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Abstract— In the context of data-driven control, persistence
of excitation (PE) of an input sequence is defined in terms
of a rank condition on the Hankel matrix of the input data.
For nonlinear systems, recent results employed rank conditions
involving collected input and state/output data, for which no
guidelines are available on how to satisfy them a priori. In
this paper, we first show that a set of discrete impulses is
guaranteed to be persistently exciting for any controllable LTI
system. Based on this result, for certain classes of nonlinear
systems, we guarantee persistence of excitation of sequences of
basis functions a priori, by design of the physical input only.

I. INTRODUCTION

Central to the area of data-driven control, as well as system
identification [1] and adaptive control [2], is the notion of
persistence of excitation (PE), see, e.g., [3]. In [4], a discrete-
time sequence is said to be persistently exciting of a certain
order if a corresponding Hankel matrix of that sequence has
full row rank. It was then shown in [4] that when such a PE
input is applied to a controllable LTI system, the resulting
input-state or input-output Hankel matrices satisfy certain
rank conditions. Now known as the fundamental lemma, this
result has received a great amount of attention in recent
years and has been successfully used in a wide range of
applications (see [5] for a comprehensive survey).

For certain classes of nonlinear systems, various works
have proposed extensions and applications of the funda-
mental lemma using, e.g., basis functions. For instance,
Hammerstein-Wiener systems [6], flat and feedback lin-
earizable systems [7], [8], and control design of input-
affine nonlinear systems [9] have been considered. In these
works, suitable PE conditions involving the sequence of basis
functions (which depend on inputs and/or states/outputs)
need to be satisfied. However, in [6]–[9] these PE conditions
could only be verified a posteriori, i.e., after performing an
experiment and collecting state/output data, and no a priori
input design was proposed to this end.

In general, there exist only few results on the design of
suitable inputs that result in satisfaction of the required PE
conditions, specifically for nonlinear systems. In [10], an
online method was proposed to design inputs that result in the
desired rank conditions of [4] on input-state or input-output
Hankel matrices for linear systems. However, the resulting
input is not universal in the sense that it is tailored specif-
ically to the system on which the experiment is performed.
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An extension of this result to the class of bilinear systems
appeared in [11]. Furthermore, [12] shows how suitable
scaling of the initial conditions and the input to a nonlinear
system leads to satisfaction of certain rank conditions on
the input-state data. This enables local stabilization of an
unknown nonlinear system in the first approximation but, in
general, cannot be used for the methods in [6]–[9], [13].

The contributions of this paper are as follows. First, we
propose a simple input sequence which satisfies standard PE
conditions for linear systems [3], [4]. Based on this result,
as a second contribution, we design inputs that guarantee PE
of any order for an arbitrary sequence of basis functions for
the class of Hammerstein systems. The third contribution
addresses nonlinear systems that are locally reachable at
the origin. Specifically, we show existence of sparse input
sequences that guarantee collective PE of sequences of basis
functions. For single-input single-output (SISO) flat systems
(which are locally reachable at the origin), we systematically
design inputs that guarantee collective PE of any order of
specific choices of basis functions. Finally, we illustrate the
results by computing data-based controllers for SISO flat
systems (as proposed in [9]).

Section II introduces notation and necessary preliminaries.
Sections III-V contain the main contributions of the paper.
Section VI illustrates the results with a numerical example
and Section VII concludes the paper.

II. NOTATION AND PRELIMINARIES

Notation: Let Z>0 denote the set of positive integers and
let Z[a,b] denote the set of integers in the interval [a, b]. Let
the m×m identity matrix be Im and its columns be ei for
i ∈ Z[1,m]. We use 0n×m to denote an n×m matrix of zeros;
when the dimensions are clear, the subscript is omitted. For
a sequence {zk}N−1

k=0 with zk ∈ Rη , we denote its stacked
vector as z =

[
z⊤0 z⊤1 . . . z⊤N−1

]⊤
and a stacked window

of it as z[l,j] =
[
z⊤l z⊤l+1 . . . z

⊤
j

]⊤
for 0 ≤ l < j. We write

M ≻ 0 (M ⪰ 0) if the matrix M is positive (semi-)definite.
In this paper, we are concerned with the notion of persis-

tence of excitation which originated in the fields of system
identification [1] and adaptive control [2]. Several definitions
of PE have appeared in the literature. The following is one
of such definitions for a finite length discrete-time sequence.

Definition 1 ([3]): For N ∈ Z>0, the sequence {zk}N−1
k=0 ,

zk ∈ Rη , is exciting over the interval [0, N − 1] if, for some

ν > 0, the following holds
N−1∑
k=0

zkz
⊤
k ⪰ νIη ≻ 0.

In recent works on data-driven control (cf. [5]), the following
definition has been commonly used.
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Definition 2 ([4]): For L ∈ Z>0 and N ≥ L, the
sequence {zk}N−1

k=0 , zk ∈ Rη , is persistently exciting
of order L if rank(HL(z)) = ηL, where HL(z) =[
z[0,L−1] z[1,L] · · · z[N−L,N−1]

]
.

The two definitions are related as follows: Notice that if a
sequence is PE of order L in the sense of Definition 2, then

HL(z)(HL(z))
⊤ =

N−L∑
k=0

z[k,k+L−1]z
⊤
[k,k+L−1] ≻ 0.

This means that for L = 1, the two definitions are equivalent.
If a sequence is PE in the sense of Definition 2 of order
L > 1, then it is also exciting in the sense of Definition 1,
but the converse is not necessarily true. This is because if
rank(HL(z)) = ηL, then rank(HL̄(z)) = ηL̄ for any depth
L̄ < L, but the converse is, in general, not true.

The advantage of Definition 2 is that it quantifies the order
of which a signal is exciting. As shown in [4], this notion
has an important application. In particular, if an input to
a controllable LTI system is PE of order L + n, then the
resulting input/output data matrix contains in its span any
length−L input/output trajectory of the system. This became
known as the fundamental lemma and is summarized below.

Theorem 1 ([4]): Let {uk, yk}N−1
k=0 be an input-output tra-

jectory of a controllable LTI system. If {uk}N−1
k=0 is PE of

order L + n, then any {ūk, ȳk}L−1
k=0 is a trajectory of the

system, if and only if there exists β ∈ RN−L+1 such that[
HL(u)
HL(y)

]
β =

[
ū
ȳ

]
. (1)

The following are recent extensions of Definition 2, which
we use in our paper. The notion of collective persistence of
excitation was defined in [14], and extends Definition 2 to
multiple sequences.

Definition 3 ([14]): For r, L ∈ Z>0, j ∈ Z[1,r], and Nj ≥
L, the sequences {z(j)k }Nj−1

k=0 , with z(j)k ∈ Rη , are collectively
persistently exciting of order L if rank(HL(Z )) = ηL,
where Z =

[
(z(1))⊤ · · · (z(r))⊤

]⊤
, and

HL(Z ) =
[
HL(z

(1)) · · · HL(z
(r))

]
.

Another extension was proposed in [15], where a quanti-
tative notion of PE is defined in order to establish a robust
version of Theorem 1. There, a sequence {zk}N−1

k=0 is said to
be α−PE of order L if σmin(HL(z)) ≥ α > 0, provided the
Hankel matrix has at least as many columns as rows, where
σmin denotes the minimum singular value.

In the next section, we propose a simple input sequence
which satisfies all the above definitions of PE.

III. PE FOR LTI SYSTEMS

It is well known that random inputs satisfy Definition 2
with high probability. However, this is not guaranteed and in
some practical applications it may not be possible/desirable
to apply frequent inputs. This is the case, e.g., in net-
worked systems with bandwidth constraints [16] or closed-
loop control of fluid resuscitation [17], where sparse inputs
in the form of boluses are used to identify patient-specific
parameters.

In the following theorem, we propose a simple and highly
sparse input sequence that is guaranteed to be PE. In partic-
ular, PE of order L ∈ Z>0 is achieved by giving a pulse at
each of the m input channels every L instants.

Theorem 2: Let L ∈ Z>0 and N ≥ (m+ 1)L− 1. If the
sequence {uk}N−1

k=0 takes the form

uk =

{
ej , k = jL− 1,

0, otherwise,
(2)

where j ∈ Z[1,m], then it holds that rank(HL(u)) = mL.
Proof: Without loss of generality, let N = (m+1)L−1.

The following matrix has full row rank

HL(u) =

0 0 · · · e1 · · · 0 0 · · · em...
...

...
... · · ·

...
...

...
...

0 e1 · · · 0 · · · 0 em · · · 0
e1 0 · · · 0 · · · em 0 · · · 0

 .
Remark 1: For the input in (2), all singular values of

HL(u) are equal to one. By scaling (2) by α, one obtains an
input which is α−PE of order L (cf. [15]). Note that larger
values of α imply higher levels of PE of order L.

Theorem 2 provides an explicit formula (2) for an input
which is guaranteed to be persistently exciting in the sense
of Definition 2 (and hence, also Definition 1). This can
be used to apply the results of Theorem 1. A necessary
condition for the input in (2) to be PE of order L + n is
that it is at least of length N ≥ (m + 1)(L + n) − 1 (cf.
Definition 2). In contrast, the procedure from [10] uses online
state or output measurements to design an input such that the
resulting input-output data matrix in (1) has rank mL + n
and requires N = (m + 1)L + n − 1 samples to this end,
implying that it is sample efficient. However, the resulting
input only guarantees the rank condition for the system on
which the experiment was done. In contrast, the input (2),
although not as sample efficient, guarantees the results of
Theorem 1 independently of the considered system.

Apart from its use in data-driven analysis and control,
Theorem 1 also allows for identification of the LTI system’s
matrices up to a similarity transformation (cf. [4, Sec. 4.4]).
In this sense, employing (2) to obtain (1) can be interpreted
as the data-driven counterpart to classical works on identifi-
cation of LTI systems from their impulse response [18].

In Section IV, we consider Hammerstein nonlinear sys-
tems and show how to guarantee PE of basis functions that
depend on the input, by the design of the input only.

IV. PE FOR HAMMERSTEIN SYSTEMS

Consider an unknown Hammerstein system of the form

xk+1 = Axk +Bγ(uk), yk = Cxk +Dγ(uk), (3)

with (A,B) controllable, xk ∈ Rn, uk ∈ Rm, and yk ∈
Rp. Furthermore, γ : Rm → Rm̄ is an unknown nonlinear
function which satisfies γ(0) = 0 without loss of generality.
An extension of Theorem 1 to the class of Hammerstein
systems appeared in [6], assuming that γi, i ∈ Z[1,m̄], belong
to the span of a given set of r basis functions ψj : Rm → R,
j ∈ Z[1,r], which satisfy ψj(0) = 0 (note that functions with
ψj(0) ̸= 0 can be suitably shifted by a constant). In this case,
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PE must be imposed on the sequence of basis functions. In
this section, we show how this can be done only by the
design of the physical input u.

We denote the stacked vector of the basis functions by
Ψ(uk) =

[
ψ1(uk) · · · ψr(uk)

]⊤
. For λj ∈ Rm, j ∈ Z[1,r],

we define the following square matrix Λ ∈ Rr×r

Λ =
[
Ψ(λ1) Ψ(λ2) · · · Ψ(λr)

]
. (4)

The following theorem provides conditions for an input
sequence {uk}N−1

k=0 that is guaranteed to result in a PE
sequence of basis functions {Ψ̂k}N−1

k=0 , where Ψ̂k := Ψ(uk).
Theorem 3: Given L ∈ Z>0 and any r linearly indepen-

dent basis functions ψj : Rm → R which satisfy ψj(0) = 0,
let N ≥ (r + 1)L− 1. Let {uk}N−1

k=0 take the form

uk =

{
λj , k = jL− 1,

0, otherwise,
(5)

where j ∈ Z[1,r]. If λj ∈ Rm are such that the matrix Λ in
(4) is invertible, then it holds that rank(HL(Ψ̂)) = rL.

Proof: Let {ũk}N−1
k=0 , ũk ∈ Rr, take the form of (2).

Then by Theorem 2 it holds that rank(HL(ũ)) = rL. Next,
notice that HL(Ψ̂) = (IL⊗Λ)HL(ũ), where ⊗ denotes the
Kronecker product. Since Λ is invertible by assumption, it
follows that (IL ⊗Λ) is a square full rank matrix and hence
rank(HL(Ψ̂)) = rank(HL(ũ)) = rL.

In order to find the values of λj which make Λ invertible,
one can formulate a feasibility problem as follows

find λ1, . . . , λr, s.t. rank(Λ) = r. (6)

This is equivalent to requiring that Λ⊤Λ ≻ 0. Such a problem
can be solved offline, e.g., iteratively as in [19] or by refor-
mulating it as a regularized unconstrained nonlinear least
squares problem [20]. Solving (6) only requires knowledge
of the user-defined basis functions. The following theorem
shows that for any given set of linearly independent basis
functions, (6) is feasible.

Theorem 4: Given any set of r linearly independent basis
functions ψj : Rm → R, there exist λj ∈ Rm, for j ∈ Z[1,r],
such that Λ in (4) is invertible.

Proof: Suppose by contradiction that the maximum
rank that Λ can attain for arbitrary λj ∈ Rm, j ∈ Z[1,r],
is d < r. Consider such a choice of λj ∈ Rm, j ∈ Z[1,r],
which results in rank(Λ) = d < r. Then, there exists a non-
zero vector ρ ∈ Rr such that ρ⊤Λ = 0. Moreover, for any
λ̄ ∈ Rm, the matrix

[
Λ Ψ(λ̄)

]
has the same rank as Λ.

Hence, it holds that ρ⊤Ψ(λ̄) = 0 for arbitrary λ̄ ∈ Rm, i.e.,

ρ1ψ1(λ̄) + · · ·+ ρrψr(λ̄) = 0, ∀λ̄ ∈ Rm. (7)

This, however, contradicts linear independence of the basis
functions, thus proving that there exists λj ∈ Rm, j ∈ Z[1,r],
such that Λ is invertible.

In the next section, we study the class of locally reachable
nonlinear systems at the origin and show existence of sparse
inputs that guarantee collective PE of basis functions. For
SISO flat systems (which are locally reachable), we show
how to design those inputs such that PE of any order L > 0
can be guaranteed for a specific choice of basis functions.

V. PE FOR LOCALLY REACHABLE NONLINEAR SYSTEMS

Consider an unknown nonlinear system of the form

xk+1 = f(xk, uk), (8)

with xk ∈ Rn, uk ∈ Rm being the state and input vectors,
respectively, and f : Rn×Rm → Rn is an unknown function
satisfying f(0,0) = 0. For µ ∈ Z>0, the set of all states
which can be reached from x0 in µ steps is defined as

Rµ(x0)=

{
xµ ∈ Rn

∣∣∣∣∣∃u[0,µ−1], uk ∈ Rm,

s.t. xk+1=f(xk, uk), ∀k∈Z[0,µ−1].

}
.

It was shown in [21] how one can, under certain assumptions,
obtain a guaranteed under-approximation of the reachable
set of a nonlinear system with unknown dynamics. For the
remainder of this section, we make the following assumption.

Assumption 1: For the system (8), there exists µ ∈ Z>0

such that the origin is contained in the interior of Rµ(0).
Assumption 1 implies that the system is locally reachable

at the origin. A sufficient condition for local reachability at
x = 0 is that the linearization of system (8) at the origin is
controllable (cf. [22, Lemma 3.7.8]).

Consider now r basis functions θj : Rn×Rm → R which
satisfy θj(0,0) = 0, j ∈ Z[1,r], and denote the stacked vector
of them by Θ(xk, uk) =

[
θ1(xk, uk) · · · θr(xk, uk)

]⊤
. Sup-

pose that the functions are linearly independent on arbitrary
domains with non-empty interior1 Dx × Du ⊂ Rn × Rm.
The objective is to design inputs {u(j)k }Nj−1

k=0 such that the
sequences of basis functions {Θ̂(j)

k }Nj−1
k=0 (with Θ̂

(j)
k :=

Θ(x
(j)
k , u

(j)
k )) are collectively persistently exciting of order

L. According to Definition 3, the following mosaic Hankel
matrix must have full row rank

HL(ϑ) =
[
HL(Θ̂

(1)) · · · HL(Θ̂
(r))

]
, (9)

where ϑ =
[
(Θ̂(1))⊤ · · · (Θ̂(r))⊤

]⊤
.

Consider a submatrix of (9) composed of the L+µ element
of each of the r sequences of basis functions

W =
[
Θ̂

(1)
L+µ−1 Θ̂

(2)
L+µ−1 · · · Θ̂

(r)
L+µ−1

]
. (10)

Similar to Section IV, we would like W to be invertible.
Since the state at time x(j)L+µ−1 is not a free variable, ensuring
invertibility of W is a control problem. In particular, one
must select the inputs such that the corresponding state and
input pairs at time L+µ−1 result in an invertible matrix W .
In a data-driven setting, such a control problem is difficult to
solve since no model knowledge is available and - to begin
with - no persistently exciting data is available yet to apply
data-driven control techniques. Therefore, we first show in
Lemma 1 that there exist such r input sequences u(j)[0,L+µ−1],
j ∈ Z[1,r], which make W invertible and then prove in
Theorem 5 how invertibility of W results in collective PE of
the basis functions. Later, in the following Subsection V-A
we illustrate how, under suitable assumptions, one can indeed

1This assumption is satisfied for sinusoidal functions, exponential func-
tions and monomials, among others [23]. Note that basis functions that do
not satisfy θj(0,0) = 0 can be suitably shifted by a constant.
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find the desired control inputs a priori, which guarantee
collective PE of any order for sequences of basis functions
which depend on input and output data of SISO flat systems.

Lemma 1: Let Assumption 1 be satisfied and suppose that
r basis functions θj : Rn×Rm → R are linearly independent
on Rµ(0) × Rm. Then there exist r sequences u(j)[0,L+µ−1],

j ∈ Z[1,r], which when applied to (8) starting from x
(j)
0 = 0,

result in x(j)L+µ−1, such that W in (10) is invertible.
Proof: Using similar arguments to the proof of The-

orem 4, it can be shown by linear independence of the
basis functions θj on Rµ(0) × Rm that there exists r pairs
(x

(j)
L+µ−1, u

(j)
L+µ−1) ∈ Rµ(0)×Rm such that W is invertible.

Since f(0,0) = 0, then starting from zero initial con-
ditions and setting the input to u

(j)
[0,L−2] = 0, one can

express the state x(j)L+µ−1 in terms of u(j)[L−1,L+µ−2] only, i.e.,

x
(j)
L+µ−1 = f(f · · · (f(0, u(j)L−1), u

(j)
L ) · · · , u(j)L+µ−2). Finally,

since the system is locally reachable by Assumption 1, there
exist inputs u(j)[L−1,L+µ−1], j ∈ Z[1,r], which steer the system

from x
(j)
L−1 = 0 to x(j)L+µ−1 in µ steps.

The following theorem shows how to use the results
of Lemma 1 to obtain collectively persistently exciting
sequences of basis functions of any order L.

Theorem 5: Let Assumption 1 hold. Given L, µ ∈ Z>0

and r basis functions θj : Rn × Rm → R that are linearly
independent on Rµ(0) × Rm and satisfy θj(0,0) = 0, let
Nj ≥ 2L + µ − 1 for j ∈ Z[1,r]. Furthermore, let the
sequences {u(j)k }Nj−1

k=0 take the form

u
(j)
k =

{
η
(j)
[0,µ], k ∈ Z[L−1,L+µ−1],

0, otherwise,
(11)

where j ∈ Z[1,r], and η
(j)
[0,µ] are such that W in (10) is

invertible. If (11) are applied to (8) starting from x
(j)
0 = 0,

then for the matrix in (9) it holds that rank(HL(ϑ)) = rL.
Proof: Each block row of (9) has r linearly independent

columns given by the columns of W . Notice that each
HL(Θ̂

(j)), j ∈ Z[1,r], in (9) has a lower block-anti-triangular
structure due to f(0,0) = 0, Θ(0,0) = 0 and the choice of
the inputs (11). As a result, every block row (9) is linearly
independent from the others. Since there are L such block
rows, it holds that rank(HL(ϑ)) = rL.

Notice that the results of Lemma 1 for locally reachable
nonlinear systems are analogous to that of Theorem 4 for
Hammerstein systems. However, formulating a nonlinear
feasibility problem similar to (6) to find u

(j)
[0,L+µ−1], j ∈

Z[1,r] would require knowledge of the unknown function f .
It was observed in simulations that randomly sampling

the input sequences η(j)[0,µ], j ∈ Z[1,r], in Theorem 5 from a
uniform distribution typically results in a corresponding in-
vertible matrix W . However, such a heuristic approach is not
always guaranteed to achieve this result. To systematically
find the desired input sequences, one must impose additional
assumptions on the class of systems and the choice of basis
functions. To this end, we consider in the next subsection
SISO flat nonlinear systems (which are locally reachable at

the origin), and show how one can guarantee PE of any order
L > 0 a priori, for a specific choice of basis functions.

A. SISO flat nonlinear systems

Consider an unknown SISO flat system of the form

xk+1 = f(xk, uk), yk = h(xk), (12)

where xk ∈ Rn, uk, yk ∈ R and f : Rn × R → Rn,
h : Rn → R are smooth unknown functions with
f(0, 0) = 0 and h(0) = 0. Let f jO(xk) denote the j−th
iterated composition of the undriven dynamics f(xk, 0).

Since the system is flat (i.e., has a well defined relative
degree equal to the system dimension n, cf. [7, Sec. III.A]),
it can be transformed into the discrete-time normal form pro-
vided that 0 ∈ Im

(
h(fn−1

O (f(x, ·)))
)

holds for all x ∈ Rn

(cf. [24, Sec. 2] for more details). This means that there exists
an invertible (w.r.t. vk) control law uk = q(xk, vk), with
q : Rn ×R → R and an invertible coordinate transformation
ξk = T (xk) = y[k,k+n−1], such that

ξk+1 = Aξk +Bvk, yk = Cξk, (13)

Furthermore, A,B,C are in the Brunovsky canonical form
(cf. [7, Thm. 2]) which is a controllable/observable triplet.
Hence, the system is n steps locally reachable at the origin.
The synthetic input vk takes the form

vk = h(fn−1
O (f(xk, uk))). (14)

A sufficient condition for the analogue of Theorem 1 to
flat systems [7, Prop. 1], and for designing controllers from
data in [9, Cor. 2], is persistence of excitation of a sequence
of basis functions which contain h◦fn−1

O ◦f in their span. To
check the PE condition, one typically performs an experiment
of length N ≥ (r+1)L−1, collects the corresponding state
or output measurements and then verifies the rank of the
resulting Hankel matrix.

In this section, we illustrate how one can enforce PE of any
order for a particular choice of basis functions a priori. A
specific choice of basis functions may, in general, not contain
the unknown nonlinearity (14) in its span. Nonetheless,
enforcing PE of such basis functions is still useful for,
e.g., designing locally stabilizing controllers for unknown
SISO flat systems (cf. [9, Sec. VII.B]), and for data-driven
nonlinear predictive control [13], provided that the basis
functions result in a good local approximation of (14).

Since the map from u to v is invertible and since f(0, 0) =
0 and h(0) = 0, a non-zero input applied to the system from
zero initial conditions results in a non-zero value of v in
(14). Moreover, invertibility implies that for all δ1, δ2 ∈ R,
the following holds

δ1 ̸= δ2 ⇐⇒ h(fn−1
O (f(0, δ1))) ̸=h(fn−1

O (f(0, δ2))). (15)

We exploit this fact to prove the following lemma, which
will be needed later for the main result of this subsection.

Lemma 2: For t ∈ Z>0 let δj ̸= 0, j ∈ Z[1,t], be mutually
distinct values and define vδj := h(fn−1

O (f(0, δj))). Then,
the following matrix is invertible:

4064



Ω =


vδ1 vδ2 · · · vδt
v2δ1 v2δ2 · · · v2δt

...
...

. . .
...

vtδ1 vtδ2 · · · vtδt

 . (16)

Proof: Since for j ∈ Z[1,t], δj ̸= 0 are mutually
distinct values, it follows that the corresponding values vδj
are also distinct and non-zero (compare the discussion above
Lemma 2). The matrix Ω can be written as Ω = V ⊤∆, where
V ∈ Rt×t is a square Vandermonde matrix composed of the
distinct vδj and, hence, invertible and ∆ ∈ Rt×t is a diagonal
matrix containing vδj . The proof is concluded by noting that
V and ∆ are invertible matrices.

In the following, we consider monomial basis functions
in the transformed state and input up to some finite order
t ∈ Z>0, and hence r = t(n+ 1).

Θ(ξk, uk) =
[
uk u

2
k · · · utk ξ⊤k (ξ2k)

⊤ · · · (ξtk)⊤
]⊤
. (17)

The powers are defined element-wise, i.e., ξtk =
[ξt1,k · · · ξtn,k]⊤. Notice that these functions depend only
on the inputs and outputs of (12) since ξk = y[k,k+n−1]

(cf. (13)). In the following theorem, we show how to
choose input sequences {u(j)k }Nj−1

k=0 , j ∈ Z[1,r], such that
the resulting sequences of basis functions {Θ̂(j)

k }Nj−1
k=0 are

collectively persistently exciting of order L > 0, i.e., that
the corresponding mosaic Hankel matrix HL(ϑ) of the form
(9) has full row rank.

Theorem 6: For t ∈ Z>0, let δj ̸= 0, j ∈ Z[1,t(n+1)], be
mutually distinct values. For L ∈ Z>0, Nj ≥ 2L+n−1 and
the basis functions in (17), let {u(j)k }Nj−1

k=0 take the form in
(11) with the corresponding η(j)[0,n] given by

η
(j)
[0,n] =



[
0n−j×1

δj
0j×1

]
, for j ∈ Z[1,n],

...[
0tn−j×1

δj
0j−(t−1)n×1

]
, for j ∈ Z[(t−1)n,tn],[

0n×1

δj

]
, for j ∈ Z[tn+1,t(n+1)].

(18)

If (18) are applied to (12) starting from zero initial condi-
tions, then rank(HL(ϑ)) = t(n+ 1)L.

Proof: Without loss of generality, let Nj = 2L +
n − 1 for all j ∈ Z[1,t(n+1)]. For c ∈ Z[0,n−1], we define
vδj ,[0,c] :=

[
h(fn−1

O (f(0, δj))) · · · h(fn+c−1
O (f(0, δj)))

]⊤
(with some abuse of notation we also use vδj ,0 = vδj ). Since
the system (13) is in the Brunovsky form, applying the inputs
{u(j)k }Nj−1

k=0 as defined in the theorem statement from zero
initial conditions results in

ξ
(j)
L+n−1=



[
0n−j×1

vδj,[0,j−1]

]
, for j ∈ Z[1,n],

...[
0tn−j×1

vδj,[0,j−(t−1)n−1]

]
, for j ∈ Z[(t−1)n+1,tn],

0, for j ∈ Z[tn+1,t(n+1)].
(19)

Now, we consider a submatrix of HL(ϑ) of the form of
W in (10). For the choice of basis functions in (17), the
inputs {u(j)k }Nj−1

k=0 as defined in the theorem statement and
the corresponding state values in (19), the matrix W takes
the form (20) (see next page). Following similar arguments
to the proof of Lemma 2, one can show that Wu ∈ Rt×t

is invertible since δj , j ∈ Z[tn+1,t(n+1)], are non-zero and
mutually distinct values. Using the columns of Wξ ∈ Rtn×tn

in (20), we construct n submatrices W i,ξ ∈ Rtn×t, i ∈
Z[1,n], of the form

W i,ξ =

(
0n−i×1

vδi,[0,i−1]

) (
0n−i×1

vδi+n,[0,i−1]

)
· · ·

(
0n−i×1

vδi+(t−1)n,[0,i−1]

)
...

...
...

...(
0n−i×1

vδi,[0,i−1]

)t (
0n−i×1

vδi+n,[0,i−1]

)t

· · ·
(

0n−i×1

vδi+(t−1)n,[0,i−1]

)t

.
Each matrix of this form has t rows of the form Ω in (16).
Since δj , j ∈ Z[1,tn], are non-zero and distinct, it follows
from Lemma 2 that the corresponding Ω is inverible and
hence, each matrix W i,ξ has rank t. Notice that the columns
of each matrix W i,ξ are linearly independent with respect to
the columns of any other W j,ξ, i ̸= j ∈ Z[1,n]. This follows
since (i) the rows of the form Ω appear in different rows
in each W i,ξ and (ii) the structure in which the block rows
0n−i×1 appear in each submatrix. As a result, rank(Wξ) =
tn. Due to the structure of Wu and Wξ, it follows that
rank(W ) = t(n + 1) and hence W is invertible. Finally, it
follows from Theorem 5 that rank(HL(ϑ)) = t(n+ 1)L.

In the following section, we illustrate the results of The-
orem 6 with an example.

VI. NUMERICAL EXAMPLE

Consider a second order SISO flat system of the form in
(13), with vk = − sin(x1,k) + x1,kx

2
2,k − x31,kx2,k + uk. In

this example, we compare the performance of three nonlinear
controllers: (i) An exact linearizing and stabilizing controller
designed using basis functions that include v in their span
[9, Cor. 2], and two locally stabilizing controllers (ii and
iii) designed using the following choice of basis functions2

which do not contain v in their span [9, Cor. 2 and Sec. III.B]

Θ(ξk, uk) =
[
uk ξ⊤k (ξ2k)

⊤ (ξ3k)
⊤]⊤ . (21)

For all three controllers, PE of the basis functions of order
one is a necessary and sufficient condition for the feasibility
of the convex program that is solved to obtain the control
gains (cf. [9, Cor. 2, Thm. 2, and Thm. 5]). For controllers
(i) and (ii), PE is enforced by sampling the input randomly.
For controller (iii), PE is enforced a priori using the results
of Theorem 6. In this case, we used a straightforward
extension of [9, Cor. 2] such that collected data from multiple

2The method described in [9, Cor. 2] requires that the unknown map (14)
is linear in u, which is why we use the basis functions (21). Although the
choice of the basis functions in (21) is different from that in (17), one can
easily see from the proof of Theorem 6 that using inputs of the form (18)
also guarantees collective PE of (21).
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W =

[
0 Wu

Wξ 0

]
=



0 0 · · · 0 δtn+1 · · · δt(n+1)...
...

...
...

...
...

...
0 0 · · · 0 δttn+1 · · · δtt(n+1)(

0n−1×1
vδ1

) (
0n−2×1
vδ2,[0,1]

)
· · ·

(
vδtn,[0,n−1]

)
0 · · · 0

...
...

...
...

...
...

...(
0n−1×1
vδ1

)t (
0n−2×1
vδ2,[0,1]

)t

· · ·
(
vδtn,[0,n−1]

)t
0 · · · 0


. (20)

TABLE I
AVERAGE LEVEL OF PE AND CUMULATIVE STABILIZATION ERROR.

Compared value Controller (i) Controller (ii) Controller (iii)
avg σmin(H1(ϑ)) 0.0083 0.0083 0.0399∑T−1

i=0
1
T
|x1,i| 0.0469 0.0620 0.0553∑T−1

i=0
1
T
|x2,i| 0.0231 0.0382 0.0314

experiments (i.e., collective PE) can be used to design the
controller.

Since the system is unstable, the input data (of length N =
21) for controllers (i) and (ii) had to be sampled from the
uniform distribution U(−0.25, 0.25), whereas using multiple
experiments as in Theorem 6 allowed us to use inputs (each
of length Nj = 3) with larger magnitudes (sampled from
U(−1, 1)). In [14], a similar observation was made for linear
systems. As a result, a larger quantitative level of PE was
attained (cf. Remark 1 and Table I).

The performance of the closed-loop system (over T = 20
time instants) was compared starting from the same initial
conditions (randomly sampled from U(−1, 1) × U(−1, 1)).
Table I shows the average cumulative stabilization errors
(defined as

∑T−1
k=0

1
T |xi,k|, for i = 1, 2, T = 20) for all

three controllers over 100 experiments, excluding 5 (respec-
tively 4) unstable experiments for controllers (ii) and (iii).
Controller (i) is the best performing one since it enforces
exact nonlinearity cancellation. Controller (iii) is shown to
outperform controller (ii), although the same basis functions
(21) were used, potentially suggesting that the region of
attraction of controller (iii) is larger compared to (ii). This
can be attributed to the fact that larger levels of PE were
attained using multiple experiments.

VII. CONCLUSION

We provided explicit formulas for inputs that guarantee PE
for linear and classes of nonlinear systems. For Hammerstein
and locally reachable nonlinear systems (including SISO flat
systems), we showed how to guarantee collective PE of
input- and/or state-dependent basis functions. These results
are crucial for the application of recent data-driven control
schemes that require such PE conditions to be satisfied.
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“Data-driven nonlinear predictive control for feedback linearizable
systems,” arXiv: 2211.06339, accepted for 22nd IFAC WC, 2023.

[14] H. J. van Waarde, C. De Persis, M. K. Camlibel, and P. Tesi, “Willems’
fundamental lemma for state-space systems and its extension to
multiple datasets,” IEEE Control Syst. Lett., vol. 4, no. 3, 2020.

[15] J. Coulson, H. J. van Waarde, J. Lygeros, and F. Dörfler, “A quanti-
tative notion of persistency of excitation and the robust fundamental
lemma,” IEEE Control Systems Letters, pp. 1–1, 2022.

[16] M. Siami, A. Olshevsky, and A. Jadbabaie, “Deterministic and ran-
domized actuator scheduling with guaranteed performance bounds,”
IEEE Transactions on Automatic Control, vol. 66, no. 4, 2021.

[17] X. Jin, R. Bighamian, and J.-O. Hahn, “Development and in silico
evaluation of a model-based closed-loop fluid resuscitation control
algorithm,” IEEE Trans. Biomed. Eng., vol. 66, pp. 1905–1914, 2019.
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