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Abstract— We introduce the notion of implicit predictors,
which characterize the input-(state)-output prediction behavior
underlying a predictive control scheme, even if it is not explicitly
enforced as an equality constraint (as in traditional model or
subspace predictive control). To demonstrate this concept, we
derive and analyze implicit predictors for some basic data-
driven predictive control (DPC) schemes, which offers a new
perspective on this popular approach that may form the basis
for modified DPC schemes and further theoretical insights.

Index Terms— Data-driven control, predictive control, para-
metric optimization

I. INTRODUCTION

Data-driven predictive control (DPC) is an increasingly
popular control approach that utilizes linear combinations
of collected trajectory data to make predictions instead
of relying on a system model (see, e.g., [1]–[3]). While
exact predictions and equivalence to model predictive con-
trol (MPC) are typically only established for linear time-
invariant (LTI) systems and exact data (with some nonlinear
extensions available; see, e.g., [2], [4]), modified versions
of DPC show promising results even in the absence of
these requirements (e.g., [1], [3], [5], [6]). Most proposed
DPC schemes use regularizations, which have demonstrated
benefits and many different interpretations (see, e.g., [3],
[5]), including relationships to other approaches such as
subspace predictive control (SPC) [7]. However, many of
these interpretations (e.g. [8, Thms. 3 and 4]) are based
on limit behavior, i.e., regularization weights approaching
zero or infinity. In this study, we aim to characterize the
behavior of DPC for finite weights, as this is how it is
typically applied in practice. To achieve a general character-
ization, we do not focus on a specific system class or noise
properties but, instead, just make (reasonable) assumptions
about the data. To make DPC predictions more accessible
and relatable to traditional schemes such as MPC, where
consistency with input-state-output predictors is explicitly
enforced via equality constraints, we introduce the notion
of implicit predictors (specified in Def. 1 below). Implicit
predictors can be interpreted as the predictive behavior that
is implicitly attributed to the data-generating system by the
predictive scheme, and we view it as a central and elucidating
object with much to learn from. To show the benefit of
this concept, we derive and analyze implicit predictors for a
basic regularized DPC scheme, focusing on two proposed
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choices of (squared) 2-norm regularization (see [3]), and
examine the effect of input and output constraints on these
predictors. The paper is organized as follows. First, in
Section II, we introduce the notion of implicit predictors,
specify the objective of this paper, and summarize important
preliminaries. In Section III, we derive implicit predictors
for two types of regularized DPC and analyze the impact
of constraints on these predictors. Finally, we conclude our
work in Section IV and preview future opportunities we
envision for implicit predictors.

II. PROBLEM STATEMENT AND PRELIMINARIES

One could argue that (multi-step) predictors, which es-
tablish a mapping from an initial state x0 and an input
(sequence) uf to a predicted output (sequence) yf , are at
the heart of many predictive control schemes. Traditionally,
such a predictor ŷf (x0,uf ) may be explicitly included in
an optimal control problem (OCP) as an equality constraint
yf = ŷf (x0,uf ). However, even if not included explicitly
(such as in DPC), one may still observe the predictions
following a similar pattern, which we formalize as follows.

Definition 1: We call ŷ(x0,uf ) an implicit predictor for
an OCP if including the constraint yf = ŷ(x0,uf ) does not
alter the (set of) minimizers (u∗f , y

∗
f ) and the optimal value.

For DPC, we interpret this definition as the predictive
behavior implicitly attributed to the data-generating system
by the DPC scheme. Given this interpretation, we take a
somewhat opposing viewpoint to the bias-variance hypoth-
esis in [3, Sec. V.C]. In fact, we claim that the choice
of regularizer (and other parameters of the OCP) fully
specifies a model class given by the structure of its resulting
implicit predictor. Therefore, this concept should be seen
as a tool to analyze existing schemes and explain their
behavior. Although this new viewpoint is mainly theoretical
in nature, practitioners can use its results to evaluate whether
the predictive behavior of a given scheme matches their
prior knowledge of the true system properties, and thus
select an appropriate scheme similar to traditional model
selection. In this spirit, we analyze an existing DPC scheme
without making assumptions on the data-generating system
class or properties of measurement noise, allowing for a
general characterization. To prepare this analysis, we recall
preliminaries on DPC and its relation to MPC and SPC, while
highlighting the role of predictors in these schemes.
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A. DPC and its relation to MPC

Instead of utilizing a discrete-time state-space model
x(k + 1) = f(x(k), u(k), k) (1a)

y(k) = g(x(k), u(k), k) (1b)
with input u ∈ Rm, state x ∈ Rn, and output
y ∈ Rp as in traditional MPC, predictions in DPC
are realized based on previously collected trajectory data
(u(1), y(1)), . . . , (u(ℓ), y(ℓ)) via linear combinations(

upred
ypred

)
=

(
u(1)

y(1)

)
a1 + . . .+

(
u(ℓ)

y(ℓ)

)
aℓ = Da.

Here, the dimensions of the data matrix D ∈ RL(m+p)×ℓ

and generator vector a ∈ Rℓ are specified by the length L of
recorded (as well as predicted) trajectories and the number ℓ
of data trajectories used for predictions. The rationale for this
procedure is given by a result for linear time-invariant (LTI)
systems, which can be described, e.g., by the specification

x(k + 1) = Ax(k) +Bu(k) (2a)
y(k) = Cx(k) +Du(k), (2b)

of (1). For these LTI systems and assuming L is greater than
the lag of the system, image(D) is equivalent to the set of
all possible system trajectories if and only if [9]

rank(D) = Lm+ n. (3)
Note that the condition (3) not only signifies a minimum rank
for data-driven predictions, but also the maximum rank that
the data matrix D can achieve for exact data. For the case
that the individual trajectories (u(i), y(i)) are time-shifted
sections of a single long trajectory, a popular sufficient
condition for (3) is given by Willems’ fundamental lemma
[10]. To include the current initial condition of the system as
a starting point for predicted trajectories, the predicted I/O-
sequence is typically partitioned into a past section (up, yp)
and a future section (uf , yf ) with Np respectively Nf time-
steps yielding(

upred
ypred

)
=


up
uf
yp
yf

 =


Up

Uf

Yp

Yf

 a = Da.

The past section of a predicted trajectory is then forced
to match the I/O-data ξ recorded in the most recent Np

time-steps during closed-loop operation, i.e., the equality
constraints

ξ =

(
up
yp

)
=

(
Up

Yp

)
a = Wpa

force any predicted trajectory in (5) to start with the most
recently witnessed behavior of the system. In this context,
the past trajectory ξ can also be interpreted as the state of a
(usually non-minimal) state-space realization of the system
and properly specifies its initial condition if Np is chosen
larger or equal to its lag [11].

Remark 1: Although we have introduced the data-driven
predictions in an I/O setting, they can be straightforwardly
modified to a state-space setting [12], which we will use for
visualization of a low dimensional example in Section III.

Now, consider a classical OCP

min
u(k),x(k),y(k)

Nf−1∑
k=0

∥y(k)∥2Q + ∥u(k)∥2R (4)

s.t. x(0) = x0,

x(k + 1) = Ax(k) +Bu(k), ∀k ∈ {0, ..., Nf − 2},
y(k) = C x(k) +Du(k), ∀k ∈ {0, ..., Nf − 1},

(u(k), y(k)) ∈ Uk × Yk, ∀k ∈ {0, ..., Nf − 1}
for MPC with prediction horizon Nf , positive definite weigh-
ing matrices R ∈ Rm×m, Q ∈ Rp×p, convex constraint sets
Uk ⊆ Rm,Yk ⊆ Rp, as well as equality constraints spec-
ifying the initial state condition x0 and predicted behavior
based on (2). It has been shown in [1] that DPC given by

min
uf ,yf ,a

∥yf∥2Q + ∥uf∥2R (5a)

s.t.

 ξ
uf
yf

 =

Wp

Uf

Yf

 a, (5b)

(uf , yf ) ∈ U × Y (5c)
with Q := blkdiag(Q, ..., Q), R := blkdiag(R, ..., R), and

Y :=
{
yf ∈ RpNf

∣∣ y(k) ∈ Yk, ∀k ∈ {0, ..., Nf − 1}
}

U :=
{
uf ∈ RmNf

∣∣u(k) ∈ Uk, ∀k ∈ {0, ..., Nf − 1}
}

based on exact data generated by an LTI system is equivalent
to the MPC in (4). Remarkably, and although the original the-
ory behind exact predictions via linear combination of data
does not apply to arbitrary nonlinear systems or with noise
and disturbances in the data, DPC has shown good closed-
loop performance when applied to these cases. A common
feature of these successful applications, is the addition of a
regularization term h(a) to the cost function, where different
choices of h(a) can have different interpretations for its
intended effect on the predictions ( [1], [3], [5], [6]).

B. The role of predictors and SPC

In the case of linear MPC, its well-known multi-step
predictor can be expressed as

ŷMPC(x0,uf ) = Ox0 + T uf , (6)
where O and T are often referred to as the extended observ-
ability matrix and the impulse response matrix, respectively
(see, e.g. [13]). Using (6), we can state the OCP (4) also as

min
uf ,yf

∥yf∥2Q + ∥uf∥2R (7)

s.t. yf = Ox0 + T uf , (uf , yf ) ∈ U × Y,

which may be useful to eliminate optimization variables and
to analyze the structure of its solution. Essentially, instead
of using the state-space model (2) as a one-step predictor
for each time-step in (4), consecutive applications of the
one-step predictor yield the multi-step predictor (6) used in
(7). Note that (6) trivially acts as an implicit predictor for
the original MPC problem (4). By including the constraint
yf = ŷMPC(x0,uf ), other constraints and variables can be
eliminated, resulting in (7). However, this removal should be
seen separately to Definition 1 and is not our focus.

Instead of estimating a state-space model (2) for MPC, an
alternative approach based on subspace identification [13] is
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given by SPC [7]. Here, a linear multi-step predictor

ŷSPC(ξ,uf ) = KSPC

(
ξ
uf

)
(8)

can be estimated directly from data as the solution

KSPC := argmin
K

∥∥∥∥Yf −K

(
Wp

Uf

)∥∥∥∥2
F

= Yf

(
Wp

Uf

)+

(9)

to a least squares problem with the Frobenius norm ∥ · ∥F .
Crucially, this form of SPC is related to DPC as follows.

Lemma 1: The SPC predictor (8) is an implicit predictor
for the unregularized DPC problem (5) with exact trajectory
data generated by an LTI system.

Proof: Follows from [14, Thm. 1].
While the result in [14] is actually stated as (5) being
equivalent to SPC, we rather rephrase it in the context of
implicit predictors. This is because (5b) cannot be removed
(without changing the set of feasible ξ) as it also implies
ξ ∈ image(Wp), which is not captured by the SPC predictor.

Introducing implicit predictors as explicit equality con-
straints can be useful to change the solution strategy for
some OCPs. This, however, is not our focus in this work.
Instead, we want to highlight this notion as a way to think
about what kind of behavior is (implicitly) attributed to the
system by DPC schemes, even though the predictor is not
given as an equality constraint in any of the following cases.

III. IMPLICIT PREDICTORS IN REGULARIZED DPC

While in the case of deterministic LTI systems, adding
additional trajectory data, i.e., columns to D, cannot increase
its rank past rank(D) ≤ mL + n, this is typically not the
case for systems with noise or nonlinearities. Instead, adding
trajectory data generated by an LTI system with some output
noise and persistently exciting enough input data (see, e.g.,
[10]) will almost surely increase its rank until D has full
row rank for wide enough (at least square) data matrices [8,
Lem. 3] and similar behavior can be observed for nonlinear
systems with (or without) noise. Throughout this section, we
will thus make the following assumption.

Assumption 1: The data matrix D has full row rank.
We want to emphasize that Assumption 1 takes into account
the presence of measurement noise, and we do not make any
further assumptions about the class of system generating the
data. Once the OCP tuning parameters (including regular-
ization) are determined, the solution becomes deterministic
with respect to the provided data D (including potential
output noise, which is included in Wp, Yf and cannot be
distinguished from the true output data), regardless of the
type of system that generated it. Since the aim of this
work is to characterize the predictive behavior and not
to compare it to the (unknown) true system dynamic (as
e.g., in [8]), this allows for a very general analysis. The
assumption thus helps in shifting the focus away from what
initially caused the lack of rank deficiency and towards what
predictions are being made by DPC based on the given
data (including noise). Furthermore, having more data than
necessary in (3) is typically preferred, where some authors
report good results with D being square [15, Sect. 5.2.4].

As the assumption aligns with this case, we believe it is a
reasonable starting point but future work will consider data
matrices with ranks between the practical minimum given
by (3) and the maximum given by Assumption 1. Crucially,
due to Assumption 1 there is a vector a satisfying (5b) for
any triple (ξ,uf , yf ), resulting in arbitrary and meaningless
predictions if the scheme is not suitably modified. However,
adding a regularization h(a) leading to the regularized DPC
scheme

min
uf ,yf ,a

∥yf∥2Q + ∥uf∥2R + h(a) s.t. (5b)–(5c) (10)

has shown good results with respect to its predictive capa-
bilities. Note that, while (5b) does not restrict the choice of
any (ξ,uf , yf ) in terms of feasibility due to Assumption 1,
it still defines a relation to a, which can be used to express
the effect of h(a) in the following way.

Lemma 2: Under Assumption 1, the regularized DPC
problem (10) is equivalent to

min
uf ,yf

∥yf∥2Q + ∥uf∥2R + h∗(ξ,uf , yf ) s.t. (5c) (11)

with unique
h∗(ξ,uf , yf ) := min

a
h(a) s.t. (5b). (12)

Proof: The OCP (10) can be trivially decoupled with
the outer problem (11) and inner problem (12) by optimizing
over one of the optimization variables while treating the
others as parameters. The constraint (5c) is irrelevant to the
inner problem because (uf , yf ) act as parameters there. On
the other hand, the constraint (5b) is irrelevant to the outer
problem because a is eliminated by solving the inner problem
and (5b) does not restrict the choice of (ξ,uf , yf ) due to
Assumption 1. While the minimizer a∗(ξ,uf , yf ) to (12)
may be non-unique depending on the choice of h(a) and
the number ℓ of data trajectories (i.e., the width of D), the
resulting optimal value of the inner problem h∗(ξ,uf , yf ) =
h(a∗(ξ,uf , yf )) is trivially unique by optimality.

While any trajectory (ξ,uf , yf ) can be predicted via linear
combination of collected data trajectories, the regularizer
h(a) assigns to every such trajectory a (possibly non-unique)
optimal generator vector a∗(ξ,uf , yf ) and associated unique
cost h∗(ξ,uf , yf ). Therefore, the regularizer h(a) is, ideally,
chosen in a way that incentivizes predictions that seem likely
based on the given data in D by assigning them low (or even
zero) cost while avoiding unlikely predictions via high costs.

We will now analyze this behavior for different choices
of h(a) and characterize the associated implicit predictors.
Note that we treat the influence of equality constraints (5c)
on the implied predictor separately in Section III-C.

A. (Squared) 2-norm regularization

Commonly seen in regularized DPC is (squared) 2-norm
regularization, where we choose h(a) = λa∥a∥22 with weigh-
ing parameter λa. Here, the inner problem (12) is a quadratic
minimization with linear equality constraints and positive
definite Hessian 2λaI , which yields the unique minimizer

a∗(ξ,uf , yf ) =

Wp

Uf

Yf

+ ξ
uf
yf

 (13)
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and associated cost

h∗(ξ,uf , yf ) = λa

 ξ
uf
yf

⊤

Wp

Uf

Yf

Wp

Uf

Yf

⊤


−1 ξ
uf
yf

.

Utilizing a block LDU decomposition of the weighing ma-
trix, one can further show that
h∗(ξ,uf , yf ) = λa(yf − ŷSPC)

⊤Qreg(yf − ŷSPC) (14)

+ λa

(
ξ
uf

)⊤
((

Wp

Uf

)(
Wp

Uf

)⊤
)−1(

ξ
uf

)
,

where we introduced
Qreg :=

(
Yf (I −Π)Y ⊤

f

)−1
,

Π :=

(
Wp

Uf

)⊤
((

Wp

Uf

)(
Wp

Uf

)⊤
)−1(

Wp

Uf

)
, (15)

and occasionally omit the arguments of ŷSPC(ξ,uf ) for
brevity. The expression (14) highlights the connection be-
tween DPC and SPC for this regularization. However, this
regularizer not only incentivizes predictions that align with
the SPC predictor but also introduces a bias associated with
the additional quadratic cost term in (ξ,uf ). This (typically
unwelcome) bias justifies the introduction of a projection in
the regularizer [3], which we will analyze in Section III-B.

Even though predictions that align with the SPC predictor
are incentivized with this regularization, the SPC predictor
does not act as an implicit predictor in this case. In contrast
to the unregularized deterministic case, where the rank defi-
ciency of D implies a subspace for predictions, the implicit
predictor is instead implied by optimality.

Theorem 3: Consider the regularized DPC problem (10)
with regularizer h(a) = λa∥a∥22 and without additional input
and output constraints. Under Assumption 1,

ŷDPC(ξ,uf ) = (λaQreg +Q)
−1

λaQregŷSPC(ξ,uf ) (16)
is an implicit predictor for this problem.

Proof: The implicit predictor (16) is the minimizer
ŷDPC(ξ,uf ) = argmin

yf

∥yf∥2Q + ∥uf∥2R + h∗(ξ,uf , yf )

to an inner optimization problem, where uf and ξ act as
parameters. Since dropping any terms independent of yf does
not change the minimizer, we can simplify the problem as

argmin
yf

λa(yf − ŷSPC)
⊤Qreg(yf − ŷSPC) + y⊤f Qyf

=argmin
yf

y⊤f (λaQreg +Q) yf − 2ŷ⊤SPCλaQregyf ,

which yields an unconstrained quadratic minimization
problem with the minimizer given by (16). Now, since
ŷDPC(ξ,uf ) is the parametric minimizer for any (ξ,uf ), the
minimizers (u∗f , y

∗
f ) to the regularized DPC problem must

naturally satisfy the relation y∗f = ŷDPC(ξ,u
∗
f ) for any ξ.

Hence, including the equality constraint yf = ŷDPC(ξ,uf )
with the regularized DPC problem does not change its
optimal value or minimizers, making ŷDPC(ξ,uf ) an implicit
predictor of this OCP.

While this implicit predictor does not match the SPC
predictor, it still represents a subspace just like the latter and
is visualized in Fig. 1 for different regularization weight-

ings λa. For very high λa, the predictor starts aligning with
the SPC predictor (and even matches it for λa → ∞) as one
would expect from the costs given by (14). For lower λa, the
implicit predictor tilts towards limλa→0 ŷDPC(ξ,uf ) = 0 as
seen in Fig. 1.a, which is also reasonable, since it represents
the optimal solution to argminyf

∥yf∥2Q. These behaviors
perfectly match the viewpoint that “control and identification
regularize each other” [3] in DPC. However, we emphasize
that this means the (implicitly) predicted system behavior of
regularized DPC is linear and either consistent with the SPC
predictor (for λa → ∞) or more optimistic than SPC in the
sense that it biases these most likely predictions (in the least
squares sense, see (9)) towards more favorable predictions
given by the control objective. While this optimism in the
predictions may indeed be one reason why DPC performs
better than SPC in some case studies (e.g. [3, Fig. 2]),
it should be recognized that this also leads to potentially
undesirable predictive behavior, which we will highlight
when discussing additional constraints in Section III-C.

B. Projection-based (squared) 2-norm regularization
While we only introduced Π in (14) for notation purposes,

we next exploit its role as a projection matrix. However,
instead of Π itself, we will focus on I − Π, which is
an orthogonal projector on ker

( (
W⊤

p U⊤
f

)⊤ )
. Intuitively,

these projection matrices can be thought of as splitting any
a = Πa + (I − Π)a into a part Πa that aligns with the
SPC solution and a part (I − Π)a that does not. In [3], the
regularizer h(a) = λa∥(I − Π)a∥22 was introduced because,
although it penalizes deviations from the SPC predictor just
as h(a) = λa∥a∥22, it does not introduce any further bias
like the latter in (14). In the following, we will phrase
this important result in our framework and subsequently
analyze the associated implicit predictor. We first note that
the inner problem given by (12) is, again, a quadratic
minimization problem with linear constraints and the same
(unique) minimizer as before in (13). This can easily be
verified by plugging a∗(ξ,uf , yf ) into the KKT system of
(12). Uniqueness of a∗(ξ,uf , yf ) may not be immediately
obvious, since the Hessian 2λa(I−Π)⊤(I−Π) = 2λa(I−Π)
is only positive semi-definite due to (I−Π) being a projector
on a subspace of Rℓ. However, since

ker

Wp

Uf

Yf

 ⊂ ker

(
Wp

Uf

)
and (I − Π) projects onto the latter kernel, we have (I −
Π)a ̸= 0 for any nonzero a in the former kernel, i.e., the Hes-
sian and the constraint matrix only share the trivial nullspace
by construction, making the KKT matrix nonsingular and
thus a∗(ξ,uf , yf ) unique [16, Sect. 10.1.1]. The additional
cost introduced by the regularizer is therefore given as

h∗(ξ,uf , yf ) = λa

 ξ
uf
yf

⊤Wp

Uf

Yf

+,⊤

(I −Π)

Wp

Uf

Yf

+ ξ
uf
yf

 ,

which can be shown to be equivalent to
h∗(ξ,uf , yf ) = λa(yf − ŷSPC)

⊤Qreg(yf − ŷSPC) (17)

6670



1-1
1 0

0

0

1

-1

1-1
1 0

0

0

1

-1

1-1
1 0

0

0

1

-1

1-1
1 0

0

0

1

-1

Fig. 1. The implicit predictor (grey) is equal for both analyzed unconstrained DPC schemes and its structure is given by a subspace that “tilts”
between ŷDPC(ξ, uf ) = 0 and the SPC predictor (8) depending on λa. The parametric DPC solutions (ξ, u∗f (ξ), y

∗
f (ξ)) for the different regularizations

(green/orange) evolve on this subspace, confirming its validity.

by, again, utilizing block LDU decompositions of the in-
verses involved in the weighing matrix. The resulting cost is
similar to (14), which should not be too surprising, since the
projection-based regularization was introduced to remove the
bias related to additional costs in (ξ,uf ) and only penalize
deviations from ŷSPC(ξ,uf ), which is exactly captured by
(17). Furthermore, this expression allows us to state the
following result regarding the implicit predictor, which is,
again, implied by optimality.

Theorem 4: Consider the regularized DPC problem (10)
with regularizer h(a) = λa∥(I − Π)a∥22 and without ad-
ditional input and output constraints. Under Assumption 1,
(16) is an implicit predictor for this problem.

Proof: The proof can be carried out analogously to
Theorem 3 by noting that the only difference between the
regularizer costs (17) and (14) is irrelevant to the implied
predictor since it does not depend on yf .

This result may be surprising to readers familiar with both
DPC regularizations, since the minimizers (u∗f , y

∗
f ) can differ

drastically depending on the chosen regularizer. However, it
shows that the predictive aspect of both DPC schemes is the
same in the sense that, while (u∗f , y

∗
f ) may differ (especially

for increasing λa, as seen in Fig. 1.d), the relation y∗f =
ŷDPC(ξ,u

∗
f ) holds for both as visualized in Fig. 1.

Remark 2: We can easily extend Theorems 3 and 4 to-
wards reference tracking cost ∥yf − yref∥2Q, which adds a
linear term in the cost function and thus yields an affine
implicit predictor, which is biased towards the unconstrained
minimum yref.

C. Predictions affected by (output) constraints

As previously noted, the implied predictors associated with
regularized DPC tend to predict more optimistically (with
respect to the control objective) than the SPC predictor.
This phenomenon will be further highlighted in this section,
where we investigate the effect of additional constraints. In
the following, we will restrict our attention to a polyhedral
set Y , which is a common assumption in (linear) predictive
control. Similar results can be expected for differently shaped
sets, although they are not as nice to characterize accurately.
Moreover, we introduce X ⊆ dom(ξ), which should not be
seen as a constraint on an optimization variable (because ξ
is a parameter of the OCP), but instead can be viewed as the

Fig. 2. The implicit predictor (grey) for the analyzed DPC schemes with
(output) constraints is a PWA function. For increasing λa, the parametric
DPC solutions (orange/green, see Fig. 1 for a legend) tend to stay on the
segment that matches the unconstrained predictor (if possible).

set of realistically occurring initial conditions in practical
operation.

Theorem 5: Consider the regularized DPC problem (10)
with regularizer h(a) = λa∥a∥22 or h(a) = λa∥(I − Π)a∥22
and with constraint sets U ,Y , where the latter is a polyhe-
dron. Under Assumption 1, an implicit predictor ŷDPC(ξ,uf )
can be characterized as the minimizer to the multiparametric
quadratic program (mpQP)
argmin

yf

y⊤f (λaQreg +Q) yf − 2ŷ⊤SPC(ξ,uf )λaQregyf (18)

s.t. yf ∈ Y
with parameters (ξ,uf ), which is a continuous piecewise
affine (PWA) function on partitions of the domain X × U .

Proof: Derivation of the mpQP can be carried out
analogously to Theorems 3 and 4, by noting that only
the output constraints are explicitly relevant to the implied
predictor and other constraints only specify the domain of its
parametric solution. The structure of the minimizer follows
from standard mpQP results (see, e.g., [17, Cor. 5.2]).

While PWA functions are not uncommon in (linear)
MPC (mainly in relation to its explicit solution [17]),
we want to stress that the PWA function characterized
in Theorem 5 is in its interpretation very different to
an optimal control law u∗f (ξ), since it characterizes the
predictive behavior we associate with regularized DPC.
While this implicit predictor coincides with (16) on the set
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Z :=
{
(ξ,uf ) ∈ X × U

∣∣(16) satisfies ŷDPC(ξ,uf ) ∈ Y
}
,

i.e., where the unconstrained solution naturally satisfies
the output constraints, it changes drastically wherever this
coincidence does not occur, as seen in Fig. 2. However,
at this point, a discussion on the uniqueness of implicit
predictors is due. While the implicit predictors derived so
far are kept as general as possible (i.e., they are independent
of input cost weights R and constraints U), by Definition 1
agreement with the predictor needs to occur only at optimal
points (u∗f , y

∗
f ) for it to be valid. In other words, if the

actual solution to the constrained regularized DPC problem
(10) naturally stays on Z , i.e., we have (ξ,u∗f ) ∈ Z for all
ξ ∈ X , then its predictive behavior is equally well explained
by both the linear predictor (16) and the PWA solution to
(18). Moreover, the DPC solution favors this phenomenon
for increasing λa, as highlighted in Fig. 2, since deviations
of the unconstrained predictor, in this case, are increasingly
penalized by the regularizer. However, it should be obvious
that (even with very large λa) a match of both predictors
cannot occur for such ξ, where (16) cannot be satisfied
for any (uf , yf ) ∈ U × Y . In that case, the DPC solution
will definitely change its predictive behavior in favor of
satisfying the output constraints in accordance with (18). In
other words, regularized DPC as in (10) will simply provide
a “very unlikely” solution if all “more likely” solutions
(in the sense of proximity to its unconstrained predictions
or even the SPC predictor) are infeasible. Consequentially,
from the viewpoint of an explicit solution to the OCP [17],
where X acts as a constraint of the parameter ξ, its set of
feasible states is equal to X regardless of other constraints
U ,Y .

Finally, we want to highlight that the implicit predictor in
Theorem 5 is independent of the input constraints, since U
only affects its domain but, in contrast to Y , not its structure.
Therefore, the linear implicit predictor (16) remains valid in
the absence of output constraints (i.e., Y = RpNf ), even if
additional inputs constraints U ⊂ RmNf are considered.

D. A remark on the numerical example

To visualize the implicit predictors, we deliberately chose
a very low dimensional example with n = p = m = Nf =
Q = R = 1, ℓ = 3 and treated it in a state-space setting (see
Rem. 1). Furthermore, the constraint sets involved in Fig. 2
are given by U = Y = [−1, 1]. The data generating system is
LTI with parameters (A,B,C,D) = (2,−0.5, 1, 0) and zero-
mean Gaussian measurement noise with variance σ2 = 0.01.
However, we would like to emphasize that the structure of
the implicit predictor does not depend on the data generating
system class but only the data itself and the OCP parameters.

IV. CONCLUSIONS AND OUTLOOK

By introducing the notion of implicit predictors, we related
the input-(state)-output prediction behavior of regularized
DPC schemes to more traditional predictive control schemes
such as MPC and SPC, where the predictor is explicitly
enforced as an equality constraint. The structure of these
implicit predictors seems very relevant to us since they can

be interpreted as the behavior that the data-driven predictions
attribute to the system based on given data and indepen-
dently of its actual (unknown) behavior. To demonstrate
this concept, we derived implicit predictors for a basic
regularized DPC scheme and analyzed their structure for two
popular choices of (squared) 2-norm regularization and its
dependence on constraints.

In future work, we will continue this structural analysis
with general ranks beyond Assumption 1 and further com-
mon DPC modifications such as slack variables [1], [6],
(terminal) equality constraints [6], and different regulariza-
tion choices such as the 1-norm [1], [3] or general p-norms.
Although currently limited to providing a novel perspective
on current DPC practices, we believe that these analyses have
the potential to establish a foundation for new schemes that
promote advantageous properties of the implicit predictor,
and for new theoretical insights, including DPC stability
proofs such as in [6], but based on the implicit predictor.
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