
System Identification and Control Using Quadratic Neural Networks

Luis Rodrigues1, and Sidney Givigi2

1Department of Electrical and Computer Engineering, Concordia University, Canada
2 School of Computing, Queens University, Canada

Abstract— This paper proposes convex formulations of sys-
tem identification and control for nonlinear systems using two
layer quadratic neural networks. The results in the paper cast
system identification, stability and control design as convex
optimization problems, which can be solved efficiently with
polynomial-time algorithms. The main advantage of using
quadratic neural networks for system identification and control
as opposed to other neural networks is the fact that they provide
a smooth (quadratic) mapping between the input and the output
of the network. This allows one to cast stability and control for
quadratic neural network models as a Sum of Squares (SOS)
optimization, which is a convex optimization program that can
be efficiently solved. Additionally, these networks offer other
advantages, such as the fact that the architecture is a by-product
of the design and is not determined a-priori, and the training
can be done by solving a convex optimization problem so that
the global optimum of the weights is achieved. It also appears
from the examples in this paper that quadratic networks work
extremely well using only a small fraction of the training data.

I. INTRODUCTION

Artificial neural networks have been an active area of
research with applications such as image recognition, natural
language processing, and signal processing to name a few.
They have also been applied to system identification as a
black-box model [1]. However, system identification using
neural networks does not typically lead to a smooth analytical
model. Additionally, neural networks did not yet reach a wide
use in safety-critical applications of control systems, such
as autonomous vehicles, because of the lack of theoretical
guarantees on safety, stability, and performance, which are
of prime concern for such applications. In particular, formal
results on Lyapunov stability of a system in feedback with
a neural network controller are very scarce and only started
appearing very recently in the literature [2], [3]. One main
difficulty to obtain provable stability guarantees when using
neural networks is the fact that the mapping between the
input and the output of the network does not have a concise
analytical expression and/or is not smooth. Additionally,
for most neural networks one must decide on the network
architecture before the training of the network can be per-
formed. This is most often a difficult trial-and-error task
that is heavily dependent on the application, although upper
bounds on the number of neurons in feedforward networks
needed to learn a given number of data were determined
in reference [4]. Furthermore, once an architecture has been
chosen, the training of the neural network weights does not
usually guarantee that the global optimum value is achieved,

which is another drawback. This makes it difficult to estimate
the robustness of the output of the neural network for small
changes in the input, which is typically done by computing
a Lipschitz continuity constant [5], [6].

One of the first papers to address convex neural networks
was reference [7]. More recently, the training of quadratic
neural networks (QNN) was shown in reference [8] to be a
convex optimization program with guarantees of achieving
the global optimum value of the weights. Additionally, two-
layer quadratic neural networks also offer advantages relative
to many other issues mentioned in the previous paragraph.
In particular, the input and output are related by a quadratic
form and the architecture of the network is a by-product of
the training itself. This comes at the expense of only having
one hidden layer, although extensions to more hidden layers
have been proposed by the same authors of reference [8].

The results of reference [8] are very promising and en-
couraging to the community of machine learning. However,
they do not address the problems of system identification
and controller design with stability guarantees. The main
focus of this paper is to address these two issues using
quadratic neural networks. In particular, we propose convex
formulations of system identification and control problems
for nonlinear systems using two-layer quadratic neural net-
works. The paper is organized as follows. Section II will
review quadratic neural networks and provide new results on
their relationship with quadratic forms. System identification
appears in section III and control design in section IV. Two
examples are presented in section V.

II. QUADRATIC NEURAL NETWORKS

The quadratic neural network proposed in [8] is con-
strained to have a single hidden layer with M =

∑p
k=1 Mk

neurons. Each output is connected to Mk neurons in the
hidden layer. Each output k = 1, . . . , p, is

ŷk(x) = f̂k(x) =

Mk∑
j=1

σ
(
xTwj

)
αk
j (1)

where the activation function is quadratic and is written as

σ(z) = az2 + bz + c (2)

where a ̸= 0, b, c, are pre-defined constants that parameterize
the quadratic activation function. The weights wj connect the
input x ∈ IRn to each neuron j in the hidden layer whereas
the weights αk

j connect each neuron j to the output k. The

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 1354

desired (label) outputs will be denoted by y and the actual
outputs of the network will be denoted by ŷ. Following [8] it
will be assumed that the weights wj are normalized to have
unit norm. Using a convex loss function l(·), the primal non-
convex training problem for a quadratic network where all
hidden neurons are connected to all outputs is [8]

min
wj ,αj

l(ŷ − y) + β
∑M

i=1 ∥αi∥1

s.t. ŷk =
∑M

j=1 σ
(
xTwj

)
αk
j ,

∥wj∥2 = 1, k = 1, . . . , p, j = 1, . . . ,M,

(3)

for fixed a ̸= 0, b, c, and a fixed regularization coefficient
β ≥ 0. The following result from reference [8] recasts the
training as an equivalent convex optimization problem.

Lemma 1: [8] Given fixed a ̸= 0, b, c, and a fixed
regularization coefficient β ≥ 0, the solution of the convex
problem that is dual to (3) and is formulated as

min l(ŷ − y) + β
∑p

k=1

(
Zk,4
+ + Zk,4

−

)
s.t. ŷki =

= x̄T
i

 a
(
Zk,1
+ − Zk,1

−

)
b
2

(
Zk,2
+ − Zk,2

−

)
b
2

(
Zk,2
+ − Zk,2

−

)T

cTrace
(
Zk,1
+ − Zk,1

−

)
 x̄i

Zk,4
+ = Trace

(
Zk,1
+

)
, Zk,4

− = Trace
(
Zk,1
−

)
Zk
+ =

 Zk,1
+ Zk,2

+(
Zk,2
+

)T

Zk,4
+

 , Zk
− =

 Zk,1
− Zk,2

−(
Zk,2
−

)T

Zk,4
−

Zk
+ ≥ 0, Zk

− ≥ 0, x̄T
i = [xT

i 1]
(4)

for k = 1, . . . , p, i = 1, . . . , N , where l(·) is a convex
loss function, provides a global optimal solution for the
parameters Zk

+, Z
k
− ∈ IR(n+1)×(n+1), when M ≥ M∗ with

M∗ =

p∑
k=1

[
rank

(
Zk∗
+

)
+ rank

(
Zk∗
−
)]

, (5)

where Zk∗
+ and Zk∗

− for k = 1, . . . , p, are the solution of
the optimization problem (4) given N input data vectors
xi ∈ IRn with corresponding labels yi ∈ IRp. Moreover,
the optimal value of the solutions of problems (3) and (4)
are the same and therefore the duality gap is zero. □

Instead of describing the neural network by its weights,
we use the quadratic form (6), which is equivalent to the
quadratic form in (4) and to the expression (1) (see [8])

ŷk = f̂k(x) = x̄T

[
aZk

1
b
2Z

k
2

b
2

(
Zk
2

)T
cZk

4

]
x̄ = x̄Z̄kx̄ (6)

where x̄ = [xT 1]T .
Lemma 2: [9] Given a symmetric matrix P and a random

vector x∗ with mean µ and covariance matrix Σ,

E
[
xT
∗ Px∗

]
= µTPµ+Trace (PΣ) . (7)

Proof: See Appendix B of [9].
Theorem 1: Let x̄ = [xT 1]T with x ∈ IRn, and let

fk(z) = zT Z̄kz with Z̄k =
(
Z̄k

)T ∈ IR(n+1)×(n+1).
Given parameters a ̸= 0, b, c, the quadratic form fk(z)

evaluated at z = x̄ represents an output of a quadratic
neural network with activation function (2) if and only if
Z̄k
n+1,n+1 = c

aTrace
(
Z̄k
1:n,1:n

)
, where Z̄k

n+1,n+1 is the
(n+1)-th diagonal element of Z̄k, and Z̄k

1:n,1:n ∈ IRn×n is
the top left block submatrix of Z̄k.

Proof: The proof of the only if statement follows
trivially from expression (6). To prove the if statement we
assume that a quadratic form is given. Since we know a, b, c,
we can then compute the values of Zk,1

+ −Zk,1
− , Zk,2

+ −Zk,2
− ,

and Zk,4
+ − Zk,4

− in expression (6). Additionally, we are
assuming that Zk,4

+ − Zk,4
− = Trace

[
Zk,1
+ − Zk,1

−

]
. What

remains to prove is that there is no additional constraint
relating Zk,2

+ − Zk,2
− with Zk,4

+ − Zk,4
− and Zk,1

+ − Zk,1
−

for the quadratic form to belong to the feasible set of the
optimization (4). By the Schur complement the inequality
constraints from (4) are equivalent to

Zk,4
+ = Trace

(
Zk,1
+

)
≥ 0,[

1−Trace
(
Zk,1
+

)
Trace†

(
Zk,1
+

)](
Zk,2
+

)T

= 0,

Zk,1
+ − Zk,2

+ Trace†
(
Zk,1
+

)(
Zk,2
+

)T

≥ 0,

where, defining t+k = Trace
(
Zk,1
+

)
,

Trace†
(
Zk,1
+

)
=

{
0, if t+k = 0,

Trace−1
(
Zk,1
+

)
, if t+k ̸= 0,

is the Moore-Penrose pseudo-inverse of Trace
(
Zk,1
+

)
, with

the same conditions applying for the case of Zk,1
− , Zk,2

− .
Simple algebraic manipulations then lead to

Zk,2
+

(
Zk,2
+

)T

≤ Zk,1
+

[
Trace

(
Zk,1
+

)]
,

Zk,2
−

(
Zk,2
−

)T

≤ Zk,1
−

[
Trace

(
Zk,1
−

)]
.

Applying the trace operator to these constraints leads to

∥Zk,2
+ − Zk,2

− ∥2 ≤
(
∥Zk,2

+ ∥+ ∥Zk,2
− ∥

)2

≤
[
Trace(Zk,1

+) +Trace(Zk,1
−)

]2
=

[
Zk,4
+ + Zk,4

−

]2
. (8)

We thus observe that ∥Zk,2
+ −Zk,2

− ∥ is constrained by Zk,4
+ +

Zk,4
− . Note however that although the value of Zk,4

+ −Zk,4
− is

constrained to be fixed given a quadratic form written as (6)
and parameters a, b, c, the value of Zk,4

+ + Zk,4
− is arbitrary.

Therefore, from (8) we see that there is no constraint relating
Zk,1
+ − Zk,1

− or Zk,4
+ − Zk,4

− with Zk,2
+ − Zk,2

− . □

Theorem 2: Each output of a quadratic neural network
satisfies the following Lipschitz inequality ∀x1, x2 ∈ IRn

|f̂k(x1)− f̂k(x2)| ≤ Ln

(
x̄1, x̄2, Z̄

k
)
∥x̄1 − x̄2∥2, (9)

Ln

(
x̄1, x̄2, Z̄

k
)
=

√
n+ 1

∣∣λmax

(
Z̄k

)∣∣ (∥x̄1∥∞ + ∥x̄2∥∞) .

Proof: Using the expression (6) one can write

|f̂k(x1)− f̂k(x2)| = | (x̄1 + x̄2)
T
Z̄k (x̄1 − x̄2) |.

1355

Using the Cauchy-Schwartz and triangular inequalities,

|f̂k(x1)− f̂k(x2)| ≤ (∥x̄1∥2 + ∥x̄2∥2) ∥Z̄k∥2∥x̄1 − x̄2∥2.

The result then follows since ∥x̄∥2 ≤
√
n+ 1 ∥x̄∥∞, for all

x ∈ IRn and ∥Z̄k∥2 =
∣∣λmax

(
Z̄k

)∣∣. □

III. SYSTEM IDENTIFICATION

It is assumed that a collection of input output data pairs
{u(k), y(k)}Nk=1 are measured with N ≫ 1. Based on the
data one can identify the parameters of an autoregressive
model of the form

y(t+ 1) = f(y(t− n+ 1), . . . , y(t), u(t)) (10)

by training a quadratic neural network, where y ∈ IRp, u ∈
IRm, and n ≥ 1. The value of n − 1 gives the number
of delays considered in the output. We define the training
matrices as

X =

 uT (n) yT (1) . . . yT (n)
...

...
...

...
uT (N − 1) yT (N − n) . . . yT (N − 1)

 ,

Y = [y(n+ 1) . . . y(N)]
T
, (11)

where X ∈ IR(N−n)×(m+pn) and Y ∈ IR(N−n)×p. Each
row of the matrix X is a neural network input sample
and each row of the matrix Y is an output label of the
training set of the quadratic neural network. It is assumed
that N ≥ n + 0.5(pn + m + 1)(pn + m + 2) and that
the collected data is rich enough in terms of persistent
excitation [10]. After training the network, the input-output
model is written as in equation (6) changing x̄(t) to ȳu(t) =
[uT (t) yT (t − n + 1) . . . yT (t) 1]T . Defining state
variables as x1(t) = y(t − n + 1), . . . , xn(t) = y(t),
a state vector x(t) = [xT

1 (t), . . . , x
T
n (t)]

T , and noting that
ȳu(t) = [uT (t) xT (t) 1]T = [uT (t) x̄T (t)]T yields

x(t+ 1) = Ax(t) + g(x(t), u(t)) =[
0p(n−1)×p Ip(n−1)×p(n−1)

0p×p 0p×p(n−1)

]
x(t) +

[
0p(n−1)×1

Z(x(t), u(t))

]
,

Z(x(t), u(t)) =

 y1(t+ 1)
...

yp(t+ 1)

 =

 ȳTu (t)Z̄
1

...
ȳTu (t)Z̄

p

 ȳu(t),

Z̄i =

 Z̄i
uu Z̄i

ux Z̄i
u(

Z̄i
ux

)T
Z̄i
xx Z̄i

x(
Z̄i
u

)T (
Z̄i
x

)T
Z̄i
nn

 , (12)

for i = 1, . . . , p. Expanding the quadratic forms in
Z(x(t), u(t)), the system (12) can be rewritten as

x̄(t+1) = Ā(x(t))x̄(t)+ B̄(x(t))u(t)+E(u(t))u(t), (13)

where x ∈ IRnx , nx = pn, u ∈ IRm, Ā(x(t)) = A+F (x(t)),

A =

[
A 0pn×1

01×pn 1

]
,

A =

[
0p(n−1)×p Ip(n−1)×p(n−1)

0p×p 0p×p(n−1)

]
,

Z̄i
x̄x̄ =

[
Z̄i
xx Z̄i

x(
Z̄i
x

)T
Z̄i
nn

]
, Z̄i

ux̄ =
[
Z̄i
ux Z̄i

u

]
,

F (x(t)) =

0p(n−1)×(pn+1)

x̄T (t)Z̄1
x̄x̄

...
x̄T (t)Z̄p

x̄x̄

01×(pn+1)

 ,

E(u(t)) =

0p(n−1)×m

uT (t)Z̄1
uu

...
uT (t)Z̄p

uu

01×m

 ,

B̄(x(t)) =

[
B(x(t))
01×m

]
= 2

0p(n−1)×m

x̄T (t)
[
Z̄1
ux̄

]T
...

x̄T (t)
[
Z̄p
ux̄

]T
01×m

IV. LYAPUNOV CONTROL

We assume a model of the form (13), which includes
but is not limited to quadratic neural networks under the
formulation (12). For a system or a neural network modelled
by equation (13) we propose to design a controller

u(t) = K(x(t))(x(t)− x∗) + u∗ = K̄xt
x̄(t) (14)

to stabilize the closed-loop system to a desired state x∗,
where u∗ is the input steady state value when x(t) = x∗,

K̄xt
= [Kxt

u∗ −Kxt
x∗] (15)

where Kxt
= K(x(t)). Replacing the control input (14) in

(13) yields

x̄(t+ 1) = Acl(x(t), K̄xt
)x̄(t), (16)

where

Acl(x(t), K̄xt
) = Ā(x(t))+ B̄(x(t))K̄xt

+E(K̄xt
x̄(t))K̄xt

.
(17)

We first design u∗ based on the desired steady state response
of the system and then design Kxt

using Lyapunov theory.

A. Steady State Input

When a system model is in the form (13) and the desired
setpoint for the steady state x∗ is given, one must solve

x̄∗ = Ā(x∗)x̄∗ + B̄(x∗)u∗ + E(u∗)u∗ (18)

to determine the steady state value of the input u∗.
Assumption 1: The input u∗ = 0 is a solution of (18) when
x∗ = 0.

For the case where the system model is obtained from
an input-output system identification and is in the form (12)
with x(t) = [yT (t − n + 1) . . . yT (t)]T , we assume that
a desired setpoint y∗ for the output is given. The desired

1356

state setpoint will then be x∗ = Γy∗, where Γ ∈ IRnp×p is
Γ =

[
ITp . . . ITP

]T
, where Ip is the identity matrix of order

p. The steady state value of each output is yiss = yi∗, where
yi∗ is the i-th coordinate of the desired steady state output
vector y∗. Therefore, from (12) one can write

yi∗ = ȳTu∗Z̄
iȳu∗, i = 1, . . . , p, (19)

ȳu∗(t) =

 u∗
Γy∗
1

 . (20)

Equations (19)–(20) must be solved for u∗ given a desired
setpoint y∗ in order to find the steady state values of the
control input. Notice from (19)–(20) that if Z̄i

nn = 0 (no
constant offset terms) then u∗ = 0 will be a solution of (19)
when y∗ = 0 and assumption 1 will be satisfied.

B. Lyapunov Controller Synthesis

After computing a solution of (19)–(20), when one exists,
replacing the input (14) in equation (12) yields

yi(t) = x̄T (t)Z̄i
cl(K̄xt

)x̄(t), i = 1, . . . , p, (21)

where

Z̄i
cl(K̄xt

) =

[
Z̄i
xclxcl

Z̄i
xcl(

Z̄i
xcl

)T
Z̄i
ncl

]
, i = 1, . . . , p, (22)

with

Zi
xclxcl

= Z̄i
xx +KT

xt
Z̄i
ux +

[
Z̄i
ux

]T
Kxt

+KT
xt
Z̄i
uuKxt

,

Z̄i
xcl

= Z̄i
x +

(
Z̄i
uuKxt + Z̄i

ux

)T
(u∗ −Kxtx∗) +KT

xt
Z̄i
u,

Z̄i
ncl

= Z̄i
nn + 2 (u∗ −Kxt

x∗)
T
Zi
u + δuT

∗ Z̄
i
uuδu∗,

where δu∗ = (u∗ −Kxtx∗). Therefore, the ouput is

y(t) =

 x̄T (t)Z̄1
cl(K̄xt

)
...

x̄T (t)Z̄p
cl(K̄xt

)

 x̄(t). (23)

From (12) and (23) the closed-loop state space model can
be rewritten as in equation (16) where

Acl(x(t), K̄xt) =

Ī

x̄T (t)Z1
cl(K̄xt

)
...

x̄T (t)Zp
cl(K̄xt

)
0̄T

 , (24)

Ī =
[
0p(n−1)×p Ip(n−1)×p(n−1) 0p(n−1)×1

]
, and 0̄T =

[01×pn 1]. Equation (24) can be rewritten in the form
(17). The next Theorem provides a Lyapunov-based design
strategy that yields a provably stabilizing controller.

Theorem 3: Given a desired setpoint x∗ ∈ X ⊆ IRnx , if

AT
cl(x(t), K̄xt)P̄Acl(x(t), K̄xt)− P̄ ≤ 0,

∀ x(t) ̸= x∗, x(t) ∈ X ⊆ IRnx , (25)

is satisfied where Acl is given by (17) [or by (24)] and P̄ is
defined as

P̄ =

[
P −Px∗

−xT
∗ P xT

∗ Px∗

]
(26)

where P > 0, then the controller u(t) = K̄xt
x̄(t) renders

the closed-loop system (16) stable in the sense of Lyapunov
inside the largest invariant set of the Lyapunov function (27)
fully contained in X . If the inequality (25) is strict, the
closed-loop system is asymptotically stable inside the same
invariant set. If X = IRnx , the stability is global.

Proof: If x∗ is the desired setpoint in steady state we
define the candidate quadratic control Lyapunov function

V (x(t)) = (x(t)− x∗)
T
P (x(t)− x∗) = x̄T (t)P̄ x̄(t),

(27)
where P̄ is defined in (26). For Lyapunov stability,

V (x∗) = 0, (28)
V (x) > 0, ∀ x ̸= x∗, x ∈ X (29)
∆V ≤ 0, ∀ x(t) ̸= x∗, x(t) ∈ X , (30)

where ∆V = V (x(t + 1)) − V (x(t)). Notice from the
definition of the Lyapunov function (27) that the condition
(28) is guaranteed to be satisfied. Furthermore, the condition
(29) is also satisfied because P > 0. Computing V (x(t+1))
using (16) yields

V (x(t+ 1)) = x̄T (t)AT
cl(x(t), K̄xt

)P̄Acl(x(t), K̄xt
)x̄(t).

(31)
Using (31) condition (30) is implied by (25). From standard
Lyapunov theory the system is then stable inside the largest
invariant set of the Lyapunov function (27) fully contained
in X . The proof of asymptotical stability follows by noting
that the Lyapunov function is decreasing when the strict
inequality is satisfied. Global stability follows from the fact
that the Lyapunov function (27) is radially unbounded. □

Note that, according to Theorem 1, for a known vector
x∗ the Lyapunov function (27) is a quadratic neural net-
work with activation parameters a ̸= 0, b, c, if and only if
xT
∗ Px∗ = c

aTrace(P).

Theorem 4: Consider the quadratic Lyapunov function
(27) with P > 0. Given scalars c and a ̸= 0, if the desired
steady state x∗ is a random vector with zero mean and
covariance matrix Σ = c

aI , where I is the identity, then

E
[
xT
∗ Px∗

]
=

c

a
Trace (P) . (32)

In other words, the matrix P̄ in (26) can represent ”on
average” a quadratic neural network if and only if x∗ is a
zero mean random vector with covariance matrix Σ = c

aI .
Proof: Use Theorem 1 and Lemma 2, µ = 0,Σ = c

aI . □

Unfortunately, condition (25) is not convex. The following
assumption enables control design as a convex optimization.
Assumption 2: E(u(t)) = 0 for all u(t) ∈ IRm.

Under assumptions 1 and 2 the model (13) becomes

x(t+ 1) = A(x(t))x(t) +B(x(t))u(t), (33)

for appropriate matrices A ∈ IRnx×nx , B ∈ IRnx×m. The
following result can then be stated and proved.

Theorem 5: Assume that a system model is given in the
form (33) where x(t) ∈ X ⊆ IRnx . If the desired steady

1357

state setpoint is x∗ = 0 and if for a given ϵ ∈ (0, 1) there
are P = PT and L(x(t)) satisfying[

(1− ϵ)P − ϵI (∗)T
A(x(t))P +B(x(t))L(x(t)) P

]
≥ 0 (34)

∀ x(t) ∈ X , where (∗) = A(x(t))P +B(x(t))L(x(t)), then
the closed-loop system is asymptotically stable in the largest
invariant set of the Lyapunov function V (x) = xTP−1x
fully contained inside X . If X = IRnx then the stability is
global. The control input is u(t) = L(x(t))P−1x(t).

Proof: Replacing u(t) = K(x(t))x(t) in (33) yields

x(t+ 1) = Acl(x(t),K(x(t))x(t),

Acl(x(t),K(x(t))) = A(x(t)) +B(x(t))K(x(t)). (35)

Consider a candidate Lyapunov function of the form V (x) =
xTP−1x. Note that if the condition (34) is satisfied then
P > 0 and therefore it is invertible. It is clear that V (0) = 0
and V (x) > 0 for x ̸= 0. Additionally, if (34) is satisfied then
applying the Schur complement and using (35) it implies that
PAT

cl(x(t),K(x(t)))P−1Acl(x(t),K(x(t)))P − (1− ϵ)P ≤
−ϵI < 0 ∀ x ∈ X , using the substitution K = L(x(t))P−1.
Multiplying on the left by xT (t)P−1 and on the right
by P−1x(t) yields ∆V < −ϵxTP−1x, ∀x ∈ X , which
guarantees asymptotic stability in the largest level set of
V (x) fully contained in X . Global stability follows because
the Lyapunov function is radially unbounded. □

C. Convex Formulation of Lyapunov Controller Synthesis

To formulate controller synthesis as a convex optimization
problem we will need the framework of sum of squares
polynomials. For x ∈ IRn, a multivariate polynomial p(x)
is a sum of squares (SOS) if there exist some polynomials
fi(x), i = 1, . . . ,M , such that p(x) =

∑M
i=1 f

2
i (x). A

polynomial p(x) of degree 2d is a sum of squares if and
only if there exists a positive semidefinite matrix Q and a
vector W (x) containing monomials in x of degree less than d
such that p(x) = W (x)TQW (x) [11]. It should be noted that
if p(x) is a sum of squares then p(x) ≥ 0, but the converse
is generally not true. For a convex formulation the inequality
(34) will be relaxed into a sum of squares and K(x(t)) will
be constrained to have polynomial entries.

Corollary 1: Assume that a system model is given in
the form (33) where A(x(t)) and B(x(t)) have polynomial
entries and x(t) ∈ X ⊆ IRnx . If the desired steady state
setpoint is x∗ = 0 and if for a given 0 ≤ ϵ < 1 there are
P > 0 and L(x(t)) with polynomial entries satisfying[

(1− ϵ)P − ϵI (∗)T
AT (x(t))P +B(x(t))L(x(t)) P

]
is SOS, (36)

∀ x(t) ∈ X , where (∗) = PA(x(t)) + LT (x(t))BT (x(t)),
then the closed-loop system is stable in the largest invari-
ant set of the Lyapunov function V (x) = xTP−1x fully
contained inside X . If the condition (36) is satisfied for
ϵ ∈ (0, 1), then the closed-loop system is asymptotically
stable inside the same invariant set. If X = IRn the
stability is global. The control input is given by u(t) =
L(x(t))P−1x(t).

Proof: The proof follows the argument of the proof of
Theorem 5 upon observing that satisfaction of the condition
(36) implies that the inequality (34) is satisfied. □

To measure performance one can consider the cost

J(x, u) =

∞∑
k=0

(
xT (k)Qx(k) + uT (k)Ru(k)

)
(37)

for given matrices Q = QT ≥ 0 and R = RT > 0. The lower
this cost is for a given controller the better is its performance.

Theorem 6: Assume that a system model is given in the
form (33) where A(x(t)) and B(x(t)) have polynomial
entries. If there are P = PT and W (x(t)) defined as (38)[

AT (x)PA(x)− P +Q AT (x)PB(x)
BT (x)PA(x) R+BT (x)PB(x)

]
(38)

and (38) is SOS ∀ x(t) ∈ IRnx , then any controller that
asymptotically stabilizes the system to the origin yields a cost
(37) that is bounded below by V (x0) = xT

0 Px0 when the
system trajectories start from an initial condition x0 ∈ IRnx .

Proof: The condition (38) implies that the matrix
W (x(t)) defined by (38) is positive semidefinite for all
x(t) ∈ IRnx . Left multiplying W (x(t)) by [xT (t) uT (t)]
and right multiplying by [xT (t) uT (t)]T and using (33),

xT (t)Qx(t) + uT (t)Ru(t) + V (x(t+ 1))− V (x(t)) ≥ 0,
(39)

where V (x(t)) = xT (t)Px(t). Summing the terms on the
left hand side of inequality (39) from zero to infinity yields

J(x, u) ≥ V (x(0))− V
(
lim
t→∞

x(t)
)
= V (x0), (40)

provided x(t) → 0 as t → ∞, which is guaranteed when the
closed-loop system is asymptotically stable to the origin. □

Remark 1: For some systems in the form (33) the optimal
cost to go to the origin from a given state x is V (x) =
xTPx, where P is the matrix of maximum trace that satisfies
condition (38). That is the case for example when the system
is linear and the inequality (39) becomes an equality called
the Bellman equation [12]. The optimal control is

u(t) = −
(
R+BT (x)PB(x)

)−1
BT (x)PA(x)x (41)

A common heuristic is to find P with maximum trace that
satisfies condition (38) and to compute the control (41).

V. EXAMPLES

Example 1: We perform system identification of a flexible
robot arm using n = 1. The data is available at the website
of the Database for the Identification of Systems (DaISy)
[13]. The input was a periodic sine sweep. An output of
N = 1024 data points was collected. The training was
done for a quadratic activation function with parameters
a = 0.0937, b = 0.5, c = 0.4688, using a regularization
coefficient of β = 0.01 and an infinity norm loss function
l(·). Only the first 122 data points (12% of all data) were
used to train the neural network. The training was solved
with cvx [14] using MOSEK [15] and yielded an optimal

1358

Fig. 1. QNN (black), by ReLU (red) and data points (blue circles).

value of the objective function equal to 0.49 and 6 neurons.
The resulting model is y(t + 1) = ȳTu (t)Z̄ȳu(t) where
ȳu(t) = [uT (t) yT (t) 1]T ,

Z̄ =

 −0.0989 0.5030 −0.1682
0.5030 0.1599 1.8265

−0.1682 1.8265 0.0610

 .

For comparison purposes a two layer ReLU neural network
was trained with β = 0.01 yielding a similar value of the
objective function, namely 0.47, but at the cost of needing
396 neurons. Figure 1 compares the predictions with the data.

Example 2: Consider a model of a quadrotor flying at a
constant altitude in the positive X direction.[

Ẋ
˙VX

]
=

[
0 1
0 0

] [
X
VX

]
+

[
0
g

]
u−

[
0
d

]
V 2
X , (42)

where X and VX are the position and the velocity of the
quadrotor, u = tan(θ) is the control input where θ is the
pitch angle, g = 9.8ms−2 is the acceleration of gravity, and
d is a drag-related coefficient. The control objective is to take
the system to the origin from any initial position. The model
(42) is discretized using a forward Euler approximation as

A(x(t)) =

[
1 T
0 1− TdVX(t)

]
, B(x(t)) =

[
0
Tg

]
.

For T = 0.102s we get Tg = 1ms−1 and assume Td =
0.0023sm−1. The P with minimum condition number that
satisfies (34) with ϵ = 0.1 and a first order polynomial L(x)
is

P =

[
1.4589 −1.6008
−1.6008 2.6636

]
,

which represents a quadratic neural network with ca−1 =
(2.6636)(1.4589)−1 = 1.8258. The controller is given by
u(t) = −1.1556X(t) − 1.1771VX(t) + 0.0023V 2

X(t) and
the system response for an initial condition of X(0) =
1, VX(0) = 0 is shown in figure 2. The controller cancels
the term in V 2

X(t) in the open-loop system and yields a
linear closed-loop system with stable eigenvalues λ1 =
0.8895, λ2 = −0.0666. The maximum trace P that satisfies
(38) for Q = I,R = 2.2× 10−16 using SoSTools [11] is

P =

[
11.3167 1.0523
1.0523 1.1073

]
,

Fig. 2. State X (black), VX (red), and control input (blue)).

which represents a quadratic neural network with ca−1 =
0.0979. Using equation (41) leads to the controller u(t) =
−0.9503X(t) − 1.097VX(t) + 0.0023V 2

X(t). Note that this
controller also cancels the term in V 2

X(t) from the open-loop
system and yields a linear closed-loop system with stable
eigenvalues λ1 = 0.9031, λ2 = −0.0001. One can write

u(t) =

X
VX

1

T 0 0 −0.47515
0 0.0023 −0.5485

−0.47515 −0.5485 0

X
VX

1

 .

Thus the control can be implemented by a QNN with c = 0.

REFERENCES

[1] J. Sjöberg, H. Hjalmarsson, and L. Ljung, “Neural networks in system
identification,” IFAC Proceedings, vol. 27, no. 8, pp. 359–382, July
1994.

[2] H. Dai, B. Landry, L. Yand, M. Pavone, and R. Tedrake, “Lyapunov-
stable neural-network control,” in Proceedings of Robotics: Science
and Systems 2021, Held Virtually, July 12-16 2021.

[3] H. Yin, P. Seiler, and M. Arcak, “Stability analysis using quadratic
constraints for systems with neural network controllers,” IEEE Trans-
actions on Automatic Control, vol. 67, no. 4, pp. 1980–1987, 2022.

[4] G.-B. Huang and H. Babri, “Upper bounds on the number of hidden
neurons in feedforward networks with arbitrary bounded nonlinear
activation functions,” IEEE Transactions on Neural Networks, vol. 9,
no. 1, pp. 224–229, 1998.

[5] M. Fazlyab, A. Robey, H. Hassani, M. Morari, and G. J. Pappas,
“Efficient and accurate estimation of Lipschitz constants for deep
neural networks,” in Proceedings of the 33rd International Conference
on Neural Information Processing Systems (NIPS), December 2019,
pp. 11 427–11 438.

[6] P. Pauli, A. Koch, J. Berberich, P. Kohler, and F. Allgöwer, “Training
robust neural networks using Lipschitz bounds,” IEEE Control Systems
Letters, vol. 6, pp. 121–126, 2022.

[7] Y. Bengio, N. L. Roux, P. Vincent, O. Dellaleau, and P. Marcotte,
“Convex neural networks,” in Advances in Neural Information Pro-
cessing Systems. MIT Press, 2005.

[8] B. Bartan and M. Pilanci, “Neural spectrahedra and semidefinite lifts:
Global convex optimization of polynomial activation neural networks
in fully polynomial-time,” arxiv.org, 2021.

[9] D. A. Kendrick, Stochastic Control for Economic Models, 2nd ed.
McGraw-Hill Inc., 2002.

[10] L. Ljung, System Identification: Theory for the User. Prentice Hall,
1999.

[11] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo, SOS-
TOOLS and Its Control Applications. Springer-Verlag, 2005, pp.
273–292.

[12] F. L. Lewis, D. L. Vrabie, and V. L. Syrmos, Optimal Control, 3rd ed.
John Wiley & Sons, Inc., 2012.

[13] B. D. Moor, P. D. Gersem, B. D. Schutter, and W. Favoreel, “Daisy:
A database for identification of systems,” Journal A, vol. 38, no. 3,
pp. 4–5, 1997.

[14] M. C. Grant and S. Boyd, The CVX User’s Guide Release 2.1, CVX
Research, Inc., December 2017.

[15] MOSEK Modeling Cookbook Release 3.2.3, November 2021.

1359

