
Differentially Flat Learning-Based Model Predictive Control Using a
Stability, State, and Input Constraining Safety Filter

Adam W. Hall1 †, Melissa Greeff2 †, and Angela P. Schoellig3 †

Abstract— Learning-based optimal control algorithms control
unknown systems using past trajectory data and a learned
model of the system dynamics. These controllers use either
a linear approximation of the learned dynamics, trading per-
formance for faster computation, or nonlinear optimization
methods, which typically perform better but can limit real-
time applicability. In this work, we present a novel nonlinear
controller that exploits differential flatness to achieve similar
performance to state-of-the-art learning-based controllers but
with significantly less computational effort. Differential flatness
is a property of dynamical systems whereby nonlinear systems
can be exactly linearized through a nonlinear input mapping.
Here, the nonlinear transformation is learned as a Gaussian
process and is used in a safety filter that guarantees, with
high probability, stability as well as input and flat state
constraint satisfaction. This safety filter is then used to refine
inputs from a flat model predictive controller to perform
constrained nonlinear learning-based optimal control through
two successive convex optimizations. We compare our method
to state-of-the-art learning-based control strategies and achieve
similar performance, but with significantly better computational
efficiency, while also respecting flat state and input constraints,
and guaranteeing stability.

I. INTRODUCTION
In recent years, interest has grown in controlling safety-

critical systems whose dynamics are partially unknown,
like unmanned aerial vehicles, driverless cars, and mobile
manipulators. Classically, guaranteeing safety and stability
of these uncertain systems results in overly conservative
behaviour, limiting their usage in real tasks. Using machine
learning and past trajectory data inside classical control
frameworks to learn the system dynamics has proven to be
an effective, safe learning-based control technique, but often
requires slow nonlinear optimizations and can suffer from
poor computational stability and efficiency [1]. For example,
Gaussian process model predictive control (GPMPC) uses a
Gaussian process (GP) to model the uncertain dynamics. This
learned model is then used inside a robust model predictive
control (MPC) framework. GPMPC has been used on mobile
robots [2], quadrotors [3], and other autonomous systems.

A drawback of GPMPC is its computational complexity.
It either requires powerful on-board computation or remote

1Adam W. Hall is jointly with the Learning Systems and Robotics Lab
(www.learnsyslab.org) and the STARS lab (starslab.ca) at the University of
Toronto Institute for Aerospace Studies (UTIAS), Toronto, Canada. Email:
adam.hall@robotics.utias.utoronto.ca

2Melissa Greeff is with the Robora Lab (www.roboralab.com) at the
Department of Electrical and Computer Engineering, Queen’s University,
Kingston, Canada.

3Angela P. Schoellig is with the Learning Systems and Robotics Lab
(www.learnsyslab.org) at the Technical University of Munich and the
University of Toronto, and the Munich Institute for Robotics and Machine
Intelligence (MIRMI), Munich, Germany.

†All authors are with the Vector Institute for Artificial Intelligence,
Toronto, Canada.

Fig. 1. Our proposed architecture enables high-performance trajectory
tracking for uncertain differentially flat systems by developing a learning-
based model predictive controller that is computationally efficient to com-
pute. We do this by solving two convex optimization problems: 1) a convex
quadratic program in flat model predictive control that finds the flat input
v∗k and state z∗k to track a reference zref

k ; 2) a second-order cone program
in the safety filter that uses a learned representation of the flat nonlinear
input mapping v = ψ(z, u), with posterior prediction mean µ(·) and
covariance σ(·), to perform probabilistic feedback linearization guaranteeing
asymptotic stability, as well as state and input constraint satisfaction.

computation of inputs, limiting its use in real systems.
Standard GPs require all of their training data to be stored in
memory and their posterior mean and covariance predictions
are computationally expensive, even when using approxi-
mate methods [4]—many approximations and ‘tricks’ are
used to achieve real-time operability. There are, however,
structural assumptions about the dynamics that can improve
computational speed without sacrificing performance, such
as incorporating a control-affine structure, and differential
flatness.

Differential flatness is a property of many nonlinear dy-
namical systems that enables their transformation into linear
systems through a nonlinear input mapping, called exact
linearization [5]—this is an exact transformation, not an
approximation. Linear control techniques can then be used to
compute a flat input that is subsequently transformed through
this nonlinear mapping and applied to the real system. Many
real robotic systems are differentially flat, like quadrotors [6],
flexible-joint manipulators [7], and mobile robots [8], to list a
few. In the literature, differential flatness has been exploited
to control nonlinear systems using linear MPC [6], called
flat MPC (FMPC), which achieves similar performance to
nonlinear MPC while greatly improving computational effi-
ciency.

Differential flatness has also been exploited in safe
learning-based controllers. In [9], the nonlinear input map-
ping and its inverse are learned from trajectory data and used
in a robust linear quadratic regulator (RLQR) formulation to
control an uncertain system, while guaranteeing an ultimate
upper bound on tracking error. This method is more com-
putationally efficient than GPMPC, however, still involves
a demanding nonlinear optimization and cannot explicitly
handle input constraints or state constraints.

More recently, [10] has used a learned representation of

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 4075

the nonlinear input mapping inside of a safety filter that
finds the input that best matches the desired input from a flat
linear controller while guaranteeing probabilistic asymptotic
stability. In particular, the safety filter is formulated as a
Second-Order Cone Program (SOCP) by exploiting differen-
tial flatness and the affine-control structure of the dynamics.
This SOCP is more computationally efficient than GPMPC
and RLQR and can explicitly handle input constraints, but it
cannot enforce any state constraint guarantees.

In this work, we build upon [10] to provide three main
contributions:

• a novel safe learning-based MPC for nonlinear, differ-
entially flat, control-affine systems that can be solved
via two successive convex optimizations;

• a novel safety filter that guarantees, with high proba-
bility, asymptotically stable tracking error, and flat-state
and input constraint satisfaction, modelled as an SOCP;

• a comparison with GPMPC, in simulation, that shows
our approach achieves similar performance but is at least
10 times more computationally efficient.

The advantage of MPC, used in this work, over lin-
ear quadratic regulation (LQR) used in [10], is antic-
ipating the reference and constraint boundaries which
avoids infeasible states and aggressive inputs, as shown
in our simulated examples. All code is available at
github.com/utiasDSL/fmpc socp.

II. PROBLEM STATEMENT

We consider a single-input continuous-time control-affine
nonlinear system

ẋ(t) = f(x(t)) + g(x(t))u(t), (1)

with initial condition x(0) = x0, where x(t) ∈ Rn and
u(t) ∈ R are the state and input of the system at time
t ∈ R≥0. The maps f : Rn → Rn and g : Rn → Rn are
unknown, but are assumed to be locally Lipschitz continuous.
It is assumed that a prior model of the unknown system is
given by

ẋ(t) = f̃(x(t)) + g̃(x(t))u(t). (2)

Assumption 2.1: The system (1) and the prior model (2)
are single-input single-output systems and differentially flat
with respect to a known flat output y = h(x(t)), with y ∈ R.

Definition 2.1 (Differential Flatness [5]): A smooth sin-
gle input nonlinear system is differentially flat if there exists
a flat output y ∈ R such that the input and all states can be
uniquely determined from this flat output and its derivatives
z = [y, ẏ, . . . , y(n−1)]T , and there exists smooth, invertible
functions x = ϕ−1(z), u = ψ−1(z, v), where v = y(n).

Lemma 2.1 (Linearized Flat Dynamics [5], [7]): A dif-
ferentially flat system (1) can be transformed into a linear
system in the Brunowsky Canonical form

ż(t) = Az(t) +B v(t), (3)

where the new input v is related to the system input via the
nonlinear mapping

v = ψ(z, u). (4)

Furthermore, if the system is control affine, then this map-
ping has the specific form

v = α(z) + β(z)u. (5)
Remark 2.1: Given that the mappings f and g in (1) are

unknown, α and β are also unknown.
Our system (1) is subject to input constraints U := {u ∈

R | umin ≤ u ≤ umax} and convex constraints on the flat-state
vector z ∈ Z .

Remark 2.2: The constraints are enforced on the flat state
z. While the flat state differs from the state x, in many
robotic systems it still represents physical quantities that
are constrained. For example, in quadrotors, it represents
the position, velocity, and acceleration; in flexible joint
manipulators, it represents the output shaft joint angle and
its derivatives [7]; and for mobile robotics, the commonly
used unicycle model’s flat state comprises position, velocity,
and acceleration [8].

The objective is to design a computationally efficient
controller for the unknown system (1) that achieves high
tracking performance of a reference trajectory zref, guaran-
tees tracking convergence with high probability, and respects
input and state constraints.

III. BACKGROUND

A. Discrete-Time Control Lyapunov Function
Given a constant sampling period δt, the discretization of

(3) becomes
zk+1 = Ad zk +Bd vk, (6)

where Ad and Bd are Euler discretizations of A and B.
Further, zk = z(δtk) and vk = v(δtk) are time-sampled flat
states and inputs at time step k ∈ N≥0.

Consider the smooth reference zref(t) : [0, T) → Rn and
vref(t) : [0, T) → R sampled every kδt to yield the discrete
reference signals zref

k = zref(kδt), vref
k = vref(kδt). The

tracking error can be defined with respect to this reference
as ek = zk − zref

k . Given an error feedback control policy
vk = −Kek+v

ref
k with gain K ∈ R1×n, the error dynamics

become ek+1 = (Ad−Bd K)ek.
Definition 3.1: If a function V : Rn → R≥0 satisfies

V (0) = 0 and V (ek) > 0, ∀ek ∈ Z \{0}
V (ek+1) < V (ek), ∀ek ∈ Z \{0} (7)

for the error dynamics, then it is called a Control Lyapunov
Function (CLF) and its existence guarantees the asymptotic
stability of the closed-loop dynamics.

Lemma 3.1 ([7]): Given Assumption 2.1, if the trans-
formation (4) is known, uk can be chosen to cancel the
nonlinear term (4) and find a vk such that the resulting linear
error dynamics are Hurwitz.

Remark 3.1: The true dynamics are unknown, and thus
the inverse transform u = ψ(z, v) is unknown and is
often approximated using the prior model (2). Such control
methods, however, are not robust to model mismatch in (4)
[6].

B. Gaussian Processes (GPs)
GPs are used to model nonlinear functions ψ(a) :

Rdim(a) → R. They encapsulate a prior over possible func-

4076

tions. As data are collected, the possible functions for ψ(a)
are refined and the GP obtains a posterior distribution over
functions [11]. GPs assume that all collected data is jointly
Gaussian with a prior mean and covariance. GP regression is
the process of finding the hyperparameters that optimize the
log-likelihood of the marginal distribution over the sampled
function data.

Given a query point a∗, the posterior prediction con-
ditioned on the data D = {(ai, ψ̂(ai)}ND

i=1 is given by
the distribution ψ(a∗)|D ∼ N

(
µ(a∗), σ2(a∗)

)
. Here, the

posterior mean and covariance are µ(a∗) = k(a∗)K−1Ψ̂,
and σ(a∗) = k(a∗,a∗)−k(a∗)K−1kT (a∗), where k(a∗) =
[k(a∗,ai), . . . , k(a

∗,aND)], Ki,j = k(ai,aj), and Ψ̂ =
[ψ̂(a1), . . . , ψ̂(aND)]

T . See [11] for more details.

IV. METHODOLOGY

In our proposed architecture, shown in Figure 1, we
exploit the control-affine and differentially flat structure of
the system (1) to design a learning-based model predic-
tive controller. Our method solves two convex optimization
problems at each time-step: a convex FMPC to determine
the flat input to the linear dynamics (6) that best tracks
a given reference trajectory; and a safety filter formulated
as an SOCP that ensures probabilistic asymptotic stability,
probabilistic flat-state constraint satisfaction, and input con-
straint satisfaction, even when (1) is uncertain. By leveraging
system data, we develop a controller that achieves high
tracking performance despite unknown system dynamics (1),
but is still computationally efficient, making onboard input
computation more practical relative to the current state-of-
the-art.

This section follows the components of our controller
given in Figure 1. First, in Section IV-A, the FMPC is
formulated, assuming the system dynamics (1) and the input
mapping u = ψ−1(z, v) are known. As (1) is not known, a
learned representation of (4) using GPs is used. In particular,
our approach exploits the affine structure of (1) and (4), as
detailed in Section IV-B. Finally, in Section IV-C, the proba-
bilistic feedback linearization (Section IV-C.1), probabilistic
asymptotic stability (Section IV-C.2), and probabilistic flat-
state constraint (Section IV-C.3), are formulated as an SOCP
safety filter (Section IV-C.4).

A. Flat Model Predictive Control

FMPC iteratively solves a convex finite-horizon optimal
control problem (OCP) to control the nonlinear flat system
(1). In this section, the FMPC formulation is presented and
builds on the FMPC formulation in [6]. We highlight how
FMPC can be designed such that the error dynamics, with
respect to a flat reference zref, are asymptotically stable when
the system dynamics (1) are known.

Assumption 4.1 ([12]): There exists a cost function ℓ that
is bounded by comparison functions ζ̄, ζ ∈ K∞ such that
ζ(∥zk−zref

k ∥) ≤ infvk ℓ(zk, z
ref
k , vk) ≤ ζ̄(∥zk−zref

k ∥) ∀ zk ∈
Z .

Remark 4.1: We consider cost functions of the form
ℓ(zk, z

ref
k , vk) = (zk − zref

k)T Q(zk − zref
k) + v2kr, where

Q ∈ Rn×n, Q ≻ 0, r ∈ R, r > 0.

The convex finite-horizon OCP solved at each time step
is given by

min
zk|k:k+N ,vk|k:k+N−1

JN (zk|k+1:k+N , z
ref
k|k+1:k+N , vk|k:k+N−1)

s.t. zk|k = ẑk (8)
zk|i+1 = Ad zk|i +Bd vk|i, ∀i ∈ [k, k +N − 1]

zk|i ∈ Z ∀i ∈ [k, k +N],

where N ∈ N is the horizon length, ẑk is the
measured flat state at time step k, JN (·, ·, ·) =∑k+N

i=k+1 ℓ(zk|i, z
ref
k|i, vk|i−1) is the cost function, and the

flat states zk|k:k+N = [zk, . . . , zk+N], the flat refer-
ence zref

k|k:k+N = [zref
k , . . . , z

ref
k+N], and the flat inputs

vk|k:k+N−1 = [vk, . . . , vk+N−1] are sequences for time step
k to time step k+N , computed at time step k. The optimal
solution to OCP (8) at time step k is given by the sequences
z∗k|k:k+N and v∗k|k:k+N−1. We use the notation z∗k := z∗k|k
and v∗k := v∗k|k for the optimal flat state and flat input
computed at time step k. This state-input pair is used in the
safety filter in Section IV-C. This OCP then applies the zero-
order hold input u(t) = ψ−1(z∗k, v

∗
k) ∀ t ∈ [kδt, (k + 1)δt)

to the system.
Assumption 4.2 ([12]): There exists a comparison func-

tion ξ ∈ K∞ and an integer s ∈ N such that, for all z ∈ Z ,
the inequality infv Js(z, z

ref, v) ≤ ξ(infv ℓ(z, z
ref, v)) holds

for all s ∈ N.
Lemma 4.1 ([12, Thm. 6.2], [13, Sec. 8.3]): Given

Assumptions 4.1 and 4.2, there exists an N ∈ N such
that the sampled-data MPC, defined by OCP (8), is
asymptotically stable in the closed-loop with respect to the
reference zref. Furthermore, in the unconstrained case (i.e.,
where the flat-state constraint zi ∈ Z is not present), the
OCP (8) permits an equivalent closed-form solution

v∗k = −K(zk − zref
k) + vref

k , (9)

where K ∈ R1×n is the equivalent gain matrix.

B. Gaussian Process Learning

FMPC, presented in the previous section, relies on know-
ing (1) to compute the input uk = ψ−1(z∗k, v

∗
k) from the

optimized trajectory (i.e., z∗k and v∗k). Given (1) is unknown,
we propose to learn the map (4) as a GP. We thus encode
the control-affine structure of (5) in the kernel selection of
the GP. This structure enables us to formulate probabilistic
stability and state constraints in our filter in Section IV-C as
an SOCP. Specifically, we select the following kernel [14]

k(ai,aj) = kα(zi, zj) + uikβ(zi, zj)uj + δi,jσ
2
η. (10)

Assumption 4.3: kα(·, ·) and kβ(·, ·) are positive definite
and bounded kernels.

Lemma 4.2: [10, Lem. 2] Given Assumption (4.3), the
affine kernel in (10) is also bounded and positive definite.
Given a query point a = (z, u) and a regressed GP condi-
tioned on ND noisy observations D = {ai, ψ̂(ai)}ND

i=1, the
posterior mean prediction µ(a) and variance σ(a) are linear

4077

and quadratic in u, respectively,

µ(a) = γ1(z) + γ2(z)u, (11)

σ2(a) = γ3(z) + γ4(z)u+ γ5(z)u
2, (12)

where

γ1(z) = kα(z)K
−1Ψ̂, γ2(z) = kβ(z)K

−1Ψ̂,

γ3(z) = kα(z, z)− kα(z)K
−1kT

α(z),

γ4(z) = −(kβ(z)K
−1kT

α(z) + kα(z)K
−1kT

β (z)),

γ5(z) = kβ(z, z)− kβ(z)K
−1kT

β (z).

Here, Ψ̂ ∈ RND , with Ψ̂i = ψ̂(ai), kα(z) ∈ R1×ND

with kα,i(z) = kα(z, zi), kβ(z) ∈ R1×ND with kβ,i(z) =
kβ(z, zi), and K ∈ RND×ND with elements Ki,j =
k(ai,aj).

C. Safety Filter

In this section, we use the learned GP model of (5) in a
safety filter design with three components: 1) probabilistic
feedback linearization, 2) a probabilistic stability constraint,
and 3) a probabilistic state constraint. We then show how to
implement the safety filter as a SOCP.

1) Probabilistic Feedback Linearization: We aim to find
uk such that the flat input vk in (6) seen by the system
closely matches the desired flat input v∗k, optimized in FMPC.
We select the input uk that minimizes the expected square
distance between the desired flat input v∗k and the output of
the GP model for (4) as

min
uk

E
[
∥ψ(z∗k, uk)− v∗k∥2

]
. (13)

When we query the GP model of (1) at a = (z∗k, uk) the pos-
terior prediction of (4) is normally distributed ψ(z∗k, uk)|D =
N

(
µ(z∗k, uk), σ

2(z∗k, uk)
)
. Consequently, (13) can be writ-

ten as minuk
(µ(z∗k, uk) − v∗k)

2 + σ2(z∗k, uk). Exploiting
the affine form of the GP kernel selection allows for the
mean and covariance to be substituted by (11) and (12),
respectively, further simplifying (13) to

min
uk

(γ∗22 + γ∗5)u
2
k + (2γ∗1γ

∗
2 − 2γ∗2v

∗ + γ∗4)uk, (14)

where γ∗i := γi(z
∗
k).

Remark 4.2: Following from [10], the optimization prob-
lem in (14) is convex since γ∗5 ≥ 0 as it is the predicted
covariance of β(z) in (5), and the minimization is quadratic
in the optimization variable uk.

2) Probabilistic Stability Constraints: We formulate a
probabilistic stability constraint using the CLF from (7) to
ensure that the input uk guarantees probabilistic stability for
the closed-loop system, despite (1) being unknown.

To formulate this constraint, consider the Lyapunov func-
tion of the form V (ek) = eTk Pek and a nominal flat
input vnom

k = −Kek + vref
k , using the gain computed in

(9). Then, the error at k + 1 can be expressed as ek+1 =
Ad ek −Bd Kek +Bd(ψ(z

∗
k, uk) − vnom

k). After using the
discrete-time algebraic Ricatti equation, the CLF decrease

condition (7) can be expressed as

eTk [P−Q−rKT K]ek

−2eTk (Ad−Bd K)T PBd(ψ(z
∗
k, uk)− vnom

k) (15)

+(ψ(z∗k, uk)− vnom
k)2 Bd

T PBd ≤ eTk Pek − ϵ,

where ϵ > 0 is a small constant to allow for the inequality to
be non-strict. Thus, the left-hand side of (15) is quadratic in
ψ(z∗k, uk) which we have learned as a GP. We conservatively
bound the last term (ψ(z∗k, uk) − vnom

k)2 Bd
T PBd as the

eigenvalues of Bd
T PBd are proportional to δ2t , making this

term small relative to the other terms. Using the fact that the
posterior mean prediction (11) is affine in uk and that uk is
bounded umin ≤ uk ≤ umax, (15) can be written as

−w1(ψ(z
∗
k, uk)− vnom

k) ≤ w3 − w2, (16)

where

w1 := 2eTk (Ad−Bd K)T PBd,

w2 := Bd
T PBd max

s={umin,umax}
∥µ(z∗k, s)− vnom

k ∥2,

w3 := eTk [Q+rKT K]ek − ϵ.

Assumption 4.4: The nonlinear single-input control affine
system (1) permits a bounded reproducible kernel Hilbert
space (RKHS) norm ∥ψ(zk, uk)∥kern with respect to the
kernel (10) used in the GP, and the GP’s observation noise
η is uniformly bounded by ση .

Lemma 4.3: Let δ ∈ (0, 1). Given Assumption
4.4, Pr{−w1(µ(z

∗
k, uk) − vnom

k) ≤ w3 − w2 −
|w1|β1/2σ(z∗k, uk)} ≥ 1− δ, where β = 2∥ψ(z∗k, uk)∥kern +
300γ ln3((N + 1)/δ), and γ ∈ R is the maximum
information gain.

Proof: Given Assumption 4.4 and Theorem 3 in [15],
the mean prediction of a GP is bounded with respect to the
true function evaluation as per Pr{∀a ∈ A, |ψ(a)− µ(a)| ≤
β1/2σ(a)} ≥ 1 − δ. When considering this probabilistic
bound in the context of the left-hand side of (16) and
expanding the absolute value, the upper inequality bound
becomes −w1(ψ(z

∗
k, uk)−vnom

k) ≤ −w1(µ(z
∗
k, uk)−vnom

k)−
|w1|β1/2σ(z∗k, uk). Using this expression with Theorem 3
from [15] means that the inequality holds true with proba-
bility 1− δ. Using the probabilistic bound in (16), yields the
probabilistic constraint given in the lemma.

3) Probabilistic State Constraints: We also ensure that
zk+1 ∈ Z , with high probability, by taking into account the
uncertainty in the prediction of zk+1 due to the uncertainty in
the learned mapping ψ(z∗k, uk). A constraint is required here
beyond the state constraint in (8) as the input can be modified
by the safety filter, and the uncertainty in ψ(z∗k, uk) must
be accounted for. We thus first determine the uncertainty in
zk+1, then use it to tighten Z to ensure zk+1 ∈ Z .

Using the posterior mean prediction from the GP in (6),
the mean of the next state becomes µz

k+1 = Ad z
∗
k +

Bd µ(z
∗
k, uk). For brevity, we only consider uncertainty in

µz
k+1 due to σ(z∗k, uk). Thus, the uncertainty in µz

k+1 is given
as σ2

zk+1
= Bd σ

2(z∗k, uk)Bd
⊤, which we use to tighten the

constraint set Z using probabilistic reachable sets (PRS).
Definition 4.1 (One-Step PRS [16]): Given the residual

4078

error of a random sample away from its mean ∆k = µZ
k −zk,

a set R is called a One-Step PRS of probability level δ if
Pr(∆k+1 ∈ R|∆k = 0) ≥ δ.

Remark 4.3: If we define an error term ∆z
k+1 = µz

k+1 −
zk+1, we can define the tightened constraints on µz

k+1 as

µz
k+1 ∈ Z ⊖R(σzk+1

), (17)

where ⊖ represents the Pontryagin set difference.
Lemma 4.4 (Probabilistic Half-Space Constraints):

Consider a half-space constraint given by Zhs :=
{zk|hT zk ≤ b} with h ∈ Rn and b ∈ R+ defining
the constraint. Then, given the uncertainty in the dynamics
propagation, the tightened constraint becomes

Zhs(σzk+1
) :=

{
zk+1|hT zk+1 ≤ b− ρ(δ)

√
hTσ2

zk+1
h
}
,

which guarantees that the constraint will be satisfied given
the uncertainty in the dynamics, with probability level δ.
Here, ρ is the quantile function of a standard Gaussian
random variable.

Proof: Given the uncertainty in the next state, σzk+1
and

under the random variable ∆z
k+1, the marginal distribution

becomes hT∆z
k+1 ∼ N

(
0,hTσ2

zk+1
h
)

. Using the quantile
function of a standard Gaussian ρ(δ) with probability level
δ a PRS can be constructed

Rz(σz) :=
{
∆|hT∆z

k+1 ≤ ρ(δ)
√
hTσ2

zk+1
h
}
, (18)

as follows from [16]. Using (18) in (17), the probabilistic
half-space constraint is as shown in Lemma 4.4.

4) Safety Filter as an SOCP: Here, we formulate the
safety filter as an SOCP.

Theorem 4.1 (Second-Order Cone Program): Given As-
sumptions 2.1, 4.1, 4.2, 4.3, and 4.4, the optimization prob-
lem given in (14) subject to the probabilistic asymptotic
stability constraint given by Lemma 4.3 and probabilistic
state constraint Lemma 4.4 can be written as an SOCP

min
ū

[2γ∗1γ
∗
2 − 2γ∗2v

∗
k + γ∗4 , 1]ū,

s.t. ∥Āiū+ b̄i∥ ≤ c̄Ti ū+ d̄i i ∈ {1, 2, 3}, (19)
umin ≤ uk ≤ umax,

where ū = [uk, q]
T , Āi ∈ R2×2, b̄i ∈ R2, c̄i ∈ R2, d̄i ∈ R.

Proof: First, a dummy variable q ≥ (γ∗2
2 + γ∗5)u

2
k is

introduced into the optimization problem to reformulate the
cost as linear in ū. Moreover, 0 ≥ (γ∗22 + γ∗5)u

2
k − 4q which

can be rewritten as (1 + q)2 ≥ 4(γ∗22 + γ∗5)u
2 + (1 − q)2.

Note that both sides of this inequality are positive, so this
can be rewritten as a standard SOC constraint where Ā1 =

diag
{
2
√
γ∗22 + γ∗5 ,−1

}
, b̄1 = [0, 1]T , c̄1 = [0, 1]T , and

d̄1 = 1. The optimization objective then becomes [2γ∗1γ
∗
2 −

2γ∗2v
∗ + γ∗4 , 1]ū.

Next, consider the probabilistic stability constraint (16).
Using the posterior prediction mean and covariance expres-
sions (11) and (12), it is noted that√

γ∗3 + γ∗4uk + γ∗5u
2
k =

∥∥∥∥∥∥
√γ∗5uk +

γ∗
4

2
√

γ∗
5√

γ∗3 −
γ∗2
4

4γ∗
5

∥∥∥∥∥∥
2

. (20)

k → 0.
if Training offline then

Train the nonlinear map v = ψ(z, u).
while kδt ≤ T do

Measure the current flat state ẑk.
Find the optimal flat state and input z∗k, v

∗
k by

solving the OCP (8).
Find u∗k that minimizes (19) using z∗k and v∗k.
Apply u∗k to the real system.
Set k ← k + 1.
if Training online then

Update the nonlinear map with measured data.
end

Algorithm 1: Proposed control algorithm.

Using this, the stability constraint can be rewritten as an
SOC constraint with Ā2 = diag

{
w1

√
γ∗5 , 0

}
, the vectors

b̄2 =

[
w1

γ∗
4

2
√

γ∗
5

, w1

√
γ∗3 −

γ∗2
4

4γ∗
5

]T
and c̄2 = [

w1γ
∗
5

β1/2 , 0]
T , and

the scalar d̄2 = (w1γ
∗
2 + w3 − w2)/β

1/2.
Finally, the probabilistic state constraint from Lemma 4.4

is transformed into an SOC constraint. First, see that
the term

√
hTσ2

zk+1
h =

√
hT Bd Bd

T hσ(z∗k, uk). This
has the same form as the stability constraint, allow-
ing (20) to be used to transform the state constraint
into an SOC constraint with Ā3 = diag

{
ws

√
γ∗5 , 0

}
,

b̄3 =

[
ws

γ∗
4

2
√

γ∗
5

, ws

√
γ∗3 −

γ∗2
4

4γ∗
5

]T
, c̄3 = [−hT Bd γ

∗
2 , 0]

T

and d̄3 = −hT Ad z
∗
k − hT Bd γ

∗
1 + b, with ws =

ρ(δ)
√

hT Bd Bd
T h

The full controller algorithm is presented in Algorithm 1.
Remark 4.4: The SOC form is maintained when uncer-

tainty in the measured flat state ẑk is considered, but is not
shown here for brevity.

V. SIMULATION

Our controller was assessed on three tasks using a hori-
zontal 1-D quadrotor. The quadrotor dynamics, as in [9] and
[10], are given by ẍ = Γ sin(θ) − γẋ and θ̇ = 1

τ (u − θ)
where x is the horizontal position, θ is the pitch angle of the
quadrotor, and the commanded pitch angle u is the system
input. Here, Γ = 10, γ = 0.3 and τ = 0.2 are model
parameters. This model is flat in the output yk = xk, with
the flat state zk = [xk, ẋk, ẍk]

T . All algorithms are run at
50 Hz, use the same gain matrices Q and r, and horizons.

As shown in Figure 2a, FMPC with the safety filter
(FMPC+SOCP) is compared against an MPC using an inac-
curate model (Γ = 20, γ = 0, and τ = 0.05, chosen to over-
estimate thrust with no drag), and discrete linear quadratic
regulator (DQLR) using the same inaccurate model, and a
trained GPMPC where the uncertain dynamics are modelled
as a GP inside a robust MPC formulation [16]. Training data
was gathered via Latin hypercube sampling of states within
the max and min values seen from the reference trajectories.
Squared Exponential kernels were used for all GP kernels,
trained offline. For this system, vk =

...
x k, a higher-order

derivative of the position, was measured from the simulation.
On a real system, this would need to be estimated, which can
be hard due to accumulated noise, presenting a limitation of

4079

0 2 4 6 8 10
Time (s)

−0.3

−0.2

−0.1

0.0

0.1
Po

sit
io

n
Er

ro
r (

m
)

MPC
DLQR
FMPC+SOCP (ours)
GPMPC

(a) Tracking error for yref(t) = 0.2t sin(0.9t).

0 2 4 6 8 10
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

Ho
riz

on
ta

l P
os

iti
on

 (m
)

DLQR Known
FMPC+SOCP (ours)
Reference

(b) Tracking step with −10◦ ≤ uk ≤ 10◦.

0 2 4 6 8 10
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

Ho
riz

on
ta

l P
os

iti
on

 (m
)

Constraint
DLQR+SOCP
FMPC+SOCP (ours)
Reference

(c) Step with constraint xk ≤ 0.51.

Fig. 2. In 2a, the tracking error of our Flat MPC with safety filter (FMPC+SOCP) is compared with an MPC and DLQR with inaccurate prior models,
and a trained GPMPC [16]. In 2b the FMPC+SOCP is compared against a DLQR with perfect dynamics knowledge subject to input constraints, and in 2c
FMPC+SOCP is compared with DLQR with the safety filter (DLQR+SOCP) subject to a constraint on the position. Red × indicates a point of controller
infeasibility or constraint violation. We see that FPMPC+SOCP performs similarly to GPMPC, while respecting input and state constraints.

0 2 4 6 8 10
Time (s)

−30

−20

−10

0

10

20

30

In
pu

t (
de

g)

Constraint
DLQR+SOCP
FMPC+SOCP (ours)

Fig. 3. Input comparison while tracking yref(t) = 0.2t sin(0.9t) subject
to velocity constraints ẋk ≤ 1.0 and input constraints |uk| ≤ 30◦.

our approach. The root mean squared errors were 0.02m
and 0.07m for FMPC+SOCP and GPMPC, respectively.
The average solve time per step was (0.018 ± 0.006) s for
FMPC+SOCP and (0.29± 0.04) s for GPMPC when run on
a 16 GB RAM desktop using an AMD 3900xt CPU.

The FMPC+SOCP evidently performs better than
GPMPC, while solving the task more than 10 times faster.
This occurs in part because having the GP inside the nonlin-
ear optimization can lead to worse local minima—something
that nonlinear MPC is already prone to. Additionally, the
GP used in GPMPC requires an independent GP for each
dimension of the state, meaning roughly five times as many
training points were used in GPMPC than in our approach.

In Figure 2b, FMPC+SOCP is compared with DLQR
where (1), and thus (4), are known perfectly, but subject
to input constraints |uk| ≤ 10◦. The inclusion of DLQR is
pertinent as it represents the infinite-horizon optimal solution.
In this case, DLQR’s inputs are clipped if the desired
input exceeds the limit. We see that even in this case, the
FMPC+SOCP outperforms the DLQR, as it is designed to
account for input constraints.

Finally, FMPC+SOCP is compared against an inaccurate
DLQR with the safety filter (DLQR+SOCP) on tracking
a step trajectory with a state constraint xk ≤ 0.51 in
Figure 2c and tracking yref(t) = 0.2t sin(0.9t) subject to
velocity constraints ẋk ≤ 1.0 and input constraints |u| ≤
30◦ in Figure 3. In Figure 2c, the predictive nature of
the FMPC+SOCP clearly anticipates the step response and
settles faster than the DLQR. Additionally, DLQR+SOCP
reaches an infeasible state as it overshoots the reference
because it could not predict into the future nor account for
the state constraint. The FMPC+SOCP avoided violating the
constraint boundary due to its predictive nature, remaining
feasible. In Figure 3, we see how the FMPC input anticipates
the velocity limit, resulting in smooth inputs that never reach
their limits. DLQR, however, gives very aggressive, and
potentially damaging, changes in input to avoid violations.

VI. CONCLUSION

Current safe learning-based controllers’ real-time applica-
bility has been limited by computational performance. The
proposed FMPC+SOCP approach performs similarly to state-
of-the-art learning-based controllers, but is 10 times more
computationally efficient, while guaranteeing probabilistic
asymptotic stability, probabilistic state constraint satisfaction,
and input constraint satisfaction.

REFERENCES

[1] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and
A. P. Schoellig, “Safe learning in robotics: From learning-based control
to safe reinforcement learning,” Annu. Rev. Control Rob. Auton. Syst.,
vol. 5, no. 1, pp. 411–444, 2022.

[2] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, “Robust constrained
learning-based NMPC enabling reliable mobile robot path tracking,”
Int. J. Rob. Res., vol. 35, no. 13, pp. 1547–1563, 2016.

[3] G. Torrente, E. Kaufmann, P. Fohn, and D. Scaramuzza, “Data-driven
MPC for quadrotors,” IEEE Rob. Autom. Lett., vol. 6, no. 2, pp. 3769–
3776, Apr. 2021.

[4] J. Quinonero-Candela and C. E. Rasmussen, “A unifying view of
sparse approximate Gaussian process regression,” J. Machine Learning
Research, vol. 6, pp. 1939–1959, 2005.

[5] M. Fliess, J. Levine, P. Martin, and P. Rouchon, “Flatness and defect of
non-linear systems: Introductory theory and examples,” Int. J. Control,
vol. 61, no. 6, pp. 1327–1361, 1995.

[6] M. Greeff and A. P. Schoellig, “Flatness-based model predictive
control for quadrotor trajectory tracking,” in 2018 IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS), Madrid, Spaine, 2018.

[7] A. Isidori, Nonlinear Control Systems. London: Springer, 1995.
[8] H. Sira-Ramirez and S. K. Agrawal, Differentially Flat Systems. Boca

Raton: CRC Press, Taylor & Francis Group, 2004.
[9] M. Greeff and A. P. Schoellig, “Exploiting differential flatness for

robust learning-based tracking control using gaussian processes,” IEEE
Control Syst. Lett., vol. 5, no. 4, pp. 1121–1126, 2021.

[10] M. Greeff, A. W. Hall, and A. P. Schoellig, “Learning a stability filter
for uncertain differentially flat systems using Gaussian processes,” in
2021 60th IEEE Conf. Decision and Control (CDC). IEEE, 2021,
pp. 789–794.

[11] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning. Cambridge, MA: The MIT Press, 2006.

[12] L. Grune and J. Pannek, Nonlinear Model Predictive Control: Theory
and Algorithms. Switzerland: Springer, 2017.

[13] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear
and Hybrid Systems. Cambridge: Cambridge University Press, 2017.

[14] F. Castaneda, J. J. Choi, B. Zhang, C. J. Tomlin, and K. Sreenath,
“Gaussian process-based min-norm stabilizing controller for control-
affine systems with uncertain input effects and dynamics,” in 2021
American Control Conf. (ACC). IEEE, 2021, pp. 3683–3690.

[15] N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger, “Information-
theoretic regret bounds for Gaussian process optimization in the bandit
setting,” IEEE Trans. Inf. Theory, vol. 58, no. 5, pp. 3250–3265, 2012.

[16] L. Hewing, J. Kabzan, and M. N. Zeilinger, “Cautious model predictive
control using Gaussian process regression,” IEEE Trans. Control Syst.
Technol., vol. 28, no. 6, pp. 2736–2743, 2020.

4080

