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Abstract— Consensus control of multi-agent systems (MAS)
with integrator dynamics is a canonical and well-studied prob-
lem in the literature. In contrast, the optimal distributed linear
quadratic (LQ) consensus problem minimizing an appropriate
quadratic cost is less studied. For this problem, most of the
available design methods require global information on the
interconnection graph and/or global (initial) state information.
In this paper, we propose a suboptimal solution to the LQ-based
distributed consensus control problem by approximating the
quadratic cost function in a way that allows for decentralized
design of the control gains. The resulting control protocol only
uses information from neighboring agents for both control
design and implementation. It has the additional benefit that
the information can be exchanged periodically, reducing the
communication requirements of the agent. Despite the subop-
timality, asymptotic consensus is guaranteed for our control
law, as we will formally prove. We illustrate by numerical
simulations on a 6-agent system the effectiveness of our design
and compare it to other approaches.

I. INTRODUCTION

Consensus of MAS has been studied extensively in the

literature and gained increasing popularity in recent years [1]

with applications in e.g., opinion dynamics [2], complex

electrical networks [3], and unmanned aerial and ground

vehicles [4]. A typical approach to achieve consensus for

such systems is to implement a distributed diffusive control

law, scaling the differences between agents’ states with a

certain control gain [5].

Optimal consensus, the problem of getting agents to agree

while minimizing an appropriate cost function, has received

significantly less attention, but some researchers have consid-

ered this interesting problem, see, for example, [6]–[9] and

the references therein. Unfortunately, many of the developed

control designs in these papers make use of global informa-

tion of the network, for example, by requiring knowledge of

the graph structure and/or all the initial state of the agents, in

order to solve a Lyapunov equation of dimension equal to the

number of agents, or by using the smallest eigenvalue of the

Laplacian matrix. In other words, in these cases, a central

entity must be aware of all agents interconnections, must

have access to their initial state values, and must have the

computational capacity to solve a (high-dimensional) matrix

equation. Due to these requirements, the computation of the

theoretical global solution to the optimal consensus problem

is not tractable in many real-world applications and can not

be implemented by each agent individually. Examples of
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such systems are router networks, where the communication

graph changes at a fast pace, or robot swarms, which often

result in prohibitively large matrix equations.

The main focus of this paper is on alleviating these

limitations for computing optimal LQ consensus gains. In

other words, the aim is to create a methodology for designing

a control law that (approximately) minimizes the quadratic

cost, but the synthesis can be done based on local infor-

mation only. Specifically, instead of minimizing the original

quadratic costs exactly, we minimize a close approximation

of this cost with the benefit that each agent can determine its

own suboptimal gain based on local information (the number

of neighbors). This leads to a control protocol that features

both distributed control inputs and decentralized design. The

approximate cost that we minimize is obtained by sampling

the last transmitted neighboring states, which has the addi-

tional benefit of reducing the communication overhead and

better represents the on-line (often digital) implementation

in applications. Interestingly, for this new design, formal

consensus guarantees are provided for arbitrary sampling

periods.

A related method, inspiring ours, was explored in [10],

where the authors design a distributed consensus control

protocol, in which each individual agent controls its state

towards the average value of its neighboring states, which

is sampled and held constant between sampling periods, by

solving an optimal LQ-tracking problem. We extend their

results by removing the averaging step. In particular, we

minimize a cost that is not related to the average of the

neighboring states, but uses all the information available

to each agent. Intuitively, this results in a performance

improvement for our design, as the approximate cost is closer

to the original quadratic consensus cost. This intuition is

confirmed by a numerical example, where for three different

network structures, the original cost is significantly lower

for the design proposed in this paper. This new approach

also requires new technical developments not available in

[10]. Other distributed design approaches can be found

in [11], where the authors design a distributed adaptive

consensus protocol that achieves leader-follower consensus

for a directed communication graph.

The remainder of this paper is organized as follows.

Section II introduces the distributed LQ consensus problem.

Section III presents the proposed sampling-based distributed

control protocol featuring the decentralized control design. In

Section IV, we calculate the control gain for single integrator

systems by solving a Ricatti equation analytically. In Sec-

tion V, we prove that resulting input achieves consensus. In

Section VI our theoretical results are validated numerically.
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A. Notation

For matrices M ∈ R
n×n, σ(M) denotes its spectrum, and

Xd
+(M) = span{v ∈ R

n : (λ, v) an eigenpair with |λ| ≥
1} is its discrete unstable eigenspace, i.e, Mv = λv, v ̸=
0, λ ∈ σ(M). We write P ≻ 0 (P ⪰ 0), if P is symmetric

positive (semi-)definite. The vector of all ones in R
n is given

by 1n, and the matrix of all ones in R
n×n by 1n. We omit

the dependence on n whenever this is obvious. In addition,

G = (V,E) denotes a graph with vertex set V = {1, . . . , N}
and edge set E ⊂ V×V , where (a, b) ∈ E, if there is an edge

from a to b. We denote the adjacency matrix of a graph by

A and its degree matrix by D. Finally, Ni = {j : (i, j) ∈ E}
denotes the neighbor set of vertex i ∈ V .

II. DISTRIBUTED LQ CONSENSUS PROBLEM

In this section, we introduce the distributed LQ consensus

problem for multi-agent systems. Consider a MAS on the

undirected connected graph G = (V,E) with Laplacian L
such that each agent has scalar single integrator dynamics

ẋi(t) = ui(t), xi(0) = x0
i , ∀i ∈ V, (1)

where xi(t) ∈ R is the state of agent i ∈ V at time t ∈ R≥0,

and the initial states x0
i are given for all i ∈ V . Also, consider

a distributed diffusive coupling input

ui(t) = −gi
∑

j∈Ni

(xi(t)− xj(t)), ∀i ∈ V, (2)

with control gains gi ∈ R. Combining (1) and (2)

gives the overall network dynamics ẋ(t) = −gLx(t)
with x(t) = [x1(t), . . . , xN (t)]⊤ the state vector, u(t) =
[u1(t), . . . , uN (t)]⊤ the input vector, and the diagonal con-

trol gain matrix g = diag(g1, . . . , gN ). A MAS is said

to achieve consensus (synchronize), if for any initial state

x0 = x(0) ∈ R
N , limt→∞ x(t) ∈ span1. It is known

that (1) synchronizes if and only if g ≻ 0 [6].

In order to obtain an optimal control gain, consider the

following quadratic cost function,

J(x0, u) =

N∑

i=1





∫ ∞

0

∑

j∈Ni

q(xi(t)− xj(t))
2 + ru2

i (t)dt





︸ ︷︷ ︸

Ji(x0

i
,ui)

=

∫ ∞

0

x⊤(t)2qLx(t) + ru⊤(t)u(t)dt, (3)

with state weight q > 0 and input weight r > 0. In the

homogeneous gain case1, i.e gi = gj for all i, j ∈ V ,

to find the optimal gain, consider the Gramians X0 =
∫∞

0
e−τL2qLe−τLdτ and Y0 =

∫∞

0
e−τLre−τLdτ . Combin-

ing (2) and (3) and setting τ = gt yields J(x0,−gLx(t)) =

x⊤
0

(
1
gX0 + gY0

)

x0. Differentiating with respect to g, we

see that the optimal gain, if it exists2, satisfies

gopt =

(
x⊤
0 X0x0

x⊤
0 Y0x0

) 1

2

. (4)

1The heterogeneous gain case is similar, replacing the derivative with the
multivariate analogue.

2It does not exist in e.g. the case where x0 ∈ kerY0.

From (4) we see that the computation of the optimal

control law requires both knowledge of the initial state x0

and of the Laplacian matrix L. Furthermore, evaluating

the Gramians can become prohibitively difficult, or even

impossible. This holds even if the Gramians are viewed as

solutions to the Lyapunov equations

LX0 +X0L = 2qL, LY0 + Y0L = rI, (5)

as obtaining these solutions is nontrivial for large networks.

While the control law acts locally, it requires a central entity

with global network and state information to compute the

optimal control gain. The challenge we focus on in this paper,

is computing a control gain matrix based on locally available

information, that achieves consensus and minimizes (3).

While this is impossible, we can approximate the minimizer

of (3) by using a discounted LQ formulation, as we explain

below.

III. LOCAL SAMPLING-BASED CONTROLLER DESIGN

In this section, we introduce a local design method,

where each agent computes a control input using information

available from a decentralized viewpoint. We first identify

what information is available to each agent at any particular

time-instant. Then, we use that information to set-up another

optimization problem, whose minimization approximates the

minimization of (3). While this design does not guarantee

global optimality, it guarantees consensus, as we will prove.

A. Introducing decentralized costs

We make the following assumptions about the system:

Assumption 1. Each agent has access to its own state xi(t),

and can manipulate its own input ui(t) at all t ∈ R≥0.

Assumption 2. At time instants kT , k ∈ N, T > 0 the

sampling period, all agents synchronously transmit their state

to all neighbors and receive a sample in return.

Assumption 1 is natural in most applications. Assump-

tion 2 is instrumental in our approach to realize decentralized

design of the distributed consensus law, as we will show

below. Indeed, if we would stick to minimizing (3), directly,

in a decentralized setting agent i ∈ V would optimize

its performance if it minimizes cost Ji
(
x0
i , ui

)
in (3).

However, minimizing Ji(x
0
i , ui) requires knowledge of the

future neighboring trajectories, influenced by their neighbors

again, which are unknown. Inspired by [10], by sampling the

neighbors’ states, and assuming that they stay constant in

the future, Ji(x
0
i , ui) becomes a function that can be locally

optimized and thus leading to a decentralized design. This

sampling approach has the added benefit of being closer

to real-life digital implementations of the controller and its

communications.

Without loss of generality, agent i is instructed to si-

multaneously track all received neighbor states, for time

t ∈ [kT, (k+ 1)T ), with control gain gi, using the sampled,

distributed control input

ui(t) = −gi
∑

j∈Ni

(xi(t)− xj(kT )), i ∈ V. (6)
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They then determine an individual gi, by minimizing the

discounted local sampled tracking cost:

Jα
i,k(ui)=

∫ ∞

kT

e−2αt
[ ∑

j∈Ni

q(xi(t)− xj(kT ))
2 + ru2

i (t)
]

dt,

(7)

where α > 0 is the discount factor. The introduction of

the discounted formulation is required as we shall see in

Remark 2. Once the gains that minimize (7) are calculated

for the interval [kT,∞), the corresponding control input is

applied in [kT, (k + 1)T ), see (6). At the next sampling

time, the agents repeat this procedure, update their input,

and generate a control law on [0,∞).
Remark 1: We consider the infinite time horizon, rather

than minimizing over [kt, (k + 1)T ), where the control is

applied, since we would otherwise require terminal boundary

conditions for the resulting Differential Ricatti Equation.

Furthermore, a differential equation solver should be present

in each agent, which could be difficult to implement.

B. The Discounted LQ Tracking Problem

In this section we recall the general solution to the

discounted LQ tracking problem, detailed in, e.g., [10], [12],

and apply it to (7). Consider the system ż(t) = Hz(t) +
Bu(t), with z(t) ∈ R

n, u(t) ∈ R
p the state and input

vectors at time t ∈ R≥0, z(0) = z0 the initial state, and

H and B matrices of appropriate dimensions. Suppose now

that a constant reference signal ρ ∈ R
n and cost matrices

Q ⪰ 0, R ≻ 0 are given. Then, the discounted LQ tracking

problem, is the problem of finding a minimizer for

J(u) =

∫ ∞

0

e−2αt[(z(t)−ρ)⊤Q(z(t)−ρ)+u⊤(t)Ru(t)]dt.

(8)

It is known that the optimal input is given by:

u(t) = −R−1B⊤X1z(t)−R−1B⊤X2ρ, (9)

where X1, X2 ∈ R
n×n are block components of the smallest

positive definite solution X , of the ARE

H⊤
e X +XHe −XBeR

−1B⊤
e X +Qe = 0, (10)

with matrices

He =

[
H − αI 0

0 −αI

]

, Be =

[
B
0

]

,

Qe =

[
Q −Q

−Q Q

]

, X =

[
X1 X2

X⊤
2 X3

]

.

(11)

Lemma 1: A unique solution X to (10) exists, if (He, Be)
is stabilizable and (Qe, He) is detectable [13, Exercise 10.4].

Suppose now that agent i has di neighbors. Given

the dynamics in (6) define zi = 1di
xi and ρi(kT ) =

[
xj1(kT ) . . . xjdi

(kT )
]⊤

for j• ∈ Ni. A unique mini-

mizer to (7) is then obtained by applying these results, with

H = 0, B = 1, Q = qI, and R = rI. (12)

The ARE in (10) then takes the form

−2αr

[
X1 X2

X⊤
2 X3

]

−

[
X11X1 X11X2

X⊤
2 1X1 X⊤

2 1X1

]

= rq

[
−I I
I −I

]

,

(13)

which can be solved by first finding a solution to

2αrX1 +X11X1 = rqI, (14)

and setting −X2 = X3 = X1 ≻ 0. A Schur decomposition

[14, Theorem 1.12] shows that this implies X ⪰ 0, and thus

X is the unique solution to (13) by Lemma 1, which yields

the minimizer to (7) through (9).

Remark 2: For (He, Be) to satisfy the conditions of Re-

mark 1, with matrices as in (12), it is necessary that the

discount factor is strictly positive. The control law (9)

guarantees exponential asymptotic decay of the tracking error

e−αt(zi(t)−ρi(kT )) → 0 for t → ∞. Since α can be taken

arbitrarily small, we can control the decay rate of the error,

and make (7) approximate the summands in (3).

IV. OPTIMIZING LOCALLY

In this section, we provide an analytic expression for the

unique positive semi-definite solution of (14), and use it to

obtain an expression for the gains gi. Since the solution of an

ARE is a linear feedback of the state, the resulting solution

takes the form of (6).

Lemma 2: Equation (14) has a unique positive definite

solution X1 ∈ R
di×di given by:

X1 = (a− b)I + b1 with (15)

b =

(

−αr −
qdi
2

+
√

α2r2 + diqr

)
1

d2i
, a =

q

2α
+ b.

(16)

Proof: We can verify that this choice of a and b
satisfies (14). In addition, we show how these values were

obtained, for which we use the fact that σ(hI + M) =
h+ σ(M), for any h ∈ R and any matrix M ∈ R

n×n.

Note that σ(X1) = (a − b) + bσ(1), which gives eigen-

values

λ1 = a+ (di − 1)b, λ2 = . . . = λdi
= a− b. (17)

Next, notice that X11 = λ11 and X11X1 = c1, where

c = (a− b)2 + 2dib(a− b) + d2i b
2. (18)

Substituting (18) and (15) in (14), we obtain (2αr(a− b)−
rq)I + (2rb+ c)1 = 0, which holds if

a− b =
q

2α
, 2rb+ c = 0. (19)

Combining (14), (17) and (19) and taking determinants:

det(2αrI +X11) det(X1) = det(qrI)

=⇒ (2αr)di−1(2αr + diλ1)λ1

( q

2α

)di−1

= (qr)n

=⇒ diλ
2
1 + 2αrλ1 − qr = 0.

(20)

Solving this quadratic equation yields the positive solution

λ1 = (−αr +
√

α2r2 + diqr)/di. Combining the latter

with (19) results in a system of equations in a, b whose

solution is (16). Notice that λ1 > 0 by construction and

a− b = q/2 > 0 and hence X1 ≻ 0 as required.

From Lemma 2, the gains gi in (6) as well as the overall

control law can be computed for the entire network.
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Theorem 1: For a MAS on a graph G = (V,E) with agent

dynamics ẋi(t) = ui(t), t ∈ [kT, (k + 1)T ), i ∈ V , k ∈ N,

the overall control input minimizing (7) is:

u(t) = GDx(t)−GAx(kT ), (21)

where G = diag(−g1, . . . ,−gN ),

gi =

√

α2r2 + diqr − αr

rdi
> 0, (22)

and di is the number of neighbors of agent i.

Proof: Applying the results of Lemma 2, and con-

sidering (9), zi = 1xi, and the matrices in (11) on t ∈
[kt, (k + 1)T ) yields

ui(t) = −
1

r
(λ1dixi − λ11

⊤ρi(kT ))

= −gi
∑

j∈Ni

(xi(t)− xj(kT )) ,
(23)

with gi as in (22). Finally, (21) follows from (23).

Remark 3: Notice that the gains gi > 0 are independent

of k and T , and hence can be calculated once, provided the

graph topology remains constant. If it changes, the agents

need only to know the changes in the number of neighbors

to adapt their gain. Clearly, decentralized local design of the

gains is possible without need for global information.

V. CONSENSUS GUARANTEES

In this section, we provide consensus guarantees for the

control protocol in Theorem 1. In this regard, a particular

difference equation for the system dynamics at the sample

periods is considered. By analyzing the discrete-time system,

it is proven that the system synchronizes.

We observe that for each k ∈ Z+ the global dynamics

of the networked system in the interval [kT, (k + 1)T ) are

given by ẋ(t) = GDx(t) − GAx(kT ). The state trajectory

can then be calculated as

x(t) = eGDt

[

e−GDkT −

∫ t

kT

e−GDτGAdτ

]

x(kT ),

(24)

where the integral term can be computed as

∫ t

kT

e−GDτGAdτ =
(
e−GDkT − e−GDt

)
D−1A. (25)

Combining (24) and (25), and evaluating at t = (k + 1)T ,

we obtain the discrete-time system x((k + 1)T ) = Γx(kT )
with system matrix

Γ = eGDT +
(
I − eGDT

)
D−1A. (26)

Therefore, x(kT ) = Γkx(0) and hence limk→∞ x(kT ) ∈
Xd

+(Γ), the unstable eigenspace of Γ. We shall analyze

the spectrum of Γ to prove that the control law (21) gives

consensus. First, we shall need the following lemma.

Lemma 3: Given a control law u as in (9) the network

achieves consensus if and only if Xd
+(Γ) = span1.

Proof: By definition, the network achieves consensus

for any arbitrary x(0) if and only if for all i and all j ∈ Ni

we have that limt→∞ xi(t)− xj(t) = 0. Then, observe that:

lim
t→∞

xi(t)− xj(t) = 0 ⇐⇒ lim
t→∞

x(t) ∈ span1,

⇐⇒ lim
k→∞

x(kT ) ∈ span1,

⇐⇒ Xd
+(Γ) = span1,

(27)

and thus limk→∞ Lx(kT ) = 0. We only need to argue

the second equivalence, which establishes that to prove

consensus, it is sufficient to check the system state at the

sample times. The forward direction is obvious, the back-

wards direction follows from limk→∞ Lx(kT ) = 0 =⇒
limk→∞ ui(kT ) = 0.

Proposition 1: The matrix Γ satisfies σ(Γ) ⊂ (−1, 1] and

furthermore (1,1) is a simple eigenpair. Hence, its unstable

eigenspace is given by Xd
+(Γ) = span1.

Proof: By substituting D = L−A in (26) we get

Γ = I +
(
eGDT − I

)
D−1L. (28)

Next, we define Γ = I+∆L with ∆ = (eGDT −I)D−1 and

observe this is a diagonal matrix. Furthermore, ∆L satisfies

(−∆)−
1

2∆L(−∆)
1

2 = (−∆)
1

2L(−∆)
1

2 , (29)

and thus ∆L is similar to a symmetric matrix whose spec-

trum is real. Adding I to a matrix shifts its eigenvalues by 1
and hence σ(Γ) ⊂ R.

To localize the eigenvalues, we use Gershgorin’s Circle

Theorem [15, Theorem 6.1.1]. Since D−1A has 0 in its

diagonals, from (26) we see that the Gershgorin centra of

Γ are given by ci = e−gidiT , and since gi > 0 we have

ci ∈ (0, 1]. From (28), the radii are δi = 1−e−gidiT ∈ [0, 1),
and since the eigenvalues are real, the Gershgorin Circles

are given by Ci = {ζ ∈ R : |ζ − ci| ≤ 1 − ci}. Hence,

−1 + 2ci ≤ ζ ≤ 1, and since ci > 0, we have ζ ∈ (−1, 1]
and thus σ(Γ) ⊂ (−1, 1].

We obtain that (1,1) is an eigenpair by considering (28).

It remains to show that 1 is a simple-eigenvalue. Consider

(1, v) an eigenpair, then, from (26):

v = Γv =⇒ ∆Lv = 0 =⇒ v ∈ span1, (30)

since ∆ is invertible and G is connected.

Theorem 2: The control law (6), with gains gi computed

as in (22) results in consensus of the agents.

Proof: The result is a direct consequence of Lemma 3

and Proposition 1.

Remark 4: Theorem 2 gives asymptotic consensus guar-

antees independent of T . However, if T is large, then the

smallest eigenvalue of Γ approaches −1, which greatly

reduces the speed of convergence.

Remark 5: In the language of ergodic consensus prob-

lems [16], the results above show that Γ is a stochastic,

irreducible, aperiodic matrix and, hence, consensus of the

discrete-time system is guaranteed. In the special case of

regular graphs, Γ is in fact doubly stochastic and thus we

get consensus to the mean.
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VI. SIMULATIONS

This section presents simulations of the control protocol

designed in this paper. The trajectories are compared to the

results obtained using (i) the averaged controller in [10],

and (ii) the centralized control law that optimizes the ho-

mogeneous case of global index (3) (i.e., g = goptI). While

the decentralized design uses heterogeneous gains, we shall

see that it does not outperform the homogeneous global

minimum in any scenario that we test, presumably due to

the latter’s use of global information. In what follows, these

approaches will be referred to as local, averaged and global,

respectively, and plotted with dashed, dotted and straight

lines. Note that the gains in the averaged controller are

independent of graph structure, and as such constant for

all graphs, unlike the local or global methods. Finally, we

consider three different graphs with 6 agents, i.e.,

• A circular graph Gcirc such that Ni = {i−1, i+1}, for

all i ∈ {2, . . . , 5}, N1 = {6, 2}, and N6 = {1, 5}.

• A path graph Gpath such that Ni = {i − 1, i + 1}, for

all i ∈ {2, . . . , 5}, N1 = {2}, and N6 = {5}.

• A complete graph Gcomp such that Ni = {1, . . . , 6} \
{i}, for all i ∈ {1, . . . , 6}.

The initial state is always x0 = [1, 2,−1,−2, 1, 3]⊤, and

other parameters are α = 0.01, q = 2 and r = 1. The

cumulative cost obtained in each of the simulations with two

different sampling times T are given in Table I, where it can

be seen that the local method outperforms the averaged one.

The cumulative cost is computed by simulating each

method for t ∈ [0, 8], and sampling the states and inputs

every ∆t = 0.001. Particularly, defining tn = n∆t with

n ∈ Z≥0 we get

∆t

10/∆t
∑

n=1

(
2qx⊤(tn)Lx(tn) + u⊤(tn)rIu(tn)

)
. (31)

For Gcirc, the gains are given by gopt ≈ 1.7061, gloc =
0.9950, and gav = 1.402. This gav remains constant for

all other graphs. The resulting state trajectories are plotted

for T = 0.1 in Figure 1, and for T = 1 in Figure 2. We

observe that while the local method synchronizes quicker

than the averaged method, it is still slower than the optimal
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Fig. 1. State evolution for all agents on the cycle graph, with T = 0.1.

.

one. The latter illustrates the compromise reached between

optimizing the overall performance and decentralizing the

computation of the gains. Note also that the smoothness of

the trajectories is highly dependent on the choice of T = 0.1
or T = 1. Nonetheless, the proposed controller guarantees

consensus in both cases, as expected by the developed theory.

For Gpath, the resulting state trajectories using T = 0.1 are

given in Figure 3, with gains gloc,i = 0.9950 for i = 2, . . . , 5,

gloc,i = 1.4042 for i = 1, 6 and gopt = 1.7472. While all

three methods converge, the local and averaged approaches

reach consensus to a different state value than the global one

(see Remark 5), since the path graph is not regular.

Consider now Gcomp, for which the gains are gloc =
0.6305, and gopt ≈ 0.701, and the resulting state trajectories

are plotted in Figure 4. We claimed in Section I that the

local approach allows each agent to consider more of its

available information than the averaged method. As such,

it is expected to perform significantly better for graphs

with bigger information flow, and that is why we consider

the complete graph. The performance benefits can be seen

in both the rate of convergence and the cumulative cost

in Table I. Notice that for complete graphs the Lyapunov

equations (5) do not have a unique solution, and, hence,

calculating the optimal gain is difficult. In this regard, we

calculated the optimal gain gopt by testing values in the

interval [0, 2], which is not feasible for larger networks.

Finally, consider an additional performance measure for

the three methods. We define the consensus error of a state

trajectory at time t as e(t) = maxi,j∈[1,...,6]{xi(t)− xj(t)},
i.e., the largest deviation between any two agent states at

time t. Since the goal is consensus, this value is a measure

of the speed of convergence of each method. We simulate

the three of them for t ∈ [0, 8] on all three graphs, and

evaluate e(t) in the middle of the sampling intervals. The
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Fig. 2. State evolution for all agents on the cycle graph, with T = 1.

TABLE I

CUMULATIVE PERFORMANCE COSTS IN DIFFERENT SIMULATIONS.

Graph Sampling Local Global Averaged

Cycle T = 0.1 49.7 44.1 82.9

Cycle T = 1 73.2 44.1 106.9

Path T = 0.1 44.9 40.8 73.8

Path T = 1 55.5 40.8 95.0

Complete T = 0.1 87.1 85.9 160.3

Complete T = 1 92.2 85.9 160.3
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Fig. 3. State evolution for all agents on the path graph, T = 0.1.
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Fig. 4. State evolution for all agents on the complete graph, T = 0.1.

results are shown in Figure 5 with logarithmic scale. As can

be seen, the local method outperforms the average method

on all tested graphs, and approaches the global performance

for the complete graph.

VII. CONCLUSION & FURTHER WORK

This paper presented a decentralized suboptimal method

for the design of distributed consensus laws for integrator

MAS. The approach, inspired by [10], is based on tran-

sitioning to a sampled, discounted approximation of the

original quadratic consensus cost, for which the computa-

tion of the control gains can be performed by the indi-

vidual agents based on local information only (essentially

the number of neighbors). Due to the proven consensus

guarantees, the sampled-data implementation and the local

design, this method could be attractive for certain real-world

(sub)optimal consensus problems.

The presented single integrator theory serves as a proof

of concept, and we believe, due to preliminary simulation

results, that the basic principles can be extended to other

kinds of systems with more general dynamics, (dynamic)

directed graphs, and heterogeneous cost weights. We plan

to investigate these extensions in further works. Another

line of future work is abandoning the period sampling

requirement, calling for clock synchronization throughout

the network, and allowing also asynchronous updating and

communication of state information by the agents.
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