
Design of Limit-Cycle Oscillators with Prescribed Trajectories and
Phase-Response Properties via Phase Reduction and Floquet Theory

Norihisa Namura and Hiroya Nakao

Abstract— We propose a method for designing stable limit-
cycle oscillators with prescribed periodic trajectories and phase-
response properties in general dimensions based on the phase
reduction theory. The vector field of the oscillator is approx-
imated by polynomials and their coefficients are optimized
to satisfy required conditions. Linear stability of the periodic
trajectory is ensured by imposing conditions on the eigenvalues
of the monodromy matrix based on Floquet theory. We verify
the validity of the proposed method by designing several types
of oscillators with given properties. As an application, we
design two oscillators with the same periodic trajectory but
with different phase-response properties and show their distinct
synchronization dynamics under the same periodic input.

I. INTRODUCTION

Synchronization of rhythmic systems has been widely
applied in various fields of engineering in recent years.
Some examples include human-robot interactions [1], power
networks [2], frequency tuning or stabilization in electrical
oscillators [3], and suppression of pulsus alternans in the
heart [4]. Limit-cycle oscillators, i.e., nonlinear dynamical
systems with stable limit-cycle trajectories, provide a typical
mathematical model of rhythmic systems [5]. When a pe-
riodic input is given to a limit-cycle oscillator, entrainment
or phase locking of the oscillator to the periodic input can
be observed [6], [7]. When two or more oscillators interact,
mutual synchronization of the oscillators can be observed.

The phase reduction theory [6], [8], [9], [10], [11], [12],
[13], which approximately describes the multidimensional
dynamics of a limit-cycle oscillator by a one-dimensional
phase equation using only the phase value defined along the
limit cycle, is useful for analyzing synchronization dynamics
of limit-cycle oscillators subjected to weak inputs. The phase
reduction theory has been extensively used for analyzing
various types of synchronization dynamics of limit-cycle os-
cillators [6], [9], [12], [14]. Recently, it has also been applied
to the synchronization control of limit-cycle oscillators [15],
[16], [17], [18], [19], [20], [21].

In controlling rhythmic dynamical behaviors of artificial
objects, e.g., in robotics [22], [23], it is important to design
limit-cycle oscillators with desired non-intersecting periodic
trajectories. Many studies have been conducted on the design
of oscillators with prescribed periodic trajectories [22], [24],
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[25]. In particular, several methods have been proposed to
design dynamical systems with stable limit cycles of given
shapes by constructing the vector fields [26], [27], [28].
Design of limit cycle oscillators using neural networks has
also been considered [29], [30], [31]. For applications to
synchronization control, it is also important to design oscil-
lators with desired phase-response properties that determine
the synchronization characteristics in addition to the desired
trajectories. However, few studies have considered the phase-
response properties explicitly. In our previous study [28], we
proposed a method for designing stable limit-cycle oscillators
with prescribed trajectories and phase-response properties,
but it was valid only in two-dimensional cases.

In this study, we propose an extension of our previous
study [28] to multidimensional cases. As in [28], we approx-
imate the vector field of the oscillator by using polynomials
and optimize their coefficients. For ensuring the linear sta-
bility of the limit cycle, we evaluate the eigenvalues of the
monodromy matrix along the periodic trajectory according to
Floquet theory [32], [33], in contrast to [28]. We verify the
validity of the proposed method numerically by designing
several types of oscillators. As an application, we design
two oscillators with the same periodic trajectory but with
different phase-response properties and show their distinct
synchronization characteristics under the same input.

This paper is organized as follows. We first describe
phase reduction in Sec. II and Floquet theory in Sec. III,
respectively. We then describe the method for designing the
vector field of oscillators in Sec. IV. In Sec. V, we verify the
proposed method by numerical simulations for several types
of oscillators and demonstrate the importance of the phase-
response properties. We conclude this study in Sec. VI.

II. PHASE REDUCTION AND SYNCHRONIZATION

In this section, we explain the phase reduction theory for
analyzing synchronization [6], [8], [9], [10], [11], [12], [13].

A. Phase Reduction with Weak Periodic Inputs

We consider a limit-cycle oscillator described by

Ẋ = F (X), (1)

where X(t) ∈ RN is the system state at time t, F : RN →
RN is a smooth vector field, and Ẋ is the time derivative
of X . We assume that the system has an exponentially
stable limit-cycle solution X̃0(t) with a natural period T
and frequency ω = 2π/T , which is a T -periodic function of
t satisfying X̃0(t+ T ) = X̃0(t).
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We first introduce the asymptotic phase function Θ :
B → [0, 2π) for the limit-cycle oscillator described by Ẋ =
F (X) in the whole basin B of the limit cycle so that it
satisfies ⟨∇Θ(X),F (X)⟩ = ω. Here, ⟨a, c⟩ =

∑N
j=1 a

∗
jcj :

CN ×CN → C represents the scalar product of two complex
vectors a, c ∈ CN , where ∗ denotes the complex conjugate.
Using the asymptotic phase, we can define the phase value θ
of the state X ∈ B by θ = Θ(X). This phase value increases
constantly at the frequency ω as

θ̇(t) = Θ̇(X(t)) = ⟨∇Θ(X(t)),F (X(t))⟩ = ω. (2)

Here, the phase values 0 and 2π are considered identical. The
state of the oscillator on the limit cycle can be expressed as
X0(θ) = X̃0(t = θ/ω) as a function of the phase θ, where
X0(θ) is a function of period 2π (i.e., X0(θ) = X0(θ+2π)).

We next consider the case that the limit-cycle oscillator is
perturbed by a sufficiently weak input as

Ẋ(t) = F (X(t)) + εq(t), (3)

where q(t) represents a periodic input with a period τ and
frequency Ω = 2π/τ satisfying q(t + τ) = q(t) and the
non-dimensional parameter 0 < ε ≪ 1 characterizes the
strength of the input. Since ε is assumed sufficiently small,
the deviation of the oscillator state X(t) from the state
X0(θ(t)) on the limit cycle is of O(ε), i.e.,

X(t) = X0(θ(t)) +O(ε). (4)

Substituting Eq. (4) into Eq. (3) and ignoring errors of O(ε2),
we can obtain the time evolution of the phase θ(t) as

θ̇(t) = ω + ε ⟨Z(θ(t)), q(t)⟩ . (5)

Here, Z : [0, 2π) → RN is the phase sensitivity function
(PSF, also known as the infinitesimal phase resetting curve,
iPRC), which is defined by the gradient of the phase function
at X0(θ) on the limit cycle as Z(θ) = ∇Θ(X)|X=X0(θ).
The PSF describes linear phase-response properties of the
oscillator caused by weak inputs [6], [9], [10], [11], [12].

Our aim in this study is to develop a method to design
limit-cycle oscillators with prescribed periodic trajectories
and phase-response properties characterized by the PSF.

B. Synchronization

We next analyze synchronization of the oscillator with
a weak periodic input by using the averaging approxima-
tion [6], [8], [12]. Assuming that the natural frequency ω
of the oscillator and the frequency Ω of the periodic input
are sufficiently close because of the weakness of the input,
we denote the frequency difference by ε∆ = ω − Ω using
the small parameter ε and a parameter ∆ of O(1), where
“ε∆” indicates that the frequency difference is of O(ε). The
oscillator phase relative to the input, ϕ(t) = θ(t)−Ωt, obeys

ϕ̇(t) = ε (∆ + ⟨Z(ϕ(t) + Ωt), q(t)⟩) , (6)

where the range of ϕ is extended outside [0, 2π) and Z is
regarded as a 2π-periodic function. Since the right-hand side
is of O(ε) and ϕ is a slow variable, we can perform averaging

approximation [6], [8], [12]. Averaging the right-hand side
of Eq. (6) over one period of the input while fixing ϕ(t)
yields a single-variable autonomous system,

ϕ̇ = ε (∆ + Γ(ϕ)) . (7)

Here, Γ(ϕ) is a 2π-periodic phase coupling function (PCF)

Γ(ϕ) =
1

2π

∫ 2π

0

⟨Z(ϕ+ ψ), q (ψ/Ω)⟩ dψ, (8)

where ψ = Ωt is the phase of the input.
If the time derivative of the phase difference is zero, ϕ̇ = 0,

the oscillator is entrained to the periodic input. The phase-
locking point ϕ0 is stable if it satisfies the phase-locking
condition ∆+Γ(ϕ0) = 0 and stability condition Γ′(ϕ0) < 0,
where Γ′(ϕ) is the derivative of Γ(ϕ) by ϕ.

III. FLOQUET THEORY

The linear stability of the limit cycle can be analyzed by
Floquet theory [32], [33]. We assume that the oscillator state
X(t) is near the limit cycle X̃0(t) and can be described
as X(t) = X̃0(t) + εy(t), where the deviation is O(ε)
as in Eq. (4). The variation y(t) approximately obeys the
following linearized periodic system:

ẏ(t) = J̃(t)y(t), (9)

where J̃(t) is the Jacobian matrix of F evaluated at
X0(θ(t)) on the limit cycle.

We define the fundamental matrix of the linearized sys-
tem (9) by V ∈ RN×N , which is a regular matrix satisfying
V̇ (t) = J̃(t)V (t). We can define a regular and constant
matrix M ∈ RN×N satisfying V (T ) = V (0)M , where
M is called a monodromy matrix and depends on the initial
condition X̃0(0). Since M is regular, there exists a matrix
Λ ∈ CN×N such that M = exp(ΛT ). From Floquet theory,
the fundamental matrix can be expressed as

V (t) = R(t) exp(Λt), (10)

where R(t) ∈ CN×N is a T -periodic regular matrix satis-
fying R(t + T ) = R(t) and R(0) = I , i.e., V (0) = I ,
where I is the identity matrix. Since R(t) is T -periodic, the
eigenvalues of Λ characterize the stability.

Though the monodromy matrix M depends on the initial
condition, the eigenvalues of M are uniquely determined
because eigenvalues are invariant under similarity transfor-
mation, so we can obtain the eigenvalues of M by simply
calculating V (T ) assuming V (0) = I .

We next consider the eigensystem of Λ:{
λj ∈ C, uj ∈ CN ,vj ∈ CN

}N

j=1
, where Λjuj = λjuj

and Λ†
jvj = λ†jvj († denotes the Hermitian conjugate). The

eigenvalue λj is called Floquet exponent (i.e., exp(λjT )
is the Floquet multiplier), where the principal value is
chosen for complex λj . The exponents {λj} are sorted as
Re λ1 ≥ · · · ≥ Re λN . For a stable limit cycle, λ1 = 0
holds. The eigenvectors uk and vj can be bi-orthonormalized
to satisfy ⟨vj ,uk⟩ = δjk for j, k = 1, . . . , N .
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We further define the time evolution of uj and vj by
uj(t) = R(t)uj and vj(t) =

(
R(t)†

)−1
vj for 0 ≤

t < T , where we call uj(t) and vj(t) the right and left
Floquet vectors, respectively. These vectors are T -periodic
and satisfy uj(T ) = uj(0) = uj , vj(T ) = vj(0) = vj ,
and bi-orthonormality condition ⟨vj(t),uk(t)⟩ = δjk for all
0 ≤ t < T . They are T -periodic solution to the following
linear system and its adjoint, respectively [13], [21]:

u̇j(t) =
[
J̃(t)− λj

]
uj(t), (11)

v̇j(t) = −
[
J̃(t)† − λ†j

]
vj(t). (12)

If we take u1(0) =
1
ωF (X̃0(0)), Z(θ(t)) = v(t) holds, so

we consider the PSF as a function of t as Z̃(t) := Z(θ(t)). It
is known that Z̃(t) obeys the following adjoint equation (13)
and normalization condition (14) [10], [11]:

˙̃Z(t) = −J̃⊤(t)Z̃(t), (13)〈
Z̃(t), ˙̃X0(t)

〉
= ω. (14)

IV. DESIGN METHOD FOR VECTOR FIELDS
In this section, we propose a method for designing a stable

limit-cycle oscillator with a given trajectory and PSF.

A. Conditions for the Periodic Trajectory and PSF
We extend our previous method [28] to N -dimensional

systems. We approximate the vector field of the system by
using polynomials of order n as

F (X) =

F1(X)
...

FN (X)

 ≃

U(X)⊤ζ1
...

U(X)⊤ζN

 , (15)

where X = [x1 · · · xN ], U(X) ∈ RP is given by

U(X)

=
[
1 x1 · · · xN x21 x1x2 · · · x2N · · · xnN ,

]⊤
,

(16)

and ζ1, . . . , ζN ∈ RP are the coefficient vectors. Here, the
overline denotes standardization, z := (z − µ)/σ, where µ
and σ are the mean and standard deviation of z, respectively.

We assume that the system has a non-intersecting differ-
entiable periodic trajectory p(t) = [p1(t) · · · pN (t)]

⊤ and
impose the following condition on the vector field:

ṗ = F (p), (17)

which can be expressed in the polynomial approximation as
U(p(t))⊤ζj ≃ ṗj(t) for j = 1, . . . , N .

We introduce a coefficient vector ξ =
[
ζ⊤
1 · · · ζ⊤

N

]⊤ ∈
RNP and discretize the time t using L points as tℓ =
(ℓ − 1)∆t, where ℓ = 1, . . . , L and ∆t is the time interval.
Defining Ap,ℓ ∈ RN×NP and bp,ℓ ∈ RN by

Ap,ℓ :=

U(p(tℓ))
⊤ · · · 0

...
. . .

...
0 · · · U(p(tℓ))

⊤

 , (18)

b⊤p,ℓ :=
[
ṗ1(tℓ) · · · ṗN (tℓ)

]⊤
(19)

for each tℓ, respectively, we can express the discrepancy of
the polynomial approximation from Eq. (17) as Ap,ℓξ−bp,ℓ.

Next, we introduce the conditions for the PSF to the
vector field. We note that the periodic trajectory and PSF are
not completely independent because they should satisfy the
normalization condition (14). Assuming that the oscillator
has a PSF Z̃(t) = [Z̃1(t) · · · Z̃N (t)]⊤, we require that the
adjoint equation (13) is satisfied. This equation is expressed
in the polynomial approximation as

Z̃1(t)Uj(p(t))
⊤ζ1 + · · ·+ Z̃N (t)Uj(p(t))

⊤ζN ≃− ˙̃Zj(t),
(20)

for j = 1, . . . , N , where Uj(X) ∈ RP is the jth column of
∇U(X). Defining AZ,ℓ ∈ RN×NP and bZ,ℓ ∈ RN by

AZ,ℓ :=

 Z̃1(tℓ)U1(p(tℓ))
⊤ · · · Z̃N (tℓ)U1(p(tℓ))

⊤

...
. . .

...
Z̃1(tℓ)UN (p(tℓ))

⊤ · · · Z̃N (tℓ)UN (p(tℓ))
⊤

 ,
(21)

b⊤Z,ℓ :=
[
− ˙̃Z1(tℓ) · · · − ˙̃ZN (tℓ)

]⊤
, (22)

respectively, we can express the discrepancy of the polyno-
mial approximation from Eq. (13) as AZ,ℓξ − bZ,ℓ.

We seek the optimal coefficients of polynomials that
satisfy Eqs. (17) and (13) as much as possible by minimizing
the overall discrepancies of the periodic trajectory and PSF
over one period T . Defining A ∈ R2NL×NP

A =
[
A⊤

p,1 · · · A⊤
p,L A⊤

Z,1 · · · A⊤
Z,L

]⊤
(23)

and b ∈ R2NL by

b =
[
b⊤p,1 · · · b⊤p,L b⊤Z,1 · · · b⊤Z,L

]⊤
, (24)

the sum of the squared errors for p and Z can be expressed
as ∥Aξ − b∥2. Finally, the objective function

E =
1

2

(
∥Aξ − b∥2 + γ∥ξ∥2

)
(25)

is obtained. Here, we add the regularization term ∥ξ∥2
with the weight γ to prevent the coefficients of the vector
field from becoming excessively large, which is expected to
reduce the complexity of the vector field and ensures the
uniqueness of the solution to the optimization problem.

B. Condition for the Linear Stability

To ensure the linear stability of the limit cycle, one of the
Floquet exponents should be zero while the others should be
negative. Therefore, we impose the conditions on them as
follows:

λ1 = 0, (26)
Re λj ≤ λtol, j = 2, . . . , N, (27)

where λtol < 0 is the maximum tolerance value of the
Floquet exponents. Since the Floquet exponents are obtained
from the monodromy matrix, we need to calculate the
monodromy matrix from the Jacobian matrix.
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Assuming that the condition for the periodic trajectory (17)
is satisfied by the polynomial approximation with sufficient
accuracy, we can obtain the monodromy matrix M from
the fundamental matrix V (T ), which can be calculated by
integrating

V̇ (t) = J̃(t)V (t) (28)

for one period T from V (0) = I . In the numerical
calculation, each component of J̃(t) is approximated as
J̃jk(t) ≃ Uk(p(t))

⊤ζj . Also, we can give {Uj(p(tℓ))}Lℓ=1
in advance to reduce the computational cost. We use the
fourth-order Runge-Kutta method, where the fundamental
matrix is integrated over the time interval of 2∆t at each
time step. We check the Frobenius norm of the fundamental
matrix at each time step and, if necessary, renormalize it to
avoid divergence during optimization.

In our previous study [28], we could evaluate the two Flo-
quet exponents of the two-dimensional system without calcu-
lating the eigenvalues of the monodromy matrix because one
of the two exponents is zero and the sum of the exponents
can be calculated by integrating the trace of the Jacobian
matrix. Therefore, we could formulate a convex optimization
problem for the vector field. However, in three or higher
dimensional limit-cycle oscillators, we cannot evaluate their
Floquet exponents by such a method because we have only
two conditions for the three or more exponents, and they
should be calculating fully numerically by evaluating the
monodromy matrix. Therefore, even though our aim in this
study is to straightforwardly generalize the method to higher
dimensions, the resulting optimization problem for the vector
field is not longer convex and therefore more difficult to
formulate than the two-dimensional case.

C. Optimization Problem

Before formulating the optimization problem, we perform
centering and scaling of the vector ξ to facilitate finding the
solution. The objective function can be rewritten as 1

2∥ξ̃∥
2

by ξ̃ = Sξ− ξ̄, where S ∈ RNP×NP is the Cholesky factor
of A⊤A + γI and ξ̄ is the solution of Eq. (25). We note
that optimization is performed on ξ̃, while in calculating the
monodromy matrix, we use ξ instead of ξ̃.

The optimization problem is finally formulated as

ξ̂ = argmin
ξ̃

1

2

∥∥∥ξ̃∥∥∥2
s.t. λ1 = 0, Re λj ≤ λtol, j = 2, . . . , N.

(29)

In numerical implementation, the constraint λ1 = 0 should
be treated as Re λ1 = 0 and Im λ1 = 0 to avoid λ1 being a
complex value.

Although the objective function is quadratic, the optimiza-
tion problem is generally non-convex because the feasible
region can be complex. We choose the first initial point as
ξ̃ = 0 because the objective function is quadratic. If the
optimization fails for this initial point, we should choose
another initial point near ξ̃ = 0 and try again. If we could
find an optimal solution, we should also confirm that the

vector field constructed from the optimal solution has the
prescribed stable trajectory and PSF.

V. RESULTS

A. Reconstruction of the Rössler Oscillator

First, we show that it is possible to design a limit-cycle
oscillator that has the same periodic trajectory and PSF as
the existing oscillator. We consider the Rössler oscillator [5],

d

dt

x1x2
x3

 =

 −x2 − x3
x1 + ax2

b+ x3(x1 − c)

 , (30)

where a = 0.1, b = 0.1, and c = 2.4. This oscillator has a
limit cycle with a period T = 5.9546 and natural frequency
ω = 1.0552. The Floquet exponents are calculated as λ1 ≃ 0,
λ2 = −0.9445, and λ3 = −1.3166 from the monodromy
matrix and the PSF is calculated by the adjoint equation.

In designing the vector field, we set the time interval as
∆t = 2×10−4, the maximum order of polynomials as n = 5,
the weight of regularization as γ = 10−7, and the tolerance
value of stability as λtol = −1, which is smaller than λ2 of
the Rössler oscillator. The designed oscillator has a period
T = 5.9546 and natural frequency ω = 1.0552, which are
almost identical to the original values. The Floquet exponents
of the designed oscillator are calculated as λ1 ≃ 0, λ2 =
−1.1270 + 0.5276i, and λ3 = −1.8667 + 0.5276i, where
i denotes the imaginary unit. Here, λ2 and λ3 correspond
to the negative real eigenvalues of the monodromy matrix,
whose imaginary part is π/T . The real parts of λ2 and λ3
are below the given λtol.

As shown in Fig. 1, the original and designed oscillators
have almost identical limit cycles [(a)], velocities on the limit
cycle [(b1)-(b3)], and PSFs [(c1)-(c3)]. Although the second
Floquet vectors of the Rössler oscillator are real, those of the
designed oscillator are complex because the second eigen-
value λ2 is complex. Similar results were obtained also for
the third Floquet vectors. This indicates that we can design
an oscillator with distinct properties (i.e., complex Floquet
exponents) from the original oscillator, while keeping the
same periodic trajectory and PSF as the original oscillator.

B. Design of Artificial Oscillators

Next, we design two types of three-dimensional limit-cycle
oscillators with the same artificial periodic trajectory but with
different PSFs. We assume that both oscillators have the
following periodic trajectory of period T = 2π and ω = 1:

p(t) =
[
cos(t) sin(t) 1

3 cos(3t)
]⊤
. (31)

The PSF of the first oscillator is assumed as

Z̃first(t) =

 sin(3t)
2 cos(t) + sin(3t)− cos(3t)

cos(t)

 . (32)

We set the data length as L = 4× 103, the maximum order
of polynomials as n = 5, the weight of regularization as
γ = 10−4, and the tolerance value of stability as λtol =
−1. The designed oscillator has a period T = 6.2832 and
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Fig. 1. Designed oscillator with the periodic trajectory and PSF of
the Rössler oscillator. (a) Periodic trajectory. (b1)-(b3) Velocity on the
limit cycle (x1-x3 components). (c1)-(c3) PSF (x1-x3 components). In all
figures, the red line shows the result of the designed oscillator and the black
line shows the original functions.

natural frequency ω = 1.0000, which are almost identical to
the assumed values. The Floquet exponents of the designed
oscillator are calculated as λ1 ≃ 0, λ2 = −1.2240+0.0931i,
and λ3 = −1.2240−0.0931i, where the real parts of λ2 and
λ3 are below λtol. As shown in Fig. 2, the designed oscillator
has almost the same limit cycle [(a)], velocities [(b1)-(b3)],
and PSFs [(c1)-(c3)] as the assumed oscillator.

The PSF of the second oscillator is assumed as

Z̃second(t) =

 − sin(t)
− sin(3t) + cos(t)

− cos(t)

 . (33)

We designed the vector field under the same conditions as
the first oscillator but with a different value of γ, γ = 10−5.
The designed oscillator has a period T = 6.2832 and natural
frequency ω = 1.0000, which are also almost identical to
the assumed values. The Floquet exponents of the designed
oscillator are calculated as λ1 ≃ 0, λ2 = −1.0930+0.2311i,
and λ3 = −1.0930−0.2311i, where the real parts of λ2 and
λ3 are below λtol. As shown in Fig. 3, the designed oscillator
has almost the same limit cycle [(a)], velocities [(b1)-(b3)],
and PSFs [(c1)-(c3)] as the assumed oscillator.

C. Synchronization Dynamics with Different PSFs

We assume that the periodic input to the oscillator is given
by q(t) = [− cos(3t) + cos(t), 0, 0]

⊤. Both PSFs satisfy
Z(θ(t)) = Z̃(t) because ω = 1, and the frequency of the
input is assumed to be Ω = ω = 1. First, if the PSF is
Z = Zfirst, the dynamics of the phase difference ϕfirst(t) =
θ(t)− Ωt is described by

ϕ̇first = εΓfirst(ϕfirst) = −ε
2
sin(3ϕfirst), (34)

whose PCF is shown in Fig. 4(a1). There are three stable
phase-locking points at ϕ0 = − 2

3π, 0, and 2
3π. If the PSF

Fig. 2. The first designed oscillator with Z̃first. (a) Periodic trajectory.
(b1)-(b3) Velocity on the limit cycle (x1-x3 components). (c1)-(c3) PSF
(x1-x3 components). In all figures, the red line is the designed one and the
black line is the assumed one.

Fig. 3. The second designed oscillator with Z̃second. (a) Periodic
trajectory. (b1)-(b3) Velocity on the limit cycle (x1-x3 components). (c1)-
(c3) PSF (x1-x3 components). In all figures, the red line is the designed
one and the black line is the assumed one.

is Z = Zsecond, the dynamics of ϕsecond(t) = θ(t) − Ωt is
described by

ϕ̇second = εΓsecond(ϕsecond) = −ε
2
sin(ϕsecond), (35)

whose PCF is shown in Fig. 4(a2). For this PCF, the stable
phase-locking point is only ϕ0 = 0, which is globally
stable. We note that, since the PSF gives the gradient of the
asymptotic phase, the asymptotic phases of the two designed
oscillator are different. However, the phase defined on the
limit cycle is the same for both cases.

We first consider an uncoupled population of 50 oscillators
with the PSF Zfirst driven by the periodic input q(t), which
are initially distributed randomly on the limit cycle. We
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Fig. 4. (a1) PCF Γfirst(ϕ) for the oscillator with Zfirst.
(a2) PCF Γsecond(ϕ) for the oscillator with Zsecond. (b) Time evolution
of the relative phases of 50 oscillators. For 0 ≤ t < 80T , they obey the
phase equation (34) and for t ≥ 80T , they obey the phase equation (35).

Fig. 5. Direct numerical simulation of 50 uncoupled oscillators obeying
Eq. (3), where the PSF is changed from Zfirst to Zsecond at t = 80T .
(a) t = 0. (b) t = 80T . (c) t = 240T .

performed numerical simulations of the evolution of the
oscillator states by Eq. (3) and the phase difference by
Eqs. (34) and (35). We assumed the intensity of the input to
be ε = 10−2 and the time interval to be ∆t = π/500. Both
the oscillator states and the phase differences converged to
the three fixed points before t = 80T as shown in Fig. 4(b)
and Figs. 5(a) and 5(b), respectively.

At t = 80T , we changed the vector field of all the
oscillators from that with the PSF Zfirst to that with the
PSF Zsecond while driving them by the same q(t). As
shown in Figs. 4(b) and 5(c), the oscillators converged to
the single fixed point as the PSF is changed. This result
clearly shows that the synchronization characteristics of the
oscillator, determined by the PSF of the oscillator, can differ
even if the periodic trajectory and input are the same.

VI. CONCLUSIONS

We proposed a method for designing stable limit-cycle
oscillators with prescribed periodic trajectories and PSFs
in general dimensions. We designed an oscillator with the
periodic trajectory and PSF of an existing oscillator and
showed that the designed one can possess different dynamical
properties even if it has the same prescribed conditions.
We further designed two oscillators with the same peri-
odic trajectory but with different PSFs and showed that

synchronization dynamics can drastically change depending
on the PSF even under the same input. Designing limit-
cycle oscillators with prescribed PSFs would be beneficial
in practical applications. For example, we can design the
PCFs to realize desired synchronization dynamics of the
oscillators as shown in Sec. V C. Also, we can realize fast
synchronization by designing oscillators with the optimal
PSF for synchronization performance as described in [34].
Applications of the proposed method to real-world systems
will be considered in our future work.
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