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Abstract— A multi-observer is a bank of observers which
is used for state estimation in various applications. However,
it has an implementation bottleneck when a large number of
observers are required for the desired estimation performance.
To overcome this problem, we propose the design method of
a state-sharing multi-observer for a class of nonlinear systems.
The state-sharing multi-observer is a single observer that
integrates a bank of observers, and its state size is independent
of the number of observers. We analyze the error of the state
obtained from the state-sharing multi-observer, and then show
its applicability to multi-observer based algorithms such as
supervisory observers and in secure state estimation.

I. INTRODUCTION

A multi-observer is a parallel implementation of observers
which takes in data from the plant and whose output
asymptotically converges to the output of the plant, modulo
noise or disturbances. In other words, consider the plant
parameterized by p‹ P P‹

9xptq “ fpxptq, uptq, p‹q, yptq “ hpxptq, uptq, p‹q ` aptq,
(1)

where the state is x P Rnx , measured output is y P Rny ,
measured input is u P Rnu and a P Rny is an unknown sig-
nal, f and h are locally Lipschitz functions. The input u and
signal a are Lebesgue measurable functions. We assume that
the plant (1) is forward complete. Then, a multi-observer for
the plant (1) is a finite bank of finite-dimensional dynamical
systems, where for each p P P Ă P‹ Ă Rnp with P being
a finite set, an observer whose input is the pair pu, yq from
the plant (1), generates a state estimate x̂p P Rnx according
to the following for all t P Rě0

9̂xpptq “ f̂px̂pptq, uptq, ypptq, pq, yptq Ě ypptqP Rm. (2)

For two vectors yp :“ pyp,1, yp,2, . . . , yp,mqT P Rm for
p P P and y “ py1, y2, . . . , yny qT P Rny , when we
write yp Ď y in (2), we mean that the set of components
typ,1, yp,2, . . . , yp,mu of yp is a subset of the set of compo-
nents ty1, y2, . . . , ynyu of y. The function f̂ is designed such
that each observer (2) is forward complete and has desirable
robustness properties depending on its deployment, e.g., the
estimation error ep :“ x̂p´x system for each p P P, is input-
to-state stable [1] with respect to the unknown signal aptq
or parameter mismatch p ´ p‹. Notice that each observer
(2) may use a subset yp of the available measurements y
which is most applicable in multi-observer based secure state
estimation [2]–[7]. Moreover, the cardinality of the finite
parameter set P is induced by the context of its use.

The multi-observer is employed in many settings, includ-
ing supervisory control [8], [9], supervisory observer [10]–
[12] and in secure state estimation algorithms for systems

under sensor attacks [2]–[7]. A common implementation
bottleneck, especially for estimation, is the need for many
observers (2) either for estimation accuracy or to mitigate
sensor attacks. Supervisory observers for parameter and state
estimation [10], [11] require the parameter set P‹ to be
densely sampled to achieve a desired estimation accuracy.
Since an observer is designed for each parameter sample, the
number of observers increases as a finer parameter estimation
accuracy is desired. In the secure state estimation setting [2]–
[7] where up to a positive integer M out of N sensors are
allowed to be attacked, we need N !

M !pN´Mq! ` N !
2M !pN´2Mq!

observers to reconstruct the state of the plant (1). One can
then see that in both cases, the number of observers (2)
scales unfavourably with the number of parameter samples
(supervisory observer) or the number of sensors N (secure
state estimator).

The aim of this paper is to show that a class of multi-
observer (2) can be implemented using a dynamical system
with a dimension that is independent of the number of ob-
servers required by its use, i.e., independent of the cardinality
of the parameter set P. Moreover, this system has the same
input-output behaviour from the input pair pu, yq to x̂p. We
call such a dynamical system a state-sharing multi-observer,
which takes the following form

9z “ gpz, y, uq, (3a)
x̂ap “ Tppzq, (3b)

with appropriately designed functions g : Rnz ˆ Rny ˆ

Rnu Ñ Rnz and Tp : PˆRnz Ñ Rnx such that it is forward
complete and has state z P Rnz with dimension nz that is
independent of the cardinality of the parameter set P. The
state of each observer Op in (2) is then extracted via (3b).

The idea of a state-sharing multi-observer was first intro-
duced in [13, Section 8], but its memory saving construction
was not developed. The form (3) is desirable and saves
memory in multi-observer based algorithms because instead
of implementing a bank of many observers (2), the user
implements a single state-sharing dynamical system (3a)
with dimensions that scales independently of the number
of required observers. As we will see in this paper, the
dimension of the state-sharing multi-observer scales linearly
with the dimension of the state observer (2).

We achieve this by performing a coordinate transformation
on each of the observer (2), to bring each observer (2)
into a common dynamical system that takes as input py, uq

as shown in (3a). We build upon the crucial observation
that for linear Luenberger observers, i.e., for each p P P,
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9̂xp “ pAp ` LpHpqx̂p ´ Lpy, where the pair pAp, Hpq is
observable for every p P P, one can choose the observer gain
Lp for each p P P such that the matrix Ap `LpHp for each
p P P shares a common set of eigenvalues via a common
characteristic polynomial such that under a linear change of
coordinates, each matrix Ap can be transformed to a common
matrix A that is independent of the parameter p. Therefore,
if each of the linear Luenberger observer is transformed to
the controllable canonical form, see [14, Section 4.3.2], then
we have constructed a state-sharing multi-observer (3). This
transformation holds whether the observer is in continuous
or discrete-time. In fact, the first known state-sharing multi-
observer was constructed in discrete-time by the authors in
[4, Section 4].

In this paper, we consider Lur’e systems, where the
presence of the state-dependent nonlinearity induces a multi-
observer that is a linear Luenberger observer with a non-
linearity depending on the measured output and input. We
perform a coordinate transformation to arrive at a state-
sharing multi-observer (3), where its state x̂ap in (3) is exactly
x̂p in (2) under non-restrictive assumptions. Therefore, the
contributions of this paper are:

‚ A state-sharing multi-observer for Lur’e systems.
‚ The dimension of the state-sharing multi-observer is

independent of the number of observers required by the
algorithm (the cardinality of P) and scales linearly with
the dimension of the observer states.

‚ Memory saving when deployed in settings where a large
number of observers are needed by the multi-observer
based algorithm, such as the supervisory observer and
in secure state estimation.

II. NOTATION

‚ Let C be the set of complex numbers, R “ p´8,8q,
Rě0 “ r0,8q, Rą0 “ p0,8q, Nri,i`ks “ ti, i ` 1, i `

2, . . . , i` ku and Něi :“ ti, i` 1, . . . , u.
‚ The cartesian product of a family tXiuiPNr1,Ns

of sets
is denoted

Ś

iPNr1,Ns

Xi. If all the sets Xi “ X , then we

use the notation XN .
‚ The cardinality of a set p is denoted as |p|.
‚ The identity matrix of dimension n is denoted by In

and a matrix of dimension m by n with all elements 0
is denoted by 0mˆn or 0m when the dimension is m
by m.

‚ Given a set A Ď Rny , the set of Lebesgue measurable
functions from Rě0 to A is denoted LA.

‚ The Euclidean norm of a vector x P Rn, is denoted }x}

and for a matrix A P Rnˆn, its induced norm is }A}.
‚ A continuous function α : Rě0 Ñ Rě0 is a class K

function, if it is strictly increasing and αp0q “ 0.

III. PROBLEM FORMULATION

Given P‹ Ą P with P being a finite set, we consider plants
(1) of the following form, where for p‹ P P‹,

9x “ Ap‹x` Ep‹ψpHp‹x, uq,

y “ Hp‹x` a (4)

which admits the multi-observer (a bank of observers) tOp :
p P P with |P| “ Npu with input py, uq P Rny ˆ Rnu from
the plant (1), each taking the form

9̂xp “ Apx̂p ` Epψpy, uq ` Lppyp ´Hpx̂pq, y Ě yp P Rm,
(5)

where functions Ap : P‹ Ñ Rnxˆnx , Ep : P‹ Ñ Rnxˆnψ

and Hp is a real matrix of dimension mˆ nx with m “ ny
when p “ p‹. The nonlinearity ψ : Rny ˆ Rnu Ñ Rnψ
is locally Lipschitz in its arguments and Lp is the to-be-
designed observer gain matrices of appropriate dimensions.

The class of observers (5) includes Luenberger-like ob-
servers and linear Luenberger observers (where Ep “ 0)
[14, Section 16.5]. Works such as [15] and the references
therein, are devoted to (locally) transforming a nonlinear
system into the linear up to an (noise-free) output injection
form (4). Hence, the class of systems (4) and the Luenberger-
like observer (5) that it admits is much larger than expected
at the first glance. For all the aforementioned observers, a
crucial assumption is that the pair pAp, Hpq is observable for
all p P P such that the observer gain Lp has the following
properties.

Lemma 1: For every p P P, the pair pAp, Hpq is observ-
able, so that an observer gain matrix Lp can be chosen such
that

(i) the matrix Ap ´ LpHp is Hurwitz, and hence there
are constants kp ě 1 and λp ą 0 such that
}epAp´LpHpqt} ď kpe

´λpt for all t P Rě0; and
(ii) there exist coefficients qi P R for i P Nr1,nxs indepen-

dent of p, such that the characteristic polynomial of
Ap ´ LpHp is given by detpsI ´ pAp ´ LpHpqq :“
snx ` q1s

nx´1 ` ¨ ¨ ¨ ` qnx .
Proof: Let p P P. We obtain items (i)-(ii) by

applying Theorem 16.9 of [14] to choose Lp such that all the
eigenvalues of the Λp :“ Ap ´ LpHp have strictly negative
real parts, i.e., the matrix Λp is Hurwitz. In other words,
we can assign the eigenvalues of Λp for all p P P to share
the same eigenvalues the ci P C for i P Nr1,nxs, which are
independent of p.

To obtain (i), we write Λp in Jordan normal form, and
see that there exist constants kp ą 0 and λp ą 0 such that
}eΛpt} ď kpe

´λpt for all t P Rě0.
We show (ii) by observing that the characteristic poly-

nomial of Λp is given by detpsI ´ Λpq :“ ps ´ c1qps ´

c2q . . . ps´ cnxq, where we recall that ci, for i P Nr1,nxs are
the eigenvalues of Λp. Thus, we obtain the characteristic
polynomial in (ii) where the coefficients qi P R for i P

Nr1,nxs are independent of p since ci, for i P Nr1,nxs are
independent of p.

The Hurwitz stability of the matrix Ap ´ LpHp ensures
that the linear part of the state estimation error x̂p ´ x is
exponentially stable when p “ p‹. On the other hand, for all
p P P, the matrix Ap ´ LpHp share the same characteristic
polynomial which will be crucial in the design of state-
sharing multi-observers in Section IV.

In fact, it can be shown that for each p P P, the observer
given by (5) can be designed to have desirable properties to
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be employed in the context of the supervisory observer [10],
[11] and in secure state estimation [2]–[7]. In both of these
uses, the multi-observer may require many observers which
can be alleviated by a state-sharing multi-observer (3). In
Section V, we detail the design considerations of the multi-
observer (5) in both the supervisory observer and in secure
state estimation to achieve the following objective.

A. Objective

Our objective is to show that by appropriate choice of
the observer gain matrices Lp : P Ñ Rnxˆm, we can
construct a dynamical system with output x̂ap in the form
of (3), that exhibits the same input-output behaviour as the
multi-observer in (5) with state x̂p. We call such a dynamical
system (3), a state-sharing multi-observer for the multi-
observer (5), i.e.,

Definition 1: The dynamical system (3) with input pu, yq

from plant (4), is a state-sharing multi-observer for multi-
observer (5), if x̂apptq “ x̂pptq for all t P Rě0.

IV. STATE-SHARING MULTI-OBSERVER

We now construct a state-sharing multi-observer for the
multi-observer (5). Let L̃p be an extended matrix of Lp with
dimension nx ˆ ny such that L̃py “ Lpyp for all y P Rny
and yp P Rm. Such an extended matrix can be obtained
by padding Lp with zero-vectors 0nx appropriately. Then
defining

Ap :“ Ap ´ LpHp, Bp :“
“

Ep L̃p
‰

, (6)

we rewrite (5) in the following form,

9̂xx1y
p “ Apx̂

x1y
p ` Bp

„

ψpy, uq

y

ȷ

. (7)

We will now perform a linear transformation on the state
to bring the multi-observer (7) into a controllable canonical
form. To this end, we impose further design requirements on
the observer gain matrix Lp according to Assumption 1-(ii).

Let ℓ :“ nψ ` ny . Define the matrices A, B, and Tp by

A :“

»

—

—

—

—

–

´q1Iℓ ´q2Iℓ ¨ ¨ ¨ ´qnx´1Iℓ ´qnxIℓ
Iℓ 0ℓ ¨ ¨ ¨ 0ℓ 0ℓ
0ℓ Iℓ ¨ ¨ ¨ 0ℓ 0ℓ
...

...
. . .

...
...

0ℓ 0ℓ ¨ ¨ ¨ Iℓ 0ℓ

fi

ffi

ffi

ffi

ffi

fl

, B :“

»

—

—

—

—

–

Iℓ
0ℓ
...
0ℓ
0ℓ

fi

ffi

ffi

ffi

ffi

fl

,

and Tp :“ RpRq , where

Rp :“
“

Bp ApBp ¨ ¨ ¨ Anx´1
p Bp

‰

,

Rq :“

»

—

—

—

—

–

Iℓ q1Iℓ q2Iℓ ¨ ¨ ¨ qnx´1Iℓ
0ℓ Iℓ q1Iℓ ¨ ¨ ¨ qnx´2Iℓ
...

. . .
. . .

. . .
...

0ℓ ¨ ¨ ¨ 0ℓ Iℓ q1Iℓ
0ℓ ¨ ¨ ¨ 0ℓ 0ℓ Iℓ

fi

ffi

ffi

ffi

ffi

fl

.

A routine calculation (same as in the well-known single-
input case) shows that the identities TpA “ ApTp and
TpB “ Bp hold1; see also Section 4.3.2 of [14]. Therefore,

1Notice that this transformation does not require the invertibility of Tp

when implementing the state-sharing multi-observer (10). Hence we do not
need the pair pAp,Bpq to be controllable for every p P P.

using the state transformation x̂x1y
p “ Tpx̂

x2y
p , we can rewrite

the state equation (7) in a controllable canonical form:

9̂xx2y
p “ Ax̂x2y

p ` B

„

ψpy, uq

y

ȷ

. (8)

Since the matrices A, B are parameter p independent, we
may drop the subscript p. We see that (8) is then in the
form of a state-sharing multi-observer (3). We summarise
the results obtained thus far as follows.

Lemma 2: Consider multi-observer (5) where pAp, Hpq is
observable for every p P P. Then, the state estimate x̂

x1y
p

generated by (7) is given by

x̂x1y
p “ Tpz, 9z “ Az ` B

„

ψpy, uq

y

ȷ

. (9)

By choosing x̂ap “ x̂
x1y
p , we have a state-sharing multi-

observer in the desired form (3). We are now ready to state
our main result as follows.

Theorem 1: Consider the plant (4) and multi-observer (5)
where the pair pAp, Hpq is observable for every p P P. Then,
the following system is a state-sharing multi-observer for
multi-observer (5)

9z “ Az ` B

„

ψpy, uq

y

ȷ

, x̂ap “ Tpz, (10)

if the state-sharing multi-observer (10) and the multi-
observer (5) are both initialized at zero.

Proof: Let p P P. Since TpA “ ApTp and TpB “

Bp, the approximation error x̃p :“ x̂p ´ x̂ap has dy-
namics 9̃xp “ pAp ´ LpHpqx̃p, which satisfies x̃pptq “

epAp´LpHpqtx̃pp0q “ 0 for all t P Rě0 since x̃pp0q “ 0
by choice.

The state-sharing multi-observer (10) and the multi-
observer (5) are both initialized at zero to ensure that we
obtain x̂pptq “ x̂apptq for all t P Rě0. However, even without
this matching initialization, x̂apptq exponentially converges to
x̂pptq. The speed of convergence depends on the eigenvalues
of the matrix Ap ´ LpHp which can be assigned freely by
the observer gain matrix Lp due to the observability of the
pair pAp, Hpq for every p P P.

The coordinate transformation we performed to obtain
a state-sharing multi-observer is irrespective of whether
the multi-observer (2) is in continuous or discrete time.
Therefore, Theorem 1 will also hold with the appropriate
modifications to the state-sharing multi-observer (10) and
in the estimation of the approximation error. In fact, by
doing so, we recover our result for discrete-time linear time-
invariant systems in Section 4 of [4] in the context of secure
state estimation. We explain how the results obtained so far
can be applied to different multi-observer based algorithms
in the following section.

V. MEMORY SAVING APPLICATIONS

From Theorem 1, we see that the state-sharing multi-
observer (10) has dimension

nxpnψ ` nyq, (11)
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which is independent of the number of the observers Np and
scales linearly with the dimension nx of each observer in the
multi-observer (5) and the sum of the dimension ny of the
output y and the dimension nψ of the nonlinearity ψpy, uq.
In comparison to multi-observer (5), its dimension is

nxNp, (12)

where Np is the number of observers required by the
algorithm. Therefore, it is advantageous to employ a state-
sharing multi-observer when pnψ ` nyq ! Np.

In this section, we show how the state-sharing multi-
observer in Section IV can be employed in multi-observer-
based algorithms. Specifically, we consider two context: the
supervisory observer [10], [11] and in secure state estimation
[2]–[7]. In these cases, a large number of observers is
typically needed and we will show that the state-sharing
multi-observer reduces the memory requirement of these
algorithms.

A. Supervisory observer

The supervisory observer [10], [11] is a parameter and
state estimation algorithm for the plant (1). In this context,
the set P‹ is a compact set. The finite set P is the set of
finite samples of P‹. For clarity in the supervisory observer
context, we do not discuss the presence of aptq, which takes
the role of measurement noise. To summarise, we consider
the following plant

9x “ Ap‹x` Ep‹ψpHp‹x, uq, y “ Hp‹x, (13)

with multi-observer

9̂xp “ pAp ´ LpHpqx̂p ` Epψpy, uq ` Lpyp, yp “ Hpx.
(14)

According to Theorem 1 of [10], along with other oper-
ating conditions, a crucial requirement is that the parameter
set P‹ is sampled sufficiently, i.e., the cardinality of P is
sufficiently large. Consequently, the number of observers
needed in the multi-observer (2) can be many. Therefore, a
state-sharing multi-observer will alleviate the computational
burden of the supervisory observer.

Before showing that a state-sharing multi-observer can
be constructed for the supervisory observer, we note that
each of observer (2) in the multi-observer needs to posses a
robustness property with respect to the parameter mismatch
p̃ :“ p‹ ´p, see [10, Assumption 2]. To this end, we examine
the state estimation error ep :“ x̂p´x system, for any p P P,

9ep “ pAp ´ LpHpqep ` Ãpp, p‹qx

` Ẽpp, p‹qψpHp‹x, uq “: Fppep, p, p
‹, u, xq, (15)

where Ãpp, p‹q :“ Ap ´ Ap‹ and Ẽpp, p‹q :“ Ep ´ Ep‹ .
We say that the multi-observer is robust with respect to
the parameter mismatch if for every p P P, the state
estimation error system (15) admits a function Vp satisfying
the following.

Assumption 1: There exist scalars a1, a2, λ0 ą 0 and a
continuous non-negative function γ̃ : Rnp ˆ Rnx ˆ Rnu Ñ

Rě0 with γ̃p0, x, uq “ 0 for all x P Rnx and u P Rnu , such
that for any p P P, there exists a continuously differentiable
function Vp : Rnx Ñ Rě0, which satisfies the following for
all ep P Rnx , x P Rnx , u P Rnu ,

a1}ep}2 ď Vppepq ď a2}ep}2, (16a)

BVp
Bep

Fppep, p, p
‹, u, xq ď ´λ0Vppepq ` γ̃pp̃, x, uq. (16b)

Since the class of system (13) has not been considered in the
literature, we show that robustness to parameter mismatch
can be achieved under mild assumptions on the plant (4).

Lemma 3: Consider the plant (13) with a compact P‹ and
the multi-observer (14) under Assumption 1. Suppose the
matrices Ap, Ep, Hp are continuous in p P P‹. Then, the
multi-observer (14) satisfies Assumption 1, i.e., robust to
parameter mismatch.

Proof: [Sketch] For any p P P, choose a quadratic
candidate Lyapunov function Vppepq “ eTp Ppep with Pp “

PTp ą 0 and following the same procedure as in the
proof of Proposition 2 in [10] for linear systems, we arrive
at γ̃pp̃, x, uq :“ 2

ν |Pp|2γpp̃, x, uq2, where ν ą 0 and
γpp̃, x, uq :“ max

pPP‹

ˇ

ˇ

ˇ
Ãpp, p‹qx` Ẽpp, p‹qψpHp‹x, uq

ˇ

ˇ

ˇ
. The

function γ is continuous since Ap, Ep, Hp are continuous in
its arguments, the function ψ is locally Lipschitz in both its
arguments (which implies continuity) and P‹ is a compact
set.

Now that we have verified that the multi-observer (14)
is robust to parameter mismatch, we are ready to provide
conditions such that a state-sharing multi-observer can be
used in the supervisory observer. The proof of the following
result is done by application of Theorem 1 and Lemma 3.

Proposition 1: Consider the plant (13) and the multi-
observer (14) under Assumption 1, where Ap, Ep and Hp are
continuous in p P P‹. Suppose for every p P P, there exist
observer gains Lp such that Assumption 1 hold. If the state-
sharing multi-observer (10) and the multi-observer (19) are
both initialized at zero, then the state-sharing multi-observer
(10) also satisfies the robustness property in Assumption 1.

The class of multi-observers (5) considered in this paper is
applicable to the class of linear systems presented in Section
VI of [10].

B. Secure state observer

The problem of estimating the states of a plant where
a subset of the sensors can be maliciously manipulated is
known in the literature as secure state estimation [2]–[7].
Here, the signal aptq in the plant (1) models additive sensor
attacks. The multi-observer has been employed in secure
state estimation for consistency checking, such as in [3], [5],
[6], or in a satisfiability checking framework [4]. A common
requirement in all these works where up to a positive integer
M out of N sensors are allowed to be attacked, is N ą 2M
and we need

Np :“
N !

M !pN ´Mq!
`

N !

2M !pN ´ 2Mq!
(17)
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observers to reconstruct the states of the plant. The number
of observers Np is large when N is large (many sensors). For
example, a system with N “ 100 sensors where M “ 40
can be corrupted means that a secure state observer needs to
employ a multi-observer with Np “ 1.3746ˆ1028 observers!
Since the dimension of a state-sharing multi-observer is given
by (11) which is independent of Np, the memory burden of
secure state observers is alleviated.

The class of plant (4) and multi-observer (5) capture
the linear systems in [3], [4]. To this end, the plant with
N sensors takes the form of (4) with the parameter set
P‹ :“ NNp

r1,Ns
, with Ap‹ “ A, Ep‹ “ E being parameter

independent matrices and the nonlinearity ψ being input-
dependent only2, i.e., for i P Nr1,Ns,

9x “ Ax` Eψp0, uq, yi “ Hix` ai P Rni , (18)

where
ř

iPNr1,Ns
ni “: ny , and for a set I Ă Nr1,Ns with

cardinality |I| ď M , the potentially unbounded attack signal
ai satisfies aiptq “ 0 for all t P Rě0 and i R I.

According to Theorem 1 of [5], the multi-observer takes
the form (5) considered in this paper, with P being the
collection of all sets J Ă Nr1,Ns and S Ă Nr1,Ns with
cardinality |J| “ N ´ 2M and |S| “ N ´ M , respectively.
Hence, the parameter set P has cardinality Np given by (17).
Further, the matrices Ap “ A, and Ep “ E are parameter
independent and yp “ Hpx̂p, where Hp is the stacking of
the j-th row of the matrix H for all j P p. To summarise,
the multi-observer in the secure state observer [5] for plant
(18) takes the following form for p P P

9̂xp “ Ax̂p ` Eψp0, uq ` Lppyp ´Hpx̂pq, (19)

where yp “ pyiqiPp (stacking of all yi indexed by the index
set p). Crucially, for every p P P, each observer (19) is
designed to be input-to-state stable (ISS) with respect to the
attack vector ap for p P P, i.e.,

Assumption 2: For every p P P, each observer (19) is
designed such that its state estimation error ep :“ x̂p ´ x
satisfies

}epptq} ď kpe
´λpt}epp0q} `γp

˜

esssup
sPr0,ts

}appsq}

¸

, t P Rě0,

(20)
for all epp0q P Rnx , where pkp, λpq P R2

ą0 and γp P K and
a P LA.

Remark 1: The multi-observer based solution in [3], [5]
to the secure state estimation problem is dependent on the
fact that each observer (19) receives only a subset yp of the
full measurement vector y such that the desired ISS property
with respect to the attack vector ap stated in Assumption 2
can be fulfilled.

We show that the ISS property can be attained by choosing
the observer matrices Lp for every p P P according to
Assumption 1.

2A plant of this form induces a multi-observer that receives only a subset
yp of the full measurement vector y. We elaborate on this crucial point that
is particular to the secure state estimation problem in Remark 1.

Lemma 4: Consider the plant (18) and multi-observer
(19). Suppose that for every p P P, the observer gain Lp are
chosen such that Assumption 1 hold. Then for every p P P,
observer (19) satisfies Assumption 2.

Proof: Let p P P. The state estimation error ep system
satisfies

9ep “ Λpep ´ Lpap, (21)

where Λp :“ A´ LpHp. The solution ep to (21) is

epptq “ eΛptepp0q ´

ż t

0

eΛppt´sqLpappsqds. (22)

Since Λp satisfies Assumption 1, we obtain (20) in Assump-
tion 2 with γpprq :“

kp
λp

}Lp}r where kp and λp come from
Assumption 1.

By straightforward application of Theorem 1 and Lemma
4, we obtain the following sufficient conditions for construct-
ing a state-sharing multi-observer for (19).

Proposition 2: Consider the plant (18) and multi-observer
(19) under Assumption 2. Suppose for every p P P, the
observer gain Lp is chosen such that Assumption 1 holds. If
the state-sharing multi-observer (10) and the multi-observer
(19) are both initialized at zero, then the state-sharing multi-
observer (10) also satisfies Assumption 2.

Proposition 2 is applicable to the linear systems consid-
ered in [3]. Although the results here were developed for
continuous-time systems, similar developments can be done
for discrete-time systems, which has been done for discrete-
time linear systems in [4].

VI. CONCLUSION AND FUTURE WORK

We have shown that a state-sharing multi-observer can be
constructed for a class of multi-observers, which is advanta-
geous in applications such as the supervisory observer and
the secure state observer where a large number of observers
need to be employed in parallel. Future work will focus
on the design of a state-sharing multi-observer for multi-
observers with a state-dependent nonlinearity.
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