is decreasing with
respect to s, and β(r, s)→ 0 as s→∞.

B. Discrete-Time Nonlinear Systems
In this letter, we study interconnected systems composed

of individual discrete-time nonlinear subsystems, as repre-
sented in the following definition.

Definition 2.1: A discrete-time nonlinear subsystem (dt-
NS) is characterized by the tuple

Υi = (Xi,Wi, fi), (1)

where:
• Xi ⊆ Rni is the state set of dt-NS;
• Wi ⊆ Rpi is the internal input set of dt-NS;
• fi : Xi ×Wi → Xi is a continuous function charac-

terizing the evolution of the system. We assume fi is a
homogeneous function of degree one, i.e., for any η > 0
and xi ∈ Xi, wi ∈Wi, fi(ηxi, ηwi) = ηfi(xi, wi) [13].
We also assume that the map fi is unknown to us.

For an initial state xi(0) ∈ Xi and an internal input
sequence wi(·) : N → Wi, the evolution of dt-NS Υi can
be described as

Υi : xi(k + 1) = fi(xi(k), wi(k)), k ∈ N. (2)

The sequence ξi : N→ Xi satisfying (2) is called the solution
process of Υi under wi(·) and xi(0).

Given that the ultimate goal is to ensure stability certificate
of unknown interconnected dt-NS, we provide next a formal
definition for interconnected dt-NS without w that can be
characterized as a composition of individual dt-NS with w.

Definition 2.2: Consider M ∈ N+ dt-NS Υi =
(Xi,Wi, fi), i ∈ {1, . . . ,M}, with their inputs partitioned
as

wi = [wi1; . . . ;wi(i−1);wi(i+1); . . . ;wiM]. (3)

The interconnection of (Υi)
M
i=1 is Υ = (X, f), denoted

by I(Υ1, . . . ,ΥM), where X = ΠMi=1Xi and f(x) :=
[f1(x1, w1); . . . ; fM(xM, wM)], with the following inter-
connection constraint:

∀i, j ∈ {1, . . . ,M}, i 6= j : wij = xj , Xj ⊆Wij , (4)

where Wi :=
∏
j 6=iWij . The resulting interconnected dt-NS

can be described by

Υ: x(k + 1) = f(x(k)), with f : X → X. (5)
It is straightforward that since all Υi, i ∈ {1, . . . ,M},

are homogeneous of degree one, the interconnected dt-NS
Υ remains homogeneous with the same degree, i.e., for any
η > 0 and x ∈ X , f(ηx) = ηf(x).

In the following, we define global asymptotic stability of
interconnected dt-NS Υ.

Definition 2.3: An interconnected dt-NS Υ in (5) is glob-
ally asymptotically stable (GAS) if

‖x(k)‖ ≤ β(‖x(0)‖, k),

for any x(0) ∈ Rn and some β ∈ KL, implying in particular
that all solutions of Υ converge to the origin when k →∞.

We now present the next theorem [13] to show under
which conditions the interconnected dt-NS is GAS. Notice
that for homogeneous systems, GAS is equivalent to expo-
nential stability.

Theorem 2.4: Given an interconnected dt-NS Υ = (X, f),
suppose there exist a homogeneous Lyapunov function V :
X → R+

0 of degree κ ∈ N+, i.e., for any η > 0 and x ∈ X ,
V(ηx) = ηκV(x), and constants α, α ∈ R+, γ ∈ (0, 1) such
that ∀x ∈ X:

α‖x‖κ ≤ V(x) ≤ α‖x‖κ, (6a)
V(f(x))− γV(x) ≤ 0. (6b)

Then the interconnected dt-NS Υ is globally asymptotically
stable (GAS).

Remark 2.5: Note that homogeneity of f in Theorem 2.4
implies that if the underlying system is GAS, then there
exists a homogeneous GAS Lyapunov function satisfying
conditions (6a)-(6b) [13].

Remark 2.6: Since the Lyapunov function V in Theo-
rem 2.4 is assumed to be homogeneous of degree κ, one can
readily show that this function is always radially unbounded
if and only if it is positive on the unit sphere. Accordingly,
conditions (6a)-(6b) may be verified only on the unit sphere
rather than for all x ∈ Rn; thanks to the homogeneous
property of the map f together with the Lyapunov function
V .

In the next section, we analyze stability of the intercon-
nected dt-NS via ISS properties of individual subsystems.

III. STABILITY CERTIFICATE VIA SMALL-GAIN
REASONING

Here, we analyze stability of the interconnected dt-NS
by leveraging a compositional scheme based on small-
gain reasoning and constructing a Lyapunov function for
the interconnected dt-NS via ISS Lyapunov functions of
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individual subsystems. To do so, we first define notions of
ISS Lyapunov functions.

Definition 3.1: A subsystem Υi = (Xi,Wi, fi) admits a
homogeneous ISS Lyapunov function Si : Xi → R+

0 of
degree κ ∈ N+, i.e., for any η > 0 and xi ∈ Xi, Si(ηxi) =
ηκSi(xi), if the following inequalities hold:

∀xi ∈ Xi : αi‖xi‖κ ≤ Si(xi) ≤ αi‖xi‖κ, (7)
∀xi ∈ Xi,∀wi ∈Wi :

Si(fi(xi, wi)) ≤ max
{
γiSi(xi), ρi‖wi‖κ

}
, (8)

for some αi, αi ∈ R+, ρi ∈ R+
0 , and γi ∈ (0, 1).

Remark 3.2: Note that, without loss of generality, we
have assumed lower and upper bounds of Si (i.e.,
αi‖xi‖κ, αi‖xi‖κ) and also gain ρi‖wi‖κ to be polynomials
of degree κ, due to the homogeneity of the considered sys-
tems. Notice that this choice is consistent with a linear gain
‖wi‖ → ‖xi‖ which is what one expects of a homogeneous
system.

In this work, we are interested in constructing ISS Lya-
punov functions Si to locally satisfy conditions (7)-(8)
over the unit sphere ‖(xi, wi)‖ = 1. These conditions
can then be globally transfered to Rni × Rpi ; thanks to
the homogeneous property of map fi and ISS Lyapunov
functions Si. Then under some small-gain compositionality
condition, the Lyapunov function V for the interconnected
network can be constructed via ISS Lyapunov functions Si
of individual subsystems. Since the interconnected network
is also homogeneous, the stability certificate can then be
globally guaranteed in Rn.

Remark 3.3: Note that although the homogeneous as-
sumption allows us to extend the stability certificate globally
to Rn, it limits the class of underlying systems. One can relax
this condition to consider more classes of systems but at the
cost of providing the stability certificate locally instead of
globally.
To analyze the stability of interconnected networks via ISS
properties of subsystems, we first raise the following max-
type small-gain assumption that is required for the compo-
sitional reasoning.

Assumption 1: Let γij ∈ R+ defined as

γij :=
ρi
αj
, if i 6= j,

satisfy
γi1i2 .γi2i3 . . . . γip−1it .γiti1 < 1 (9)

with γij = γi, if i = j, for all sequences (i1, . . . , it) ∈
{1, . . . ,M}t and t ∈ {1, . . . ,M}. Since γi < 1, the
circularity condition in (9) is satisfied on arbitrary sequences
if and only if it is fulfilled on simple loops of length strictly
bigger than one.
The circularity condition (9) indicates the existence of σi ∈
R+ [14, Theorem 5.5], fulfilling

max
i,j

{γijσj
σi

}
< 1, i, j = {1, . . . ,M}. (10)

Under Assumption 1, the next theorem provides the stability
guarantee for the interconnected dt-NS via ISS Lyapunov

functions of individual subsystems [15]–[17]. Note that this
theorem requires knowing the precise models of the system
to construct gains γij , needed for the small-gain condi-
tion (9).

Theorem 3.4: Consider an interconnected dt-NS Υ =
I(Υ1, . . . ,ΥM) induced by M ∈ N+ subsystems Υi with
their inputs partitioned as in (3). Let each subsystem Υi

admits an ISS Lyapunov function Si as in Definition 3.1. If
Assumption 1 is satisfied, then

V(x) := max
i
{ 1

σi
Si(xi)}, (11)

for σi as in (10), is a Lyapunov function for the intercon-
nected dt-NS Υ = I(Υ1, . . . ,ΥM), and accordingly, Υ is
GAS in the sense of Definition 2.3.

In our data-driven scheme, we consider the structure of
ISS Lyapunov functions as

Si(qi, xi) =

r∑
j=1

qji p
j
i (xi), (12)

with some user-defined homogeneous basis functions pji (xi)
with even degree κ and unknown variables qi =
[q1i ; . . . ; qri ] ∈ Rr. We assume that Si are continuously
differentiable.

Remark 3.5: Note that basis functions pji should be homo-
geneous of degree κ so that Si(qi, xi) remain homogeneous
of the same degree. The degree κ needs to be also even such
that Si be a Lyapunov function. Since pji should be restricted
to the unit sphere, it has to be a finite basis of this subspace
(e.g., a set of spline functions on the unit sphere).

Here, we first cast the required conditions for the con-
struction of ISS Lyapunov functions in Definition 3.1 as the
following robust optimization program (ROP):

ROP :



min
[Gi;µi]

µi,

s.t. max
{
C1i (xi,Gi), C2i (xi, wi,Gi)

}
≤ µi,

∀(xi, wi) ∈ Xi ×Wi : ‖(xi, wi)‖ = 1,
Gi = [αi;αi; γ̃i; ρ̃i; q

1
i ; . . . ; qri ],

αi, αi∈ [1,+∞), ρ̃i∈R+
0 , µi∈R, γ̃i∈(0, 1),

(13)

with

C1i (xi,Gi)=max
{
αi‖xi‖κ−Si(qi,xi),Si(qi,xi)−αi‖xi‖κ

}
,

C2i (xi,wi,Gi)=Si(qi,fi(xi,wi))−γ̃iSi(qi,xi)−ρ̃i‖wi‖κ. (14)

The max term in ROP (13) implies that each C1i and C2i
should be individually less than or equal to µi. The symbol
Gi also denotes a decision vector that needs to be designed
after solving ROP. If µi ≤ 0, any feasible solution to
the ROP signifies the satisfaction of conditions (7)-(8) in
Definition 3.1: Si is ISS Lyapunov functions for Υi. We
denote the optimal value of ROP by µ∗Ri

.
Remark 3.6: Condition C2i is bilinear given that both qji

and γ̃i are decision variables. To resolve this mild bilinearity,
we consider γ̃i in a finite set with a cardinality l, i.e., γ̃i ∈
{γ̃1i , . . . , γ̃li}.
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Remark 3.7: Note that in our ROP in (13), we consider the
max-form condition (8) to be additive in C2i . Functions γi, ρi
in (8) can be then acquired based on γ̃i, ρ̃i in the implication-
form condition C2i as:

γi=1−(1−ψi)(1−γ̃i), ρi=
ρ̃i

(1− γ̃i)ψi
, for any 0<ψi<1.

The proposed ROP in (13) is not tractable due to two main
difficulties. First, there are infinitely many constraints given
that the space of xi and wi is continuous (i.e., xi ∈ Xi, wi ∈
Wi). Second and more importantly, the unknown map fi
appears in C2i in ROP (13). Given these critical challenges,
we develop in the next section a data-driven approach for
the construction of ISS Lyapunov functions without directly
solving the ROP in (13).

IV. DATA-DRIVEN CONSTRUCTION OF ISS LYAPUNOV
FUNCTIONS

In this section, we develop a data-driven approach to
construct an ISS Lyapunov function for each unknown
subsystem with 100% correctness guarantee. To do so, we
assume we are given a set of two-consecutive sampled data
from trajectories of unknown subsystems as the pair of
((x̃zi , w̃

z
i ), fi(x̃

z
i , w̃

z
i )), z ∈ {1, . . . ,Ni}. In our data driven

setting, we first project all data onto unit sphere by normal-
izing them with ‖(x̃zi , w̃zi )‖, i.e.,

((x̂zi , ŵ
z
i ), fi(x̂

z
i , ŵ

z
i )) =

((x̃zi , w̃
z
i ), fi(x̃

z
i , w̃

z
i ))

‖(x̃zi , w̃zi )‖
.

We now compute the maximum distance between any points
on the unit sphere and the set of data points as

δi = max
(xi,wi)

min
z
‖(xi, wi)− (x̂zi , ŵ

z
i )‖,

(xi, wi) ∈ Xi ×Wi : ‖(xi, wi)‖ = 1. (15)

Remark 4.1: Note that (15) is not inherently convex and
the maximum distance between any points on the unit sphere
and the set of data points based on (15) can be computed
via gridding of the unit sphere. Since the computation based
on a grid-based approach is reduced to a finite problem,
the computational complexity is linear in both number of
samples and number of grid points (associated to the grid
size).
By considering (x̂zi , ŵ

z
i ) ∈ Xi × Wi, z = 1, . . . ,Ni, we

propose the following scenario optimization program (SOP):

SOP :



min
[Gi;µi]

µi,

s.t. max
{
C1i (x̂zi ,Gi), C2i (x̂zi , ŵ

z
i ,Gi)

}
≤ µi,

∀(x̂zi , ŵzi ) ∈ Xi ×Wi,∀z ∈ {1, . . . ,Ni},
Gi = [αi;αi; γ̃i; ρ̃i; q

1
i ; . . . ; qri ],

αi, αi∈ [1,+∞), ρ̃i∈R+
0 , µi∈R, γ̃i∈(0, 1),

(16)

where C1i , C2i are the same functions as defined in (14). One
can readily observe that the proposed SOP in (16) has finite
number of constraints of the same form as in (13). We denote
the optimal value of SOP by µ∗Ni

.

Remark 4.2: Notice that ŵi in (16) is the state mea-
surement of neighboring subsystems affecting an individual
subsystem i. If one employs the same SOP but aims at
establishing an ISS Lyapunov function with respect to an
actual disturbance, the measurement of disturbance may
become challenging, which is out of scope of this work.

Remark 4.3: Since the candidate ISS Lyapunov function
in (12) is defined as a linear combination of basis functions,
the SOP in (16) remains always convex with respect to
decision variables. The SOP in (16) is also always feasible
given that the cost function µi could take positive values.
However, the optimal value of SOP should be non-positive
so that the constructed data-driven ISS Lyapunov function
becomes also valid for the original unknown subsystem (cf.
Theorem 5.1).

In the next section, we employ the proposed SOP and con-
struct ISS Lyapunov functions for unknown Υi by providing
a GAS certificate over the unknown interconnected network.

V. STABILITY CERTIFICATE OVER UNKNOWN
INTERCONNECTED NETWORK

Here, we aim at constructing ISS Lyapunov functions of
unknown Υi under the following assumption.

Assumption 2: Suppose fi(xi, wi) is Lipschitz continuous
with respect to xi and wi with Lipschitz constants Lxi

,Lwi
,

respectively.
The Lipschitz constant of unknown models, required in

Assumption 2, can be estimated via data according to the
approach in [18]. Now under Assumption 2, we propose the
next theorem to construct ISS Lyapunov functions Si for
unknown subsystems Υi with 100% correctness guarantees.

Theorem 5.1: Given subsystems Υi in (2), let As-
sumption 2 hold. Consider the SOP in (16) with its
corresponding optimal value µ∗Ni

and solution G∗i =
[α∗i ;α

∗
i ; ρ̃
∗
i ; q

1∗
i ; . . . ; qr∗i ], with Ni. If

µ∗Ni
+ Liδi ≤ 0, (17)

where Li = max
{
L 1
i ,L

2
i }, with L 1

i ,L
2
i being Lipschitz

constants of C1i , C2i with respect to xi and (xi, wi), respec-
tively, then the constructed Si via solving SOP (16) are ISS
Lyapunov functions for unknown subsystems Υi with 100%
correctness guarantees.

Proof: We first show that the constructed Si via solving
SOP (16) satisfy C2i in (14) for the whole range of state and
disturbance spaces with µi ≤ 0, i.e.,

C2i (xi, wi,Gi)∗ ≤ 0, ∀(xi, wi)∈Xi×Wi : ‖(xi, wi)‖ = 1.

Since fi(xi, wi) is Lipschitz continuous according to As-
sumption 2, one can readily show that C2i is always Lips-
chitz continuous with respect to (xi, wi) with a Lipschitz
constant L 2

i ∈ R+ (cf. Lemma 5.3) given that the ISS
Lyapunov function Si is continuously differentiable and our
analysis is on the unit sphere (bounded domain). Let z∗ :=
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arg minz ‖(xi, wi)− (x̂zi , ŵ
z
i )‖. Then one has

C2i (xi, wi,Gi)∗

= C2i (xi, wi,Gi)∗ − C2i (x̂z
∗

i , ŵ
z∗

i ,Gi)∗ + C2i (x̂z
∗

i , ŵ
z∗

i ,Gi)∗

≤ L 2
i min

z
‖(xi, wi)− (x̂zi , ŵ

z
i )‖+ µ∗Ni

≤ L 2
i max

(xi,wi)
min
z
‖(xi, wi)− (x̂zi , ŵ

z
i )‖+ µ∗Ni

≤ µ∗Ni
+ Liδi.

Since µ∗Ni
+Liδi ≤ 0 as the main condition of the theorem,

one can readily verify that

C2i (xi, wi,Gi)∗ ≤ 0, ∀(xi, wi)∈Xi×Wi : ‖(xi, wi)‖ = 1.

We now leverage a similar argument and show that the con-
structed Si via solving SOP in (16) satisfies C1i in (14) for the
whole range of the state space. Let z∗ := arg minz ‖xi−x̂zi ‖.
Then one has

C1i (xi,Gi)∗ = C1i (xi,Gi)∗ − C1i (x̂z
∗

i ,Gi)∗ + C1i (x̂z
∗

i ,Gi)∗

≤ L 1
i max

(xi,wi)
min
z
‖xi−x̂zi ‖+µ∗Ni

≤ µ∗Ni
+ Liδi ≤ 0.

Then the constructed Si via solving SOP in (16) are
ISS Lyapunov functions for unknown subsystems Υi, i ∈
{1, . . . ,M}, with 100% correctness guarantees, which con-
cludes the proof.

The data-driven results of Theorem 5.1 provide an ISS
Lyapunov function for each individual subsystem within the
network. Nevertheless, the constructed ISS certificate of each
subsystem is of limited appeal on its own, without utilizing
the small-gain reasoning and transferring the stability result
to the network. In particular, as the final step, if the circularity
condition in (9) is fulfilled, then V in (11), composed of data-
driven ISS Lyapunov functions of individual subsystems, is
a Lyapunov function for the unknown interconnected dt-NS
Υ = I(Υ1, . . . ,ΥM), and accordingly, Υ is GAS in the
sense of Definition 2.3. It is worth mentioning that if one
synthesizes αj and ρi during solving the SOP in (16) such
that ρi

αj
< 1, the small-gain condition (9) is automatically

fulfilled without requiring any posteriori check. In this case,
one can readily conclude that V is a Lyapunov function for
unknown interconnected dt-NS.

Remark 5.2: Note that one can establish the results of
Theorem 5.1 directly for an interconnected network; how-
ever, the proposed SOP in this case suffers severely from
the, so-called, sample complexity due to dealing with large-
dimensional networks: the required number of data for
providing stability guarantee exponentially increases with the
size of underlying networks. This is the main motivation that
we use a divide and conquer strategy and reduce our complex
problem to search for ISS Lyapunov functions of unknown
individual subsystems via the proposed data-driven results in
Theorem 5.1. We then use small-gain reasoning and certify
the GAS property of unknown interconnected networks based
on those data-driven ISS properties of underlying subsys-
tems.

We propose Algorithm 1 to describe the required steps for
the construction of ISS Lyapunov functions of unknown Υi

from data according to Theorem 5.1. It is worth mentioning
that if µ∗Ni

+Liδi � 0, one can either change basis functions
of Si (cf. Remark 3.5) or project more data onto the unit
sphere to potentially decrease the distance δi, and repeat
Steps 1-4 of Algorithm 1. When µ∗Ni

+Liδi ≤ 0, the small-
gain compositionality condition in (9) needs to be checked
with the obtained γij . If circularity condition (9) is fulfilled,
then unknown dt-NS is GAS with the Lyapunov function
V(q, x) := maxi{ 1

σi
Si(qi, xi)}. If circularity condition (9)

is not satisfied, one needs to repeat Steps 1-4 to design other
γij potentially satisfying condition (9).

Algorithm 1 Data-driven construction of ISS Lyapunov
functions of unknown individual subsystem Υi

Require: Sampled data-points ((x̃zi , w̃
z
i ), fi(x̃

z
i , w̃

z
i )), z ∈

{1, . . . ,Ni}
1: Project all data-points onto unit sphere by normalizing

them as ((x̂zi , ŵ
z
i ), fi(x̂

z
i , ŵ

z
i )) =

((x̃z
i ,w̃

z
i ),fi(x̃

z
i ,w̃

z
i ))

‖(x̃z
i ,w̃

z
i )‖

2: Solve SOP in (16) with the normalized data and obtain
µ∗Ni

3: Compute δi as the maximum distance between any
points in the unit sphere and the set of data points, i.e.,
δi = max(xi,wi) minz ‖(xi, wi)− (x̂zi , ŵ

z
i )‖, (xi, wi) ∈

Xi ×Wi : ‖(xi, wi)‖ = 1
4: Compute Lipschitz constant Li according to

Lemma (5.3)
5: If µ∗Ni

+ Liδi ≤ 0, then the constructed Si via solving
SOP (16) are ISS Lyapunov functions for unknown
subsystems Υi

6: Otherwise, inconclusive given the choice of Si and δi

In order to check condition (17) in Theorem 5.1, one
needs to first compute Li. We propose in the next lemma
an explicit way to compute Li for dt-NS.

Lemma 5.3: Consider unknown dt-NS xi(k + 1) =
fi(xi(k), wi(k)). Let fi(xi, wi) be Lipschitz continuous with
respect to xi and wi with Lipschitz constants Lxi

,Lwi

according to Assumption 2. Then Li for a quadratic ISS
Lyapunov function of the form x>i Pixi, with a positive-
definite matrix Pi ∈ Rni×ni and κ = 2, is quantified
as Li = max

{
L 1
i ,L

2
i } = max

{
2λmax(Pi)(Lxi

Li +
Lwi
Li + 1) + 2ρ̃i, 2λmax(P ) + 2αi

}
, where ‖fi(xi, wi)‖ ≤

Li,∀(xi, wi) ∈ Xi ×Wi.
Note that the upper bound of unknown models, i.e., Li, can

be quantified via the range of the state space since unknown
dynamics evolve in discrete time.

VI. CASE STUDY: ROOM TEMPERATURE NETWORK

We verify our data-driven results over a room temperature
network containing 1000 rooms in a circular topology. The
evolution of the temperature T (·) can be described by the
following interconnected network [19]:

Υ: T (k + 1) = AT (k),

where A is a matrix with diagonal elements aii = 1−2ϕ−θ,
i ∈ {1, . . . ,M}, off-diagonal elements ai,i+1 = ai+1,i =
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a1,M = aM,1 = ϕ, i ∈ {1, . . . ,M− 1}, and zero for other
elements. In addition, T (k) = [T1(k); . . . ;TM(k)], and ϕ,
θ are thermal factors between rooms i ± 1 and i, and the
external environment and the room i, respectively. Now by
characterizing each individual room as

Υi : Ti(k + 1) = aiiTi(k) + ϕ(wi−1(k) + wi+1(k)), (18)

with w0 = wM, wM+1 = w1, one has Υ = I(Υ1, . . . ,ΥM).
We assume that the underlying model is unknown. The
main target is to compositionally construct a Lyapunov
function for the interconnected dt-NS based on ISS Lyapunov
functions of individual subsystems via solving SOP (16).
Accordingly, we verify that the interconnected network is
GAS with respect to its equilibrium point x = 0 with 100%
correctness guarantee.

We first fix the structure of our ISS Lyapunov functions
as Si(qi, Ti) = qiT

2
i for all i ∈ {1, . . . , 1000}. We employ

Algorithm 1 as our proposed data-driven scheme. We collect
730 samples from trajectories of each unknown room (i.e.,
Ni = 730) and normalize them to be projected onto unit
sphere. We now solve the SOP (16) with Ni = 730 and
compute coefficients of ISS Lyapunov functions together
with other decision variables as

Si(qi, Ti) = 1.25T 2
i , αi = 1, αi = 1.5, ρi = 0.03,

µ∗Ni
= −0.0644, (19)

with a fixed γi = 0.9. We compute δi = 0.0109 and Li =
5.5 according to Steps 3, 4 in Algorithm 1. Since µ∗Ni

+
Liδi = −47 × 10−4 ≤ 0, according to Theorem 5.1, one
can verify that the constructed ISS Lyapunov functions via
collected data are valid for the original ROP (13) with 100%
correctness guarantees.

We now proceed with Theorem 3.4 to construct a Lya-
punov function for the interconnected dt-NS using ISS Lya-
punov functions of individual subsystems, constructed from
data. By taking σi = 1,∀i ∈ {1, . . . ,M}, the circularity
condition in (9) is fulfilled. Then by employing the results
of Theorem 3.4, one can certify that the interconnected dt-
NS Υ = I(Υ1, . . . ,ΥM) is GAS with respect to x = 0,
and V(q, T ) = maxi{Si(qi, Ti)} = maxi{1.25T 2

i } is a
Lyapunov function for the interconnected dt-NS with 100%
correctness guarantee.

The computation of ISS Lyapunov functions took 1.13
seconds for each room (1130 seconds for all 1000 rooms in
a serial computation) on a machine with Windows operating
system (Intel i7-8665U CPU with 16 GB of RAM).

VII. DISCUSSION

In this letter, we proposed a compositional data-driven
technique to ensure stability certificate of interconnected
homogeneous systems with unknown models. In our data-
driven scheme, we collected data from trajectories of each
unknown subsystem to propose a scenario optimization pro-
gram (SOP). We solved the resulting SOP and constructed
an ISS Lyapunov function for each unknown subsystem
with 100% correctness guarantee. We accordingly utilized
a compositional technique based on small-gain reasoning

and constructed a Lyapunov function for the interconnected
network based on ISS Lyapunov functions of individual
subsystems. We demonstrated the efficacy of our data-
driven results over an unknown room temperature network
containing 1000 rooms. Developing a compositional data-
driven technique for ensuring incremental ISS property of
general nonlinear class of interconnected systems is under
investigation as a future work.
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