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Abstract— We present a generalized model for epidemic
processes that partitions control into changes in linear and
non-linear flow rates between compartments, respectively.
We then define an optimal control problem that minimizes
the weighted cost of rate control on the generalized model
while maintaining conditions that guarantee system safety
at any time using control barrier functions. Using this for-
mulation, we prove that under homogeneous penalties the
optimal controller will always favor increasing the linear
flow out of an infectious process over reducing nonlinear
flow in. Further, in the case of heterogeneous penalties, we
provide necessary and sufficient conditions under which
the optimal controller will set control of non-linear rates
(i.e., the reduction of flow rate into the infection process) to
zero. We then illustrate these results through the simulation
of a bi-virus SEIQRS model.

Index Terms— Emerging control applications, Optimal
control, Biological systems

I. INTRODUCTION

THE modeling, analysis, and control of complex epidemic
processes has gained significant attention in recent years,

due in large part to the emergence of the global COVID-19
pandemic and its widespread societal impact. However, despite
an extensive body of literature dedicated to the understanding
and control of such systems [1]–[5], key questions still remain
open regarding best practices for exerting sufficient control on
general epidemic models such that infection level thresholds
are not exceeded at any time while also considering the cost
of taking such actions. In this paper, we use principles of
safety-critical control via control barrier functions [6], [7] to
formulate an optimal control problem for a generalized com-
partmental epidemic model and answer questions related to the
optimal control of such systems while satisfying constraints for
system safety.

The use of compartments to model epidemic processes is
common when the behavior of any given epidemic process
can be categorized into discrete stages, where individuals or
groups may transfer between stages in the process at a certain
rate. A distinguishing characteristic of these models is the
ability of individuals in different stages of the epidemic process
to mix and interact, where interactions between infected and
susceptible populations cause further infections at some given
rate. This class of models allows us to make assertions about
properties of convergence, stability, and equilibria for epidemic
processes with respect to these flow rate parameters [8], [9].
However, making general statements about such properties for
all epidemic models is non-trivial due to the nonlinearities
introduced via infections through population mixing.
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The application of control barrier functions provides a
useful tool for guaranteeing population safety, according to
the definition of a barrier function, as often the control of
an epidemic process is focused on preventing unsafe levels
of infection that may overwhelm the capacity of treatment
facilities. Recent work in [10], [11] provides closed-form
solutions for controllers of different classes of barrier func-
tions for a generalized compartmental epidemic process that
incorporates time delays; however, the cost of such control is
not considered. In [12], the social cost with respect to the
reduction of the infection rate is considered in the control
of a vectorized SIR model using safety-critical conditions.
Further, other work has considered the optimal control of
specific epidemic processes such as influenza [13], dengue
[14], information spread [15], and processes involving some
quarantine compartment [16], [17]. However, in this work, we
wish to consider the comparative cost of controlling either the
entry to or exit from a generalized epidemic process, which
offers two main advantages. First, a comparative cost analysis
of control actions enhances our ability to allocate resources
efficiently and maximize the impact of interventions in epi-
demic processes. For example, is it more effective to allocate
resources toward reducing the spreading rate via preventative
measures or toward increasing the rate of exit from the
infectious process via random testing and quarantine? Second,
analyzing a generalized model provides valuable insights into
the universal properties of epidemic models, with the potential
to inform numerous applications.

Therefore, we define the notation for a generalized epidemic
model in the context of process rate control in Section II. We
then define our conditions for safety, as well as the conditions
under which safety can be guaranteed using control barrier
functions in Section III. Finally, we provide an analysis of
optimal control of the generalized model while satisfying the
required conditions for safety and illustrate these results via
simulation in Sections IV and V.

II. MODEL DEFINITIONS

In this section, we define the dynamics of our generalized
compartmental model for epidemic processes and illustrate its
use to describe a bi-virus SEIQRS model.

A. Generalized Epidemic Model

Consider an n-compartment epidemic process, where each
compartment represents a particular state in the epidemic pro-
cess (e.g. an individual being classified as either susceptible,
infected, removed, etc.). We define the state of a model with
n compartments at time t as the vector

x(t) =
[
x1(t) . . . xn(t)

]⊤
(1)
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where x(t) ∈ [0, 1]n and
∑

i∈[n] xi(t) = 1 with [n] =
{1, . . . , n}. For convenience and conciseness of notation, we
drop explicit dependence on t going forward, although the
states continue to vary with time. We classify each compart-
ment into two disjoint categories: I ⊂ [n] and H ⊂ [n],
with I ∩ H = ∅ and I ∪ H = [n], where I and H denote
the sets of critical (infected, exposed, asymptomatic, etc.) and
non-critical compartments (healthy, recovered, quarantined,
etc.) in the epidemic process, respectively. We define critical
compartments in I to be those which are participating (or
will participate) in the infecting process of a given disease.
Therefore, we wish to keep the total population in these
compartments below some total safety threshold.

We further classify I into three potentially overlapping sub-
categories: X ⊂ I, O ⊂ I, and T ⊂ I, where X is the
set of infectious compartments that facilitate entry into the
epidemic process via contact with compartments in H; O
includes compartments with an outgoing connection to any
compartment in H; and T = I \ (X ∪O).

We define the dynamics of compartment i in the model as

ẋi(x, U, V ) = fi(x, U) + gi(x, V ) (2)

where U, V ∈ Rn×n
≥0 are matrices of control inputs, with uij

denoting the rate change of linear flow from compartment
j to compartment i; vij denoting the change in the rate of
infection when compartment j ∈ H comes into contact with
compartment i ∈ X ; gi : Rn → R accounts for connections
of these critical multiplicative compartments to and from
compartment i; and fi : Rn → R accounts for connections
from all other compartments. We define fi as

fi(x, U) =
∑
j∈Ji

(θij + uij)xj −
∑
k∈Ki

(θki + uki)xk (3)

where Ji,Ki ⊆ O∪T denote the sets of compartments with an
incoming connection to or from compartment i, respectively,
and θij is the rate at which the compartment j flows into
compartment i, where θij = 0 indicates there is no such
connection. Further, let βij ∈ R≥0 represent the infection
rate when compartment i ∈ X comes in contact with non-
critical compartment j ∈ H, where βij = 0 indicates no such
interaction occurs. We then define

W = {(i, j) ∈ X ×H : βij > 0}

to be the set of all compartment pairs that facilitate entry to
the infection process I. We can then define gi as

gi(x, V ) =
∑

(j,k)∈Yi

(βjk − vjk)xjxk −
∑

(p,q)∈Zi

(βpq − vpq)xpxq

(4)
where Yi,Zi ⊆ W denote the sets of multiplicative compart-
ment pairs with an incoming connection to or from compart-
ment i, respectively, and

vij ≤ βij ,∀(i, j) ∈ X ×H. (5)

Note that by our definitions of critical and non-critical com-
partments, if Zi ̸= ∅, then q = i for all (p, q) ∈ Zi (i.e., only

compartments in H will have an outgoing connection due to
infection). Similarly, if Yi ̸= ∅, then i ∈ I. Finally, we require∑

i∈[n]

ẋi = 0 (6)

which ensures that the population flowing out of one compart-
ment must also be flowing into another (i.e. the total population
is conserved). For a graphical illustration of our model class,
see Figure 1.

B. Example Model Formulation: Bi-Virus SEIQRS

To illustrate our generalized compartmental model, we ap-
ply it to a bi-virus susceptible-exposed-infected-quarantined-
recovered-susceptible (SEIQRS) model with state dynamics
defined as

Ṡ = δR− [(β1 − vI1S)I1 + (β2 − vI2S)I2]S

Ė1 = (β1 − vI1S)SI1 − σ1E1

Ė2 = (β2 − vI2S)SI2 − σ1E2

İ1 = σ1E1 − [(η1 + uQI1) + (γ1 + uRI1)]I1

İ2 = σ2E2 − [(η2 + uQI2) + (γ2 + uRI2)]I2

Q̇ = (η1 + uQI1)I1 + (η2 + uQI2)I2 − σ3Q

Ṙ = (γ1 + uRI1)I1 + (γ2 + uRI2)I2 + σ3Q− δR

(7)

where β1, β2 are infection rates, σ1, σ2 are the rates the
exposed population become infectious, γ1, γ2 are recovery
rates, and η1, η2 are quarantine rates, for virus 1 and virus 2,
respectively. We also define the rate at which the quarantined
compartment recovers as σ3 and a loss of immunity rate δ.
In this case, we group the compartments as follows: H =
{S,Q,R}, I = {E1, E2, I1, I2}, X = O = {I1, I2}, and
T = {E1, E2}, which is illustrated in Figure 2. Note that the
control inputs vI1S , vI2S may be interpreted as social distanc-
ing policies, targeted lockdown, spread prevention measures,
etc., for viruses 1 and 2, respectively. Additionally, uQI1 , uQI2

may be interpreted as increasing the rate of quarantine, which
could be achieved via increased testing, and uRI1 , uRI2 as
increasing the recovery rate via medical interventions, for
viruses 1 and 2, respectively.

III. SAFETY CRITICAL CONTROL

In order to utilize the property of safety guarantees as
defined in [6], [7], we must first define a zero-superlevel set in
our state space that encapsulates our notion of safety. Since our
objective is to keep the total population of compartments in I
below some threshold, which may be defined by our capacity
to treat infected individuals or our threshold before operations
must be shut down, we define our safe set to be

S = {x ∈ [0, 1]n;h(x) ≥ 0} (8)

where
h(x) = Imax −

∑
i∈I

xi (9)

with Imax ∈ [0, 1] being the chosen maximum safe threshold
of the total population inside I at any time t. Note that in this
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Fig. 1: A graphical illustration of the groupings for compart-
ments in our generalized compartmental model, with H and I
denoting the group of non-critical and critical compartments,
respectively; X and O denoting the group of infectious and
outlet compartments, respectively (note that orange denotes
X ∩O); and T grouping all other intermediary compartments
in the process I that neither infect compartments in H nor
have an outlet connection.
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Fig. 2: A bi-virus SEIQRS model, with dynamics defined by
(7), where H = {S,Q,R}, I = {E1, E2, I1, I2}, X = O =
{I1, I2}, and T = {E1, E2}. Note that compartment colors
correspond with the compartment groups in Figure 1.

paper, Imax is a constant. Since∑
i∈[n]

ẋi(x, U, V ) =
∑
i∈I

ẋi(x, U, V ) +
∑
i∈H

ẋi(x, U, V ) = 0

(10)
by (6), we have

ḣ(x, U, V ) = −
∑
i∈I

ẋi(x, U, V ) =
∑
i∈H

ẋi(x, U, V ). (11)

With our conditions for safety defined, we provide the condi-
tions where our system is guaranteed to remain safe.

Lemma 1. Consider the dynamics in (2) with control inputs
U and V and the set S defined by (8) and (9). The set S is
forward invariant (safe) if x0 ∈ S and ∃U, V such that

ḣ(x, U, V ) ≥ −α(h(x)) (12)

where α(·) is a class-K function.

This result follows directly from the well-established literature
on control barrier functions in [6], [7]. Note that a closed-
form solution to a similar generalized compartmental epidemic
model is given in [11] for different classes of barrier functions.
However, the objective of our analysis in this work is to
evaluate the effectiveness of different control actions, with
precise reduction or increase in flow rates between individual
compartments. Thus, we formulate our control problem around
the notion of control cost, described in Section IV, which

allows us to make statements about the optimality of different
control actions implemented on a generalized compartmental
epidemic model.

IV. OPTIMAL CONTROL

In this section, we define a cost function that evaluates
the relative cost of any flow rate change between any two
compartments in H∪I. We then provide an analysis of when
certain control actions will be optimal with respect to the given
cost function. We define the cost of exerting controls U and
V at time t as

J(t, U(t), V (t)) =
∑

(i,j)∈[n]×[n]

λijuij(t)+
∑

(i,j)∈X×H

ωijvij(t)

(13)
where λij , ωij ∈ R≥0 are the associated unit cost penalties of
exerting control via U and V , respectively. Further, let Λ,Ω ∈
Rn×n

≥0 be the matrices that collect all penalty entries for λij

and ωij , respectively. Thus, the optimization problem is

min
U,V

∫ tf

0

J(t, U(t), V (t)) dt

s.t. ḣ(x(t), U(t), V (t)) ≥ −α(h(x(t))),∀t
uij ≥ 0, βij ≥ vij ≥ 0, ∀(i, j) ∈ [n]× [n].

(14)

Note that (14) is convex since, (3), (4), (11), and (13) are linear
with respect to U(t) and V (t). We define U∗(t), V ∗(t) to be
the set of control inputs that solve argminJ(t, U(t), V (t))
subject to (14) at time t. Note that the goal of (14) is to
minimize the total cost of taking actions to keep the population
in the infecting process (I) below a defined threshold at
any time t, where this threshold may represent the capacity
of a given population to treat infected individuals. Again,
for conciseness of notation, we omit the notation of time
dependence of J for the remainder of this section.

For our analysis, we impose the following assumption.
Assumption 1. Let X = O ≠ ∅.
In other words, we assume that for each infectious com-
partment, there exists at least one outlet connection to a
non-critical compartment in H. Note that this assumption
still captures many, if not most, commonly used epidemic
models, since after being infectious it is common to transition
to a removed or susceptible state; however, this assumption
excludes some multi-stage infection models, such as SAIR,
where A is an asymptomatic stage that can cause infection and
only transitions to the infection compartment I .

We now consider properties of the optimal solution for (14)
with respect to the penalties Λ and Ω. To aid in the proof of our
analytical results, we derive the following reduced expressions
under Assumption 1. Consider the expression for ḣ(x, U, V ),
given by (11),

ḣ =
∑
i∈H

fi(x, U) + gi(x, V )

=
∑
i∈H

∑
j∈Ji

(θij + uij)xj −
∑
k∈Ki

(θki + uki)xk

+
∑

(l,m)∈Yi

(βlm − vlm)xlxm −
∑

(p,q)∈Zi

(βpq − vpq)xpxq

 .

(15)
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By (6), we have∑
k∈Ki

(θki + uki)xk =
∑

j∈Ji∩H
(θij + uij)xj . (16)

Thus, by (16) and since Yi = ∅,∀i ∈ H, (15) reduces to

ḣ =
∑
i∈H

 ∑
j∈JX

i

(θij + uij)xj −
∑

(p,q)∈Zi

(βpq − vpq)xpxq

 (17)

where, by Assumption 1, J X
i = Ji \ H ⊆ X is the set of

remaining compartments in I with an outgoing connection to
compartment i ∈ H. We collect the terms of (17) that are
independent of control inputs as

d(x) =
∑
i∈H

 ∑
j∈JX

i

θijxj −
∑

(p,q)∈Zi

βpqxpxq


=

∑
(j,i)∈H×X

θjixi −
∑

(i,j)∈X×H

βijxixj

(18)

where the indices i and j are swapped for convenience such
that in both terms of (18) we have i ∈ X and j ∈ H. Similarly,
we collect the terms of (17) that are dependent on control
inputs U, V as

H(x, U, V ) =
∑
i∈H

 ∑
j∈JX

i

uijxj +
∑

(p,q)∈Zi

vpqxpxq


=

∑
(j,i)∈H×X

ujixi +
∑

(i,j)∈X×H

vijxixj

(19)

where H may be considered the resulting control force exerted
on the system given U, V with respect to ḣ. Thus, by Lemma 1,
we have that if x ∈ S and ∃U, V such that

d(x) +H(x, U, V ) + α(h(x)) ≥ 0 (20)

then the system state is guaranteed to remain within the safe
set S, i.e., S is forward invariant. We can evaluate the cost of
exerting the control U, V at time t according to (13) and (20)
as

J(U, V ) =
∑

(j,i)∈H×X

λjiuji +
∑

(i,j)∈X×H

ωijvij . (21)

We may further partition the control and cost terms of (19)
and (21), respectively, relative to the pairs of interacting
compartments (i, j) ∈ W ⊆ X ×H where

H(x, U, V ) =
∑

(i,j)∈W

H(i,j), J(U, V ) =
∑

(i,j)∈W

J(i,j)

with H(i,j) and J(i,j) defined as

H(i,j)(x, U, V ) =
∑

k∈KH
i

ukixi + vijxixj (22)

J(i,j)(U, V ) =
∑

k∈KH
i

λkiuki + ωijvij (23)

where KH
i = Ki \ I. In other words, we can encapsulate

the total control cost and relative effectiveness by considering
separately each interaction of compartments (i, j) ∈ W which

includes the flow out of j ∈ H due to infections from i ∈ X
and the flow into H from all outlet connections of i.

Given the above notation, we consider properties of the
optimal solution to (14) for the case defined as follows.

Assumption 2. Let Λ = a · 1n×n, Ω = a · 1n×n, where
a ∈ R≥0.

Assumption 2 implies that all control variables have equal
weighting with respect to the control cost (i.e., the cost of
reducing the rate of entry is equal to the cost of increasing the
rate of exit from the infecting process, respectively), which
yields the following result.

Theorem 1. Given Assumptions 1-2, V ∗(t) = 0,∀t ∈ R≥0.

Proof. If xi = 0,∀i ∈ X , then V ∗(t) = 0 is trivially true.
If ∃i ∈ X such that xi > 0 and we assume, by way of

contradiction, that ∃(i, j) ∈ W such that v∗ij > 0. By (22),
(23), and Assumption 2, we must have

vijxixj ≥ ukixi and vij < uki, ∀k ∈ KH
i

which is a contradiction since uki

vij
≤ xj ≤ 1 and uki

vij
> 1

cannot both be true.

This result implies that if the cost of all control is equal
then an unconstrained optimal controller will always choose
to increase the flow out of the infectious process rather than
decrease the rate of entry. Note, however, that (14) does not
account for the cost of each state, rather it only considers
the cost of allocating resources to change flow rates between
compartments to satisfy the safety condition. For example,
our cost function only considers the instantaneous cost of
increasing the rate of quarantine and not the cost of a certain
proportion of the population being in quarantine.

We now consider the following more general case of non-
uniform penalties.

Assumption 3. Let Λ ̸= a · 1n×n, Ω ̸= a · 1n×n, where
a ∈ R≥0 and d(x) + α(h(x)) < 0.

In this case, we require the additional condition of d(x) +
α(h(x)) < 0 since otherwise the minimal control necessary to
keep the system safe is trivially U∗ = 0, V ∗ = 0, where d(x)
may be interpreted as the control-free dynamics of the system
and α(h(x)) as a relaxation term. Thus, given Assumption 3,
we have the following result.

Theorem 2. Given Assumptions 1 and 3, V ∗(t) = 0 if and
only if ∀(i, j) ∈ W,∃k ∈ KH

i such that xj <
ωij

λki
or ∃p ∈

X \ {i} and ∃q ∈ KH
p such that xixj

xp
<

ωij

λqp
.

Proof. For proof of necessity, consider the contrapositive con-
dition: assume ∃(i, j) ∈ W such that v∗ij > 0. Thus, for vij to
be optimal, when compared to the alternative control terms of
uki,∀i ∈ X ,∀k ∈ KH

i , by (22), (23), we must have that both

vijxixj ≥ ukixi and ωijvij < λkiuki, ∀k ∈ KH
i (24)

and ∀p ∈ X \ {i},

vijxixj ≥ uqpxp and ωijvij < λqpuqp, ∀q ∈ KH
p (25)
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Therefore, (24) and (25) are satisfied if

xj ≥
uki

vij
and

ωij

λki
<

uki

vij
, ∀k ∈ KH

i

and ∀p ∈ X \ {i}
xixj

xp
≥ uqp

vij
and

ωij

λqp
<

uqp

vij
, ∀q ∈ KH

p

which implies ∃(i, j) ∈ W such that ∀p ∈ X \ {i}

xj ≥
ωij

λki
,∀k ∈ KH

i and
xixj

xp
≥ ωij

λqp
, ∀q ∈ KH

p

yielding the desired condition.
For proof of sufficiency, we again consider the contrapos-

itive. Let ∃(i, j) ∈ W such that xj ≥ ωij

λki
,∀k ∈ KH

i and
xixj

xp
≥ ωij

λqp
,∀p ∈ X \ {i},∀q ∈ KH

p . Assume, by way of
contradiction, that V ∗ = 0. We can then express (20) in terms
of the optimal controller as

d(i,j)(x) +
∑

(p,l)∈W

[
d(p,l)(x) +H(p,l)(x, U

∗,0)
]
+ α(h(x)) ≥ 0

(26)
where

d(i,j)(x) =
∑
k∈Ki

θkixi + βijxixj

and W = W \ {(i, j)}. Without loss of generality, we may
choose for each p ∈ X a q ∈ KH

p such that λqp ≤ λlp,∀l ∈
KH

p \ {q}, making our optimal control, in terms of (26),

d(i,j)(x) +
∑

(p,l)∈W

[
d(p,l)(x) + u∗

qpxp

]
+ α(h(x)) ≥ 0.

Thus, in order for U∗ to be optimal with V ∗ = 0, there must
exist a p ∈ X such that

vijxixj ≤ uqpxp and λqpuqp < ωijvij

which implies xixj

xp
<

ωij

λqp
, which is a contradiction. Thus,

V ∗ ̸= 0, completing the proof.
Note that when Assumption 2 holds, as is the case for

Theorem 1, the condition for Theorem 2 is trivially true. One
key insight gained from Theorem 2 is that, in the case of a
single virus, a greater proportion of xj that becomes infected
by population i ∈ X requires a greater magnitude of control
vij to prevent further infections and thus the ratio of costs
must be small enough to justify continued exertion of control
via V . Further, we see in the case of a multi-virus model
(i.e., |X | > 1) that we must also consider the condition
where it may still be optimal to meet the requirements for
safety according to (20) by compensating with control of other
infectious compartments with potentially cheaper linear control
terms in Λ, which is otherwise not considered in the single-
virus case as illustrated by the following corollary.

Corollary 1. Given Assumptions 1 and 3 with |X | = 1,
V ∗(t) = 0 if and only if ∀(i, j) ∈ W,∃k ∈ KH

i such that
xj(t) <

ωij

λki
.

Proof. This follows from the fact that when |X | = 1 we have
X \ {i} = ∅, where X = {i}. Thus, ∃(i, j) ∈ W such that
xixj

xp
≥ ωij

λqp
,∀p ∈ X \ {i},∀q ∈ KH

p is trivially true.

Given the results of this section, we see that, in general, the
conditions that cause V ∗ = 0 are less strict than those that

enable V ∗ ̸= 0, which rely on both favorable cost incentives
and compartment state conditions. We now illustrate these
results in the following section via simulation examples.

V. SIMULATIONS

We simulate a bi-virus SEIQRS with dynamics defined
in (7) in discrete time via Euler’s method with sampling
parameter τ = 0.01 and model parameters β1 = β2 = 1,
σ1 = σ2 = σ3 = γ1 = γ2 = δ = 0.25, and η1 = η2 = 0.025,
which are selected as such to induce an endemic state in
the system. To simulate the optimal control of this system,
we utilize a linear program solver at each time step which
minimizes the cost according to (13) subject to the safety
constraint defined in (12).

Given this model setup, we simulate the optimal controller
with the objective Imax = 0.2 for three different sets of
penalties, (Λ1,Ω1), (Λ1,Ω2), and (Λ2,Ω2), where, for both
Λ1 and Λ2, we set λRI1 = λRI2 = 2; in Λ1, we set λQI1 =
λQI2 = 1; in Ω1, we set ωI1S = ωI2S = 1; in Λ2, we set
λQI1 = 1, λQI2 = 0.1; and in Ω2, we set ωI1S = ωI2S = 0.8.
In other words, (Λ1,Ω1) simulates equal penalties across all
relevant control inputs, (Λ1,Ω2) simulates the cost of reducing
the infection rate being twenty percent cheaper than the cost
of increasing the rate of quarantine, and (Λ2,Ω2) simulates
when the cost of increasing the rate of quarantine for I2 is ten
times cheaper than it is for I1.

We simulate the system for the above penalties with initial
conditions (S, I1, I2) = (0.98, 0.1, 0.1), where all other states
are set to zero. In Figure 3, we see the results of the optimal
controller for each set of penalties compared with the system
under no control. Note that the controller maintains the condi-
tion for safety, E1 +E2 + I1 + I2 ≤ Imax = 0.2, in all cases.
In the case of uniform penalties (Λ1,Ω1), we see in Figure 4a
that the controller at each time step sets vI1S = vI2S = 0,
which is consistent with the results of Theorem 1. In the
case of (Λ1,Ω2), we see in Figure 4b that the controller sets
uQI1 = uQI2 = 0 while S ≥ 0.8 where after S < 0.8 the
controller immediately switches to setting vI1S = vI2S = 0,
which is consistent with Theorem 2 where, if S <

ωI1S

λQI1
or

S <
ωI2S

λQI2
, then V ∗ = 0.

In the final case of (Λ2,Ω2), we see, both in the simulations
of the state dynamics in Figure 3 and the implemented control
policy in Figure 4c, three distinct phases. First, we see that the
controller sets vI1S = vI2S = 0 while is it able to compensate
by exerting control via uQI2 since SI1

I2
<

ωI1S

λQI2
, consistent

with the second condition of Theorem 2. Second, we see a
period when SI1

I2
≥ ωI1S

λQI2
and S ≥ ωI1S

λQI2
causing the controller

to switch between vI1S and uQI2 . Finally, when S <
ωI1S

λQI2

we see again that vI1S = vI2S = 0, where control continues
to switch between uQI1 and uQI2 . This switching behavior
in phases two and three occurs since our controller is not
penalized for switching between control variables. Therefore,
the controller maintains the safety condition for the minimum
cost at each time step according to the system states, which
may be unrealistic in practice. This impracticality can be
overcome by incorporating the cost of changing the selection
of control variables into the cost function; however, we leave
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Fig. 3: Simulations of the multi-virus SEIQRS model, with dynamics defined in (7), where the optimal control U∗, V ∗ is
computed at each time step using a linear program solver according to the penalties (Λ1,Ω1) (green), (Λ1,Ω2) (orange), and
(Λ2,Ω2) (pink) with the objective of Imax = 0.2 compared with the system under no control (blue). Control values for each
penalty configuration are shown in Figure 4.

(a) Λ1,Ω1

(b) Λ1,Ω2

(c) Λ2,Ω2

Fig. 4: Corresponding control values at each time step for
the simulations in Figure 3 for each penalty configuration
(Λ1,Ω1), (Λ1,Ω2), and (Λ2,Ω2), respectively.

this extension as future work. Further, regardless of the speed
at which the controller is allowed to switch between control
inputs if the controller is capable of satisfying (12), the system
is guaranteed to remain safe.

VI. CONCLUSION

In this paper, we have constructed a generalized model for
epidemic processes that allows for control of rates between
any compartment. Using this model class and the objective
of maintaining system safety, we have provided conditions
under which it is more cost-effective to increase the rates
of exit from an epidemic process rather than decrease the
rates of infection. While this work offers insight into optimal
resource allocation for controlling the spread of an idealized
process with known system structure, states, parameters, and
unconstrained resources, its results can be applied broadly to
many compartmental epidemic processes.
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