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Abstract— This paper presents a fusion-based output feed-
back MPC (FOFMPC) approach for multi-sensor systems with
state and control constraints. Our approach consists of a
fusion estimation procedure and a robust output feedback MPC
scheme. For fusion estimation, we adopt a two-layer structure
where local observers are designed for all the sensors and
operate in parallel and a fusion center collects the states of
the individual observers and produces a fusion estimate based
on certain weighted fusion criterion. The weights are computed
by minimizing the weighted Minkowski sum of the local robust
positively invariant (RPI) sets. This fusion estimation procedure
is then integrated into the framework of robust output feedback
MPC (ROFMPC). We verify the effectiveness of the proposed
approach using a three-zone building model.

I. INTRODUCTION

The goal of fusion estimation is to observe the states of
the same uncertain system using measurements from multiple
sensors, see [1] and the references therein. To achieve this,
local estimators are often designed for individual sensors
and the global state estimate is obtained with certain fusion
criterion, see, e.g., [2]–[4]. A well-known and efficient fusion
estimation technique [5]–[7] uses a weighted sum of the
local estimates to provide an overall estimate, where the
weights are computed in a way that system uncertainties
are effectively tackled. In general, there are two paradigms
to model uncertainties: the stochastic paradigm and the set-
membership paradigm. Early works typically rely on the
stochastic one and fusion criteria are designed according
to statistical properties of the system [8], [9]. The set-
membership paradigm deals with unknown but bounded
uncertainties and it has been widely used in state estimation
in recent years [10], [11]. There also exist set-membership
approaches for fusion estimation, see, e.g., [12]. However, to
the best of our knowledge, existing set-membership fusion
criteria only consider one-step estimation error. In this work,
we use robust positively invariant (RPI) sets to confine state
estimation errors in order to ensure feasibility of control
design.

We are focused on robust output feedback model pre-
dictive control (ROFMPC) for multi-sensor systems. The
ROFMPC framework is first introduced in [13], [14] using
the tube-based MPC technique [15] which computes a RPI
set as a tube to bound the prediction errors of the disturbed
system. In this framework, a Luenberger-structure observer
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is often designed to obtain estimations of the system states.
For this reason, the construction of the tube in ROFMPC
involves both the prediction errors and the estimation errors.
Note that the performance of the ROFMPC framework is
significantly influenced by the tube confining uncertainties,
which motivates us to design to obtain an RPI set as small
as posible. For multi-sensor systems, we take one more step
into complexity as fusion estimation is needed.

When multiple sensors measure different outputs of the
same system, there are basically two methods to design
control with the measured output data. A simple idea is to
collect all the measurements and feed them into a stand-
alone centralized observer [16], which then allows to utilize
the existing ROFMPC approach in [13], [14]. To improve
closed-loop performance, one can leverage techniques that
optimize the observer gain by minimizing the minimal RPI
set, see, e.g., [17]. However, such a procedure is usually
computationally demanding. Moreover, in the ROFMPC
framework, we need to consider RPI sets for both the
estimation errors and the prediction errors, which makes the
computation even more complicated. The other method is
to use a weighted fusion criterion, where the weights are
optimized by minimizing a composite tube which is the
weighted Minkowski sum of the local RPI sets.

In fact, in the context of tube-based MPC, it is also pos-
sible to reduce conservatism by formulating an augmented
system combining the estimation errors and the prediction
errors as shown in [18]. However, since we need to compute a
RPI set for the augmented system, this significantly increases
the computational burden and is thus not realistic for multi-
sensor systems.

This paper considers the problem of output feedback MPC
for multi-sensor systems under polytopic uncertainties. The
contribution of the paper is twofold. First, we leverage a
two-layer fusion estimation procedure into the ROFMPC
approach using RPI sets as tubes. Second, we propose
an optimization algorithm with guaranteed convergence to
design the fusion criterion which minimizes the size of the
overall tube.

The rest of the paper is organized as follows. This section
ends with the notation, followed by Section II on the review
of preliminary results on the ROFMPC framework. Section
III presents the main results which include the description of
a two-layer fusion estimation procedure, robustness analysis,
the optimization-based fusion criterion design, and the pro-
posed fusion-based MPC approach. In Section IV, we apply
the proposed approach to a double-zone building thermal
model.

IEEE Control Systems Letters paper presented at
2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy 

Copyright ©2024 IEEE



II. PRELIMINARIES AND PROBLEM STATEMENT

Consider the following discrete-time disturbed systems

x+ =Ax+Bu+ w, (1)
yi =Cix+ vi, i = 1, 2, ...,M (2)

where x ∈ Rn is the system state, u ∈ Rm is the control
input, x+ is the successor state, w ∈ W ⊂ Rn is the
disturbance, yi ∈ Rpi is the measurement of ith sensor with
the noise vi ∈ Vi ⊂ Rpi , and the sets W and {Vi}Mi=1

are all convex polytopic sets that contain the origin in their
interiors. (A,B) is assumed to be controllable, and for all
i = 1, 2, · · · ,M the couple (A,Ci) is observable (i.e. the
system is locally observable at each sensor). The assumption
of local observability is quite standard for fusion estimation,
see, e.g., [19], [20].

System (1) is subject to the following state and control
constraints:

x ∈ X, u ∈ U, (3)

where X ⊂ Rn and U ⊂ Rm are also convex polytopic sets
that contain the origin in their interiors.

We review some known results on robust output feedback
model predictive control (ROFMPC) from [13], [14]. Let
y ∈ Rp denote the collection of all the outputs:

y =
[
y⊤1 y⊤2 · · · y⊤M

]⊤
, (4)

where p =
∑M

i=1 pi. With the overall output, a Luenberger
observer is used to estimate the state:

x̂+ = Ax̂+Bu+ L(y − ŷ), ŷ = Cx̂, (5)

where x̂ ∈ Rn is the observer state, x̂+ is the successor state
of the observer, ŷ is the output of the observer and L ∈ Rn×p

is chosen such that ρ(A − LC) < 1. To ensure constraint
satisfaction, a tube-based output feedback MPC approach is
proposed in [13] which bounds the state estimation error
by an invariant set. The general structure of this centralized
estimation framework is depicted in Figure 1.
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Fig. 1: Output feedback MPC with centralized estimation

For centralized estimation in ROFMPC, to improve es-
timation performance, one can optimize the observer gain
by minimizing the minimal RPI set using the technique in
[17]. However, this is computationally expensive. Instead,

this paper proposes a fusion-based output feedback MPC
(FOFMPC) approach where local observers are designed for
individual sensors and a weighted fusion criterion is used to
synthesize a fusion estimator.

III. MAIN RESULTS

In this section, we present the proposed fusion-based
output feedback MPC approach for systems with multiple
sensors.

A. A two-layer fusion estimation procedure

Before we show the proposed MPC approach, we first
introduce a two-layer fusion estimation procedure. The first
fusion layer has a netted parallel structure where an individ-
ual observer is designed for each sensor as described below:

x̂+
i = Ax̂i +Bu+ Li(yi − ŷi), ŷi = Cix̂i, (6)

where x̂i and Li are the estimated state and the gain of the
ith observer for i = 1, ...,M . In the second fusion layer, a
fusion center is used to fuse the estimates with weighting
matrices as shown below:

x̂ =

M∑
i=1

αix̂i, (7)

where x̂ is the overall state estimate after fusion and {αi ∈
Rn×n}Mi=1 are the weighting matrices satisfying

∑M
i=1 αi =

I . A fusion criterion will be designed later to optimize these
weighting matrices. With this fusion estimation procedure,
we propose a fusion-based output feedback MPC approach
as shown in Figure 2.
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Fig. 2: Fusion-based output feedback MPC

B. Error analysis and set-membership bounding

We now discuss robustness properties of the proposed
fusion estimation procedure. The nominal system that dis-
regards all the disturbances is given by

x̄+ = Ax̄+Bū, (8)

where x̄ is the nominal system state and ū is the input to the
nominal system. Let ϕ(k; x̄0, ūuu) represent the solution of the
nominal system (8) at time k given an initial state x̄0 and



a control sequence ūuu. The state sequence can be given as
x̄xx := {ϕ(k; x̄0, ūuu), k = 0, 1, ...}, which is considered as the
center of a tube in the tube-based MPC approach [15]. For
the disturbed system (1) and the observers in (6), the control
law is chosen in the form of

u = ū+Ke, (9)

where e := x̂ − x̄ denotes the prediction error and K
satisfies ρ(A + BK) < 1, Under this control law, for any
i = 1, 2, · · · ,M , the closed-loop observer becomes:

x̂+
i = Ax̂i +Bū+BKe+ LiCix̃i + Livi, (10)

where x̃i := x − x̂i is the state estimation error of the
ith observer. This leads to the following prediction error
dynamics: i = 1, 2, · · · ,M ,

e+i = AKei + (LiCix̃i + Livi) +BK(e− ei), (11)

where AK := A + BK and ei := x̂i − x̄. The dynamics of
the estimation error of the ith observer can be described as:

x̃+
i = ALi

x̃i + (w − Livi), i = 1, 2, · · · ,M, (12)

where ALi
:= A− LiCi with ρ(ALi

) < 1.
We then derive set-membership bounds for the prediction

and estimation errors using robust positively invariant (RPI)
sets, see the definition in [21], [22]. The dynamics of the
estimation error given in (12) can be rewritten as follows:

x̃+
i = ALi

x̃i + δ̃i, i = 1, 2, · · · ,M, (13)

where δ̃i := w − Livi lies in the set ∆̃i defined by:

∆̃i := W⊕ (−LiVi). (14)

Since ρ(ALi
) < 1, it is shown in [22] that there exist a

polytopic set S̃i such that

ALi
S̃i ⊕ ∆̃i ⊆ S̃i, ∀i = 1, 2, · · · ,M (15)

which means that x̃i(0) ∈ S̃i implies x̃i(k) ∈ S̃i for all
k ∈ N and i ∈ 1, 2, ...,M . Combing the individual prediction
error dynamics in (11), we obtain

e+ =

M∑
i=1

αie
+
i =

M∑
i=1

αi

(
AKei + δ̄i +BK(e− ei)

)
=

M∑
i=1

αi(AKei + δ̄i) = AKe+

M∑
i=1

αiδ̄i (16)

where δ̄i := LiCix̃i + Livi. Since x̃i is bounded by S̃i, δ̄i
lies in the set ∆̄i defined by:

∆̄i := LiCiS̃i ⊕ LiVi, i = 1, 2, · · · ,M. (17)

Since ρ(AK) < 1, again from [22], there exists polytopic
sets {S̄i} such that

AK S̄i ⊕ ∆̄i ⊆ S̄i, i = 1, 2, · · · ,M. (18)

For convenience, we call sets satisfying (15) estimation RPI
sets and sets satisfying (18) prediction RPI sets respectively.

Given S̃i and S̄i satisfying (15) and (18) respectively, we
define

Si := S̄i ⊕ S̃i, ∀i = 1, 2, ...,M. (19)

Given the fusion estimate x̂ in (7), the overall state estimation
error x̃ := x− x̂ is described as

x̃+ =

M∑
i=1

αi (ALi
x̃i + (w − Livi)) . (20)

With the results above, we are ready to discuss set-
membership bounds for actual trajectories. In order to ensure
that the actual control input is contained in the set U, a
standard technique is to tighten the constraint on the control
of the nominal system. More precisely, consider the control
law in (9), u = ū+Ke ∈ U given ū ∈ U⊖KS̄, where

S̄ = α1S̄1 ⊕ α2S̄2...⊕ αM S̄M . (21)

Similarly, we impose a tightened constraint on the nominal
state x̄ ∈ X⊖ S, where

S = α1S1 ⊕ α2S2 ⊕ · · · ⊕ αMSM . (22)

The discussions above are now formalized as follows.
Proposition 1: Consider the disturbed system (1)–(2), the

observer (6) and the fusion strategy (7) with the weighting
matrices {αi}Mi=1. Let x(k), x̂i(k), ei(k), x̃i(k) denote the
solution of (1), (10), (11) and (12) respectively and the
set {S̄i, S̃i, Si}Mi=1 satisfy (15), (18) and (19) respectively.
Suppose that x̃i(0) ∈ S̃i for any i = 1, 2, ...,M and∑M

i=1 αiei(0) ∈ S̄ and that x̄(k) ∈ X⊖S and ū(k) ∈ U⊖KS̄
for all k ∈ N, where S̄ and S are defined as in (21) and (22).
It holds that x(k) ∈ x̄(k)⊕S ⊆ X and u(k) ∈ ū(k)⊕ S̄ ⊆ U
for all admissible disturbance sequences for all k ∈ N.

Proof: We first show that e(k) =
∑M

i=1 αiei(k) ∈ S̄ for
any k ∈ N. The proof goes by induction. Suppose e(k) ∈ S̄
for some k ∈ N. By the definition of S̄ in (21), there exist
{e′i ∈ S̄i} such that e(k) =

∑M
i=1 αie

′
i. From (16),

e(k + 1) = AKe(k) +
M∑
i=1

αiδ̄i = AK

M∑
i=1

αie
′
i +

M∑
i=1

αiδ̄i

=

M∑
i=1

αi(AKe′i + δ̄i) ∈
M∑
i=1

αiS̄i = S̄

Since e(0) =
∑M

i=1 αiei(0) ∈ S̄, e(k) =
∑M

i=1 αiei(k) ∈
S̄ for any k ∈ N. Similarly, we can show that x̃(k) ∈∑M

i=1 αiS̃i for any k ∈ N. Indeed, from the invariance
property in (18), x̃i(0) ∈ S̃i implies that x̃i(k) ∈ S̃i for
any k ∈ N for any i = 1, 2, · · · ,M . Then, by definition,
x(k) = x̄(k) + e(k) + x̃(k) ∈ x̄(k) ⊕ S and u(k) =
ū(k) +Ke(k) ∈ ū(k)⊕KS̄. This completes the proof.

C. Fusion criterion design

We now discuss the design of the weighting matrices in the
fusion strategy in (7). The polyhedral volume can serve as a



metric for measuring the size of RPI set. To improve closed-
loop performance, we minimize the size of S as defined in
(22) by formulating the following problem

min
{αi∈Rn×n}

{Vol(⊕M
i=1αiSi) : s.t.

M∑
i=1

αi = I} (23)

where Si is given in (19). However, computing the volume of
a polytope is known to be expensive, see, e.g., [23]. Instead,
we minimize the size of the smallest enclosing ellipsoid of
S, expressed as E(Ω) := {x ∈ Rn : x⊤Ωx ≤ 1} for some
Ω ∈ Sn+. Thus, an approximation of (23) is given as

min
{αi∈Rn×n},Ω∈Sn+

− log det(Ω) (24a)

s.t.
M∑
i=1

αi = I, ⊕M
i=1 αiSi ⊂ E(Ω), (24b)

By utilizing the vertices of a polyhedron, (24) can be
equivalently written as

min
{αi∈Rn×n},Ω∈Sn+

− log det(Ω) (25a)

s.t.
M∑
i=1

αi = I, (25b)

(

M∑
i=1

αivi)
⊤Ω(

M∑
i=1

αivi) ≤ 1,∀vi ∈ V(Si). (25c)

where V(·) represents the vertices. We then solve the problem
above via alternating minimization. The details are described
in Algorithm 1. The convergence of Algorithm 1 is discussed
in the following proposition.

Proposition 2: Give the sets {Si}Mi=1 as defined in (22),
let the sequence {Ωk} be generated from Algorithm 1. It
hold that Vol

(
E(Ωk+1)

)
≤ Vol

(
E(Ωk)

)
for any k ∈ N.

Proof: For any k ∈ N, by definition, Ωk+1 is the
optimal solution of (26) for the given {αk

i }, meaning that
E(Ωk+1) is the smallest ellipsoid that encloses ⊕M

i=1α
k+1
i Si.

From (27), ⊕M
i=1α

k+1
i Si ⊆ E(Ωk/γk+1), where γk+1 de-

notes the optimal value function of (27), which means
that Ωk/γk+1 is a feasible solution to (26) for the given
{αk+1

i }. Hence, Vol
(
E(Ωk/γk+1)

)
≥ Vol

(
E(Ωk+1)

)
. We

then show that γk+1 ≤ 1. Since ({αk
i }, 1) is always a

feasible solution to (27), by optimality, γk+1 ≤ 1. Finally,
Vol

(
E(Ωk+1)

)
≤ Vol

(
E(Ωk/γk+1)

)
≤ Vol

(
E(Ωk)

)
. This

completes the proof.

D. The proposed MPC approach: Recursive feasibility and
stability

With the fusion estimation procedure above, we are ready
to present the proposed fusion-based MPC approach. Essen-
tially, our approach is an extension of [13] to the case of
multi-sensor fusion.

Algorithm 1 Fusion criterion design

Input: {Si}Mi=1, ϵ
Output: {αi}Mi=1

Initialization: Let k ← 0 and the initial weighting
matrices be α0

i ← 1
M I for all i = 1, 2, · · · ,M ;

1: For the given {Si}Mi=1 and α0
i , find the smallest enclosing

ellipsoid of S. Compute Ωk by solving

min
Ω∈Sn+

− log det(Ω) (26a)

s.t. (

M∑
i=1

αk
i vi)

⊤Ω(

M∑
i=1

αk
i vi) ≤ 1,∀vi ∈ V(Si). (26b)

2: Fix the variable Ω and update the weights {αk+1
i } which

can be solved by

min
{αi∈Rn×n},γ≤1

γ (27a)

s.t.
M∑
i=1

αi = I, (27b)

(

M∑
i=1

αivi)
⊤Ωk(

M∑
i=1

αivi) ≤ γ,∀vi ∈ V(Si). (27c)

3: If k ≥ 1 and |Vol
(
E(Ωk)

)
−Vol

(
E(Ωk−1)

)
| < ϵ, stop;

Otherwise, let k ← k + 1 and return to Step 1.

Given the fusion state estimate x̂, we solve the following
online optimization problem:

min
x̄0,ūuu

VN (x̄xx, ūuu) :=

N−1∑
k=0

ℓ(x̄k, ūk) + Vf (x̄N ) (28a)

s.t. x̂ ∈ x̄0 ⊕ S̄, x̄N ∈ Xf (28b)
x̄k+1 = Ax̄k +Būk, k = 1, 2, · · · , N − 1 (28c)
x̄k ∈ X⊖ S, ūk ∈ U⊖KS̄ (28d)

where N is the prediction horizon, x̄xx := {x̄0, x̄1, · · · , x̄N},
ūuu := {ū0, ū1, · · · , ūN−1}, ℓ(x̄k, ūk) := x̄⊤

k Qx̄ + ū⊤
k Rū is

the stage cost for some Q ∈ Sn+ and R ∈ Sm+ , Vf (x̄N ) :=
x̄⊤
NPx̄N is the terminal cost for some P ∈ Sn+, and Xf is

the terminal constraint set satisfying the standard axioms in
[24]. Let (x̄∗

0(x̂), ūuu
∗(x̂)) denote the minimizer of (28). The

control law κN (·) becomes

κN (x̂) := ū∗
0(x̂) +K(x̂− x̄∗

0(x̂)) (29)

where ū∗
0(x̂) is the first element in ūuu∗(x̂). Under this control

law, Combing the local observations in (10), we obtain

x̂+ =

M∑
i=1

αix̂
+
i =

M∑
i=1

αi(Ax̂i +BκN (x̂) + δ̄i)

= Ax̂+BκN (x̂) +
∑M

i=1
αiδi (30)

where δ̄i is given in (16). Since δ̄i lies in the set ∆̄i which is
defined in (17), So

∑M
i=1 αiδ̄i lies in the set

∑M
i=1 αi∆̄i =∑M

i=1 αi(LiCiS̃i ⊕ LiVi).



We then characterize the domain of attraction of the
closed-loop system (30). For the nominal system (8), given
any initial state x̄ ∈ X ⊖ S, the set of admissible control
sequences is

U∗
N (x̄) = {ūuu

∣∣ ūk ∈ U⊖KS̄, x̄k ∈ X⊖ S, (31)
∀k = 1, 2, · · · , N − 1, x̄0 = x̄, x̄N ∈ Xf}.

Let X̄N := {x̄ ∈ X⊖S | U∗
N (x̄) ̸= ∅}. With these definitions,

it can be shown that X̄N ⊕ S̄ is a domain of attraction for
System (30). Putting all the pieces together, we arrive at the
key result of this paper.

Theorem 1: Consider the disturbed system (1)–(2), the
observer (6) and the fusion strategy (7) with the weighting
matrices {αi}Mi=1. Let the set S̄, S, {S̃i}Mi=1 satisfy (21),
(22) and (15) respectively and x̃i(k) denote the solution of
(12). Given any x̂ ∈ X̄N ⊕ S̄, let (x̄∗

0(x̂), ūuu
∗(x̂)) denote the

minimizer of (28) and the control law κN (x̂) is given as in
(29). Then, the following results hold:
(i) S̄ is robustly exponentially stable for x̂+ = Ax̂ +
BκN (x̂) +

∑M
i=1 αiδ̄i with a region of attraction X̄N ⊕ S̄.

(ii) For any state x(0) = x̂(0) + x̃(0) where x̃(0) =∑M
i=1 αix̃i(0) and (x̂(0), x̃i(0)) ∈ (X̄N⊕S̄)×S̃i for any i =

1, 2, ...,M , System (1) is robustly steered to S exponentially
fast while satisfying the state and control constraints.

Proof: (i) Since x̃i(0) ∈ S̃i, it follows from Proposition
1 that x̃i(k) ∈ S̃i for any k ∈ N and any i = 1, 2, · · · ,M .
Let x̂(k) denote the solution of x̂+ = Ax̂ + BκN (x̂) +∑M

i=1 αiδi given its initial state is x̂(0). It follows from [15,
Theorem 1] that there exists a c and a γ ∈ (0, 1) such that
|x̄∗

0(x̂(k))| ≤ cγi |x̄∗
0(x̂(0))| for all x̂(0) ∈ X̄N⊕S̄ and every∑M

i=1 αiδ̄i. From (28), We can know that x̂(k) ∈ x̄∗
0(x̂(k))⊕

S̄. Then, the distance of point x̂(k) and x̂(0) from the set S̄
satisfies d(x̂(k), S̄) ≤ cγid(x̂(0), S̄) for all x̂(0) ∈ X̄N ⊕ S̄
and every

∑M
i=1 αiδ̄i. So the set S̄ is robustly exponentially

stable for the controlled uncertain system with a region of
attraction of X̄N ⊕ S̄.
(ii) Since x̃i(0) ∈ S̃i for any i = 1, 2, ...,M , it follows from
Proposition 1 that x̃(k) ∈

∑M
i=1 αiS̃i for any k ∈ N. Since

x(k) ∈ x̂(k) ⊕
∑M

i=1 αiS̃i for all k ∈ N . Then System (1)
is robustly steered to S exponentially fast.

Based on the results above, the details of the proposed
FOFMPC approach are described in Algorithm 2.

IV. SIMULATION

Consider the following building thermal model with three
zones [25] [26]: c1Ṫ1 = T2−T1

R12
+ T3−T1

R13
+ To−T1

Ro
1

+ q1+w1,
c2Ṫ2 = T1−T2

R12
+ T3−T2

R23
+ To−T2

Ro
2

+ q2 + w2, c3Ṫ3 =
T1−T3

R13
+ T2−T3

R23
+ To−T3

Ro
2

+w3, where Ti, ci, R
o
i , and wi are

the temperature of zone i, the thermal capacitance of zone i,
the thermal resistance between zone i and the outside envi-
ronment, and the thermal disturbance of zone i respectively,
T0 is the temperature of outside air, R12, R13, R23 denote
the thermal resistances between zones, and q1, q2 are the
energy inputs into zone 1 and zone 2. We consider the case
where only zone 1 and zone 2 are equipped with thermostats.
The outside air temperature is 38◦C. The disturbances are

Algorithm 2 Fusion-based output feedback MPC

Input: A,B, {Ci, Li, αi}, R, Q, K, P , S, S̄, X, U, Xf , N
Output: {x̂(k), u(k)} Initialization: Let k ← 0, set the

initial local estimates {x̂i(k)}Mi=1;
1: Compute the overall estimate x̂(k) from (7);
2: Solve the optimization problem (28) and obtain the

solution (x̄∗
0(x̂(k)), ūuu

∗(x̂(k)));
3: Obtain the control input u(k) = κN (x̂(k)) from (9) and

apply it to System (1);
4: Obtain the measurement {yi(k)}Mi=1 of the current time

through sensors;
5: Compute the local estimates {x̂i(k + 1)}Mi=1 from (6);
6: Set k ← k + 1 and go to Step 1 until some stopping

criterion is met.

uniformly sampled from the corresponding bounding sets:
W = {w ∈ R3 : ∥w∥∞ ≤ 0.1}, V1 = V2 = {v ∈
R : v ∈ [−0.1, 0.1]}. Other system parameters are given
as follows: c1= 1.375× 103kJ/K, c2= 2.0625× 103kJ/K,
c3= 1.7187 × 103kJ/K, R12 = R21 = 1.5K/kW , R13 =
R31 = R23 = R32 = 1.2K/kW , Ro

1 = Ro
2 = 3K/kW ,

Ro
3 = 2.7K/kW .
The temperature set points of zone 1 and zone

2 are T s
1 = 23◦C and T s

2 = 24◦C respectively.
It can be obtained that the steady temperature of
zone 3 is T s

3 = 26.14◦C and the steady inputs are
qs := (qs1, q

s
2) = (−8.2803,−5.7803). We consider the

following constraints: 16 ≤ Ti ≤ 38,∀i = 1, 2, 3 and
−16 ≤ qi ≤ 0,∀i = 1, 2. We discretize the continuous-time
system by the zero-order-hold method with the sampling
time ∆t = 5min, obtaining the state space model: A =
[0.6849, 0.1148, 0.1322; 0.0765, 0.7783, 0.0960; 0.1057, 0.1
152, 0.7170], B = [0.1810, 0.0090; 0.0090, 0.1283; 0.0128, 0
.0091], C1 = [1, 0, 0], C2 = [0, 1, 0], C = [C1;C2].

Let the state be x = T −T s and the control input be u =
q−qs where T = (T1, T2, T3) and q = (q1, q2). The state and
input constraint sets are X = {x ∈ R3 : x1 ∈ [−7, 15], x2 ∈
[−8, 14], x3 ∈ [−10.1364, 11.8636]} and U = {u ∈ R2 :
u1 ∈ [−7.7197, 8.2803], u2 ∈ [−10.2197, 5.7803]}. For
fair comparison, the local observer gains are obtained from
the optimal Luenberger gain of centralized estimation and
compute K from LQR. The weights for fusion estimation
are obtained through Algorithm 1.

Under different estimation strategies, we compute the
tubes for ROFMPC as shown in Figure 3. It is expected
that our fusion estimation strategy produces a smaller tube.
We also show the evolution of the temperature of the three
zones in Figure 3c from the initial state x0 = (3, 5, 3)T

under the fusion estimation strategy and observe that the
input constraint are satisfied in Figure 3d.

In the rest of the section, we also make comparison with
the approach in [18] which reduce conservatism in [13]
by using an augmented system. We scale the measurement
noise sets as follows: Vi = {v : |v| ≤ Vmax}, i = 1, 2,
where Vmax is the scaling parameter. We consider the LQ
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cost
∑50

t=0 x
⊤(t)Qx(t) + u⊤(t)Ru(t) for 50 steps from the

same initial state under the same disturbances (generated
randomly) when N = 6. As can be seen in Figure 4, our
approach outperforms [18] as measurement noise increases,
showing the effectiveness of fusion estimation.

V. CONCLUSION

This paper proposes a fusion estimation approach for
robust output feedback MPC of multi-sensor systems. For
each sensor, a local observer is designed with a Luen-
berger structure. We adopt a weighted fusion criterion where
the weights are computed by minimizing the weighted
Minkowski sum of the RPI sets. This fusion estimation
procedure is then integrated into the design of tube-based
MPC which guarantees recursive feasibility and stability.
Finally, we show by numerical simulation the advantage of
the proposed approach.
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bust output feedback model predictive control of constrained linear
systems: Time varying case. Automatica, 45(9):2082–2087, 2009.

[15] D. Q. Mayne, M. M. Seron, and S. V. Raković. Robust model predic-
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