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Abstract— This paper addresses the systematic modeling of

complex physical systems involving constant and time-varying

interactions of physical elements in different energetic domains.

The proposed procedure provides two different dynamic models

of the considered system: a full-order one and a reduced-order

one, where the latter is obtained when some of the system

dynamical elements are properly disregarded. The matrices and

vectors of the two dynamic models are automatically computed

following the proposed rules and algorithms, thus reducing

the chances of making computation mistakes. The proposed

procedure is applied to two different case studies: an hydraulic

continuous variable transmission for powertrain dynamics and

a crank-connecting rod system in the mechatronic field.

Index terms— Modeling, Mechatronics, Time-varying

systems, Model/Controller reduction.

I. INTRODUCTION

Modeling physical systems is a fundamental skill in any

engineering field, in order to gain a deep understanding of

their dynamic behavior. The modeling of physical systems

can be performed using many different approaches proposed

in the literature at different levels of abstraction. In [1],

the vehicle model is derived by directly writing down the

kinematic and dynamic equations, whereas the power con-

sumed by the vehicle is modeled in [2] as a function of

vehicle velocity and control force. In [3], the powertrain

model is performed by modeling the overall power demand

to the fuel cell and to the battery. A simplification is instead

made in [4] when modeling the vehicle gearbox, final drive

and wheel radius as a single overall transmission ratio. The

modeling of physical elements can also be performed using

the different graphical formalisms available in the literature,

that are Bond Graphs (BG) [5], Energetic Macroscopic Rep-

resentation (EMR) [6] and Power-Oriented Graphs (POG)

[7]-[10], offering different pros and cons with respect to

each other. An important aspect when modeling complex

physical systems is the interaction between physical elements

belonging to different energetic domains. A first instance is

represented by a device called Continuous Variable Trans-

mission (CVT), which is widely employed in power-split

vehicle architectures and is composed of different physi-

cal elements depending on the considered CVT type. The

Electro CVT (ECVT) [11]-[12] includes interactions between

physical elements in the mechanical rotational and the elec-

trical energetic domains, whereas the hydraulic CVT [11]-

[12] includes interactions between physical elements in the
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mechanical rotational and the hydraulic energetic domains.

Another instance of systems involving interactions between

different energetic domains is represented by conveyor belts

[13]-[14] and mechanical CVTs [11], [15], both involving

the interaction between physical elements in the mechanical

translational and rotational energetic domains. Many other

instances of physical elements interactions between different

energetic domains can be found in all engineering fields.

In [7]-[10], we proposed a systematic procedure for the

fully automated modeling of many different devices which

can be found in the transportation, mechatronic, robotics

fields and many others. The considered devices include

planetary gear sets [16]-[17], bevel gears [18]-[19], toroidal

variators [20]-[21] which can be employed for applications

such as Kinetic Energy Recovery System (KERS) and In-

finitely Variable Trasmission (IVT), and vehicle differentials

[22]-[23]. The procedure proposed in [7]-[10] offers the

following important benefits with respect to other approaches

in the literature: a) two state-space models of the system

are automatically written using the proposed modeling rules:

a full model accounting for the gears elastic coupling and

a reduced model assuming rigid gears connection; b) the

procedure to obtain the full and reduced models is always

the same even in time-varying case; c) the matrices and

vectors of the two system models can be systematically

obtained using the proposed rules and algorithms; d) the

reduced model is computationally efficient and can therefore

be implemented in real-time; e) the reduced model can also

provide the time behavior of the tangential forces that have

been disregarded at the gears contact points.

In this paper, we would like to extend the procedure

proposed in [7]-[10] by introducing the following new con-

tributions: 1) the generalization of the proposed procedure

in order to account for: 1.1) the presence of mechanical

translational elements together with rotational elements; 1.2)

gears (or masses, in this extended version) coupled not only

by tangential springs, but also by other dynamical elements

in other energetic domains (such as hydraulic accumulators,

for example); 2) the generalization and simplification of

Algorithm 1 proposed in [10]. The term generalization in

1) and 2) refers to the fact that the new Algorithm 1

proposed in this paper allows to automatically compute a

generalized radii matrix accounting for systems including

translational elements too, and to the fact that the system

inertias and masses can interact with each other through

different dynamical elements belonging to different energetic

domains. The term simplification in 2) refers to the fact

that the elements in the new generalized radii matrix are
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computed using a single sign function Sij,h resulting from a

standard vectorial product, instead of two sign functions as

it was in the previous work. This makes the procedure less

prone to mistakes and lighter from a computational point

of view. Our systematic modeling procedure can now be

applied to different complex time-varying physical systems

which also involve different physical elements interactions.

In order to show the versatility of the proposed procedure,

two new different case studies have been modeled using the

proposed procedure: an hydraulic CVT, which includes gears

coupled by elastic elements and by an hydraulic accumulator,

and a Crank-Connecting Rod (CCR) system, which includes

interactions between rotational and translational physical

elements. With reference to the second case study, the

comparison of our procedure with the typically employed

Lagrangian approach is also addressed.

This paper is organized as follows. The systematic mod-

eling and simulation of the hydraulic CVT case study are

addressed in Sec. II and Sec. II-B, respectively. The new

Algorithm 1 is in turn presented in Sec. II-A. The system-

atic modeling and simulation of the CCR case study are

addressed in Sec. III and Sec. III-A, respectively, whereas

the comparison with the Lagrangian approach is addressed

in Sec. III-B. Finally, the conclusions are reported in Sec. IV.

II. CONTINUOUS VARIABLE TRANSMISSION

Let us consider the hydraulic Continuous Variable Trans-

mission system shown in Fig. 1. The CVT is a widely em-

ployed system in the automotive and agricultural fields; one

of its main advantages is the introduction of a continuously-

varying ratio decoupling the endothermic engine from the

vehicle transmission system, thus allowing to optimize the

endothermic engine fuel consumption. The hydraulic CVT

system is composed of a planetary gear set and of a

hydro-mechanical part, as highlighted in Fig. 1. The hydro-

mechanical part is in turn composed of an hydraulic pump

and an hydraulic motor charging and discharging an hy-

draulic accumulator, as shown in Fig. 2. The output volume

flow rate Qp(θ) of the hydraulic pump is function of the

angular position θ of the pump plate. The pressure Pde within

the hydraulic accumulator Cde is function of the hydraulic

pump volume flow rate Qp(θ) and of the hydraulic motor

volume flow rate Qm as follows: CdeṖde = Qp(θ) − Qm.

The hydraulic CVT can be modeled using the following

dynamic model [10]:
[
J 0

0 K-1

]

︸ ︷︷ ︸

L

ẋ=

[
−BJ−RT(t)BKR(t) −RT(t)

R(t) 0

]

︸ ︷︷ ︸

A(t)

x+

[
I

0

]

︸ ︷︷ ︸

B

u
︸︷︷︸

τ

,

(1)

where x = [ωT FT ]T and u = τ are the system state

and input vectors, respectively, and L, A(t) and B are the

energy, power and input matrices, respectively [10]. System

(1) exhibits a one-to-one correspondence with the POG block

scheme in Fig. 3, which can be directly implemented in

the Simulink environment using very standard components.

For the hydraulic CVT in Fig. 1, the set NJ containing

~ωc

τc
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τp
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Fig. 1. Structure of the considered hydraulic CVT.
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Fig. 2. Structure of the CVT hydraulic part.

the inertia and mass elements, the set NK containing the

coupling elements, and the set NB containing the relative

frictions acting between the system inertias [10] are:







NJ = {c, p, s, r, d, e}, nJ = dim(NJ ) = 6,
NK = {sp, pr, sd, re, de}, nK = dim(NK) = 5,
NB = {}, nB = dim(NB) = 0.

(2)

The sets in (2) contain the notations assigned to the different

physical elements and quantities associated with the consid-

ered system in Fig. 1. Note that the last coupling element

“de” in set NK in (2) is not elastic, but hydraulic instead, and

it describes the hydraulic capacitance Cde of the hydraulic

accumulator in Fig. 2. From NJ in (2), the output speed

vector y = BTx = ω, the input torque vector u = τ , the

inertia matrix J and the gears friction matrix Bω are defined

as:

ω=











ωc

ωp

ωs

ωr

ωd

ωe











, τ =











τc
τp
τs
τr
τd
τe











,J=











Jc 0 0 0 0 0
0 Jp 0 0 0 0
0 0 Js 0 0 0
0 0 0 Jr 0 0
0 0 0 0 Jd 0
0 0 0 0 0 Je











,Bω=











bc 0 0 0 0 0
0 bp 0 0 0 0
0 0 bs 0 0 0
0 0 0 br 0 0
0 0 0 0 bd 0
0 0 0 0 0 be











.

From NK in (2), the generalized force vector F, stiffness

7716



τ

ω

Pi

Inertias and Masses

✲ ✛
❄
1
s

❄

J-1

❄✛ ✲

✛ ✛

BJ

✻

✻
✲ ✲

Generalized
radii

✲ R(t)✲

✛ ✛RT(t)

Coupling
elements

✛ ✛

✻

1
s

✻

K

✻F

✲ ✲

✛

BK

✻

Fig. 3. POG scheme of time-varying physical systems.

matrix K, and stiffness friction matrix BK are defined as:

F=









Fsp

Fpr

Fsd

Fre

Pde









,K=









Ksp 0 0 0 0
0 Kpr 0 0 0
0 0 Ksd 0 0
0 0 0 Kre 0

0 0 0 0 Cde
−1









,BK=









dsp 0 0 0 0
0 dpr 0 0 0
0 0 dsd 0 0
0 0 0 dre 0
0 0 0 0 Rde









.

The above vector and matrices are said to be generalized

because they also contain the parameters of a coupling

element which does not belong to the mechanical energetic

domain: the hydraulic capacitance Cde of the hydraulic

accumulator, the associated hydraulic resistance Rde, and the

pressure Pde within the hydraulic accumulator. The relative

friction matrix is B∆ω = 0 according to set NB in (2) and

using Algorithm 2 in [10]. The inertia friction matrix is

BJ = Bω +B∆ω = Bω. The generalized radii matrix R(t)
can be automatically computed using the new Algorithm 1

described in Sec. II-A:

sp

pr

sd

re

de

R(t) =













c p s r d e

−rc rp rs 0 0 0

rc rp 0 −rr 0 0

0 0 ra 0 rd 0

0 0 0 rre 0 re

0 0 0 0 hp(θ) −hq













, (3)

where rc = rp + rs, rr = 2 rp + rs and parameter

hp(θ) = Kpθ is function of the time-varying angle θ of the

hydraulic pump plate, see Fig. 2. Matrix R(t) in (3) is said

to be generalized because it also contains the two parameters

hp(θ) and hq which are not gears radii, and whose physical

meaning is given in Remark 1 in Sec. II-A. When K → ∞
and when the hydraulic capacitance Cde → 0, from the

second equation in (1) one obtains R(t)ω = 0. Using this

last vectorial constraint, the nJ components of the speed

vector ω can be expressed as a function of nJ − nK = 1
angular speeds composing the new state vector x1 of the

reduced system: ω = Q1(t)x1. Choosing x1 = ωs, one can

a) b) c)

d)
~ωa

~vb

~Fab
Kab

~ωa

ra

~Fab

~vb

= versor exiting the page

{
~da = ~ωa×

~Fab

= ×

{
~db = ~vb× ~Fab

= ×

Fig. 4. Interaction between a rotational element “a” and a translational
element “b” through an elastic coupling element Kab.

write:

[
ω

F

]

︸︷︷︸

x

=

[

Q1(t)

0

]

︸ ︷︷ ︸

T1(t)

x1
︸︷︷︸

ωs

, where Q1(t)=














hqrdrrers+Kprarerrθ

2hqrdrrerc
Kprarerrθ−hqrdrrers

2hqrdrprre

1
Kp ra re θ

hq rd rre

− ra
rd

−Kp ra θ

hq rd














,

where x = T1(t)x1 is a time-varying congruent transforma-

tion relating the original state vector x of the full system

(1) to the chosen new state vector x1 = ωs of the reduced

system. By applying x = T1(t)x1 to system (1), one obtains

the following reduced state space time-varying model:

L1(t) ẋ1 +N1(t)x1 = A1(t)x1 +B1(t) τ , (4)

where L1(t) = Q1(t)
TJQ1(t), N1(t) = Q1(t)

TJ Q̇1(t),
A1(t)=−Q1(t)

TBJQ1(t) and B1(t)=QT

1(t).

A. Algorithm 1: the Generalized Radii Matrix R(t)

Let rij,h(t) denote the generic coefficient of matrix

R(t) = [rij,h(t)], where ij ∈ NK and h ∈ NJ , see (2).

Property 1: The generic coefficient rij,h(t) of the gener-

alized radii matrix R(t) can be computed as follows:

rij,h(t) = Sij,h rh(t). (5)

The definition of parameters Sij,h and rh differs depending

on the type of the considered physical element h:

Inertia (rotational) element: in this case, the effective

radius rh is the distance between the rotation axis of the

inertia element h and the coupling element ij, whereas Sij,h

is a sign term computed as follows:

Sij,h=

{

1 if ~dh=~ωh×~Fij is exiting the page,

−1 if ~dh=~ωh×~Fij is entering the page,

where ~ωh and ~Fij are vectors identifying the positive di-

rections of the angular speed ωh and of the generalized

force Fij of the coupling element ij. Fig. 4a shows an

example involving a rotational element a interacting with

a translational element b through an elastic element Kab.

Eq. (5) can be used with reference to Fig. 4b, showing the

same physical system as Fig. 4a with a view rotated by
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π/2. In this example, it is rh = ra and Sab,a = 1 since
~da=~ωa× ~Fab is exiting the page by applying the right-hand

rule, see Fig. 4c.

Note: in the CVT of Fig 1, element c affects the coupling

elements pr and sp through an intermediate gear p. In this

case, the effective radius is the distance between the rotation

axes of the two angular speeds ~ωc and ~ωp [10], namely rc.

Mass (translational) element: in this case, the effective

radius rh is always equal to 1, whereas Sij,h is a sign term

computed as follows:

Sij,h=

{

1 if ~dh=~vh×~Fij points toward the left of ~Fij ,

−1 if ~dh=~vh×~Fij points toward the right of ~Fij ,

where ~vh is a vector identifying the positive direction of the

translational speed vh and where the left and right sides of
~Fij are determined moving along the positive direction of

vector ~Fij , see the red arrows in Fig. 4. With reference to

the example in Fig. 4b, it is rh = rb = 1 and Sab,b = 1,

since ~db=~vb×~Fab points towards the left of ~Fab by applying

the right-hand rule, see Fig. 4d.

Therefore, the generalized radii matrix R of the example

shown in Fig. 4 is:

ab R =
[ a b

ra 1
]
.

Remark 1: When the rotational element h is connected

to a physical element from a different energetic domain, the

generalized effective radius rh handles the energy conversion

between the two different energetic domains.

Example: in the CVT of Fig. 1 and Fig. 2, the rotational

elements d and e interact with the hydraulic pump and the

hydraulic motor through the generalized affective radii hp(θ)
and hq, respectively. hp(θ) and hq are the coefficients that,

multiplied by the angular speeds ωd and ωe, give the volume

flow rates Qp(θ) and Qm entering and exiting the hydraulic

accumulator Cde, respectively.

B. Simulations

The full and reduced models (1) and (4) of the considered

hydraulic CVT shown in Fig. 1 have been simulated using the

inputs, initial conditions and parameters reported in Table I.

The obtained simulation results are shown in Fig. 5. In

particular, the time behaviors of the angular speeds ωi, for

i ∈ NJ in (2), are shown in the left subplot of Fig. 5,

whereas the time behaviors of the tangential forces Fij and

of the pressure Pde, for ij ∈ NK in (2), are shown in the

middle and in the right subplot, respectively. The continuous

colored plots refer to the simulation results given by the full

model (1). The red dashed plots of the angular speeds ωi

on the left subplot of Fig. 5 are obtained using the reduced

model (4), whereas the red dashed plots of the tangential

forces Fij in the middle subplot of Fig. 5 and the red

dashed plot of the pressure Pde in the right subplot have

been obtained using [10]-Eq. (11). This proves that the latter

equation, which is one of the contributions of our previous

work, works to provide the power variables of all coupling

dynamic elements that are no longer present in the reduced
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Fig. 5. Simulation of the Hydraulic CVT: full model (colored character-
istics) and reduced model (dashed characteristics).

TABLE I

HYDRAULIC CVT: SIMULATION PARAMETERS.

rr=24.8 cm, Jr=2.18 kg m2, rc=17.5 cm, Jc=0.929 kg m2

rp=7.3 cm, Jp=0.081 kg m2, rd=10 cm, Jd=0.05 kg m2

re=10 cm, Je=0.05 kg m2, rs=10.2 cm, Js=0.049 kg m2

rre=30 cm, ra=10 cm, Kp=10 l/rpm, θ=30 sin (3t), hq=Kp

bc=bp=bs=br=20 Nm sec/rad, bd=be=10 Nm sec/rad

Ksp=Kpr=Ksd=Kre=108 N/m, Cde=1µPa/m3

dsp=dpr=dsd=dre=10 N sec/m, Rde=0

τ =
[

0 0 500 0 0 0
]T

Nm, ω0=
[

0 0 0 0 0 0
]T

, F0=
[

0 0 0 0 0
]T

model (i.e., not only the tangential forces, as it was instead

in the previous work, but also the power variables of the

other coupling elements too, e.g. the pressure Pde within the

hydraulic accumulator Cde in the considered case study.).

Fig. 5 shows the very good matching between the simulation

results obtained using the full and reduced models. The

middle subplot of the figure shows the fast oscillations that

some tangential forces Fij exhibit, that are due to the high

value of the stiffness coefficients Kij in Table I. The full

model is indeed more suitable for accurate simulations, in

order to know the exact behavior of the coupling dynamic

elements present in matrix K. The reduced model is instead

very suitable for developing real-time control strategies for

the considered system. This is thanks to the fact that fixed-

step simulations can be better performed with the reduced

model, because the fast dynamics of the coupling elements

in matrix K is not present any longer.

III. CRANK-CONNECTING ROD

Let us consider the Crank-Connecting Rod (CCR) system

shown in Fig. 6a. From the modeling point of view, this

system can be considered as a special case of the system

composed of a translational element and a rotational element

interacting with each other shown in Fig. 4, in which radius

ra is now function of the time-varying angle θ: ra = ra(θ),
see Fig. 6a. Let us refer to the schematic representation of the

CCR system shown in Fig. 6b. This system can be modeled

using the same full dynamic model (1). The sets NJ , NK

and NB are:






NJ = {a, b}, nJ = dim(NJ ) = 2,
NK = {ab}, nK = dim(NK) = 1,
NB = {}, nB = dim(NB) = 0.

(6)

From NJ and NK in (6), the output speed vector y = BTx =
ω, the input torque vector u = τ , the inertia matrix J, the
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R

L
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xk(θ)

a) b)

Fig. 6. Structure of the considered Crack-Connecting Rod system.

gears friction matrix Bω, the force vector F, the stiffness

matrix K and the stiffness friction matrix BK result to be:

ω=

[
ωa

vb

]

, τ =

[
τa
Fb

]

,J=

[
Ja 0
0 Mb

]

,Bω=

[
ba 0
0 bb

]

,
F=Fab,
K=Kab,
BK=dab.

Even in this case, the relative friction matrix is B∆ω=0 and

the inertia friction matrix is BJ = Bω. Note that vectors

ω, τ and matrices J, Bω assume a generalized meaning

in this case, since they also include the parameters of the

translational element b: the translational speed vb, the input

force Fb, the mass Mb and the friction coefficient bb. The

generalized radii matrix R(t) can be directly computed using

the Algorithm 1 presented in Sec. II-A:

ab R(t) =
[ a b

ra(θ) 1
]
. (7)

In this case, the generalized radius ra(θ) is the coefficient

that, multiplied by the angular speed ωa, provides the tan-

gential speed va = ra(θ)ωa at first terminal of the elastic

element Kab. Coefficient ra(θ) is function of the time-

varying angle θ representing the angular position of the

rotational element a in Fig. 6, and can be expressed as

follows:

H(θ)=
∂xk(θ)

∂θ
= R

[

− sin θ −
(sin θ − β) cos θ

√

α2 − (sin θ − β)2

]

,

where α = L/R > 1, β = d/R < 1 and ωa = dθ
dt

. When

K = Kab → ∞, from the second equation in (1) one obtains

R(t)ω = 0, which can be used to express the original state

vector x as a function of the chosen reduced state vector

x1 = ωa as follows:

[
ω

F

]

︸︷︷︸

x

=

[

Q1(t)

0

]

︸ ︷︷ ︸

T1(t)

x1
︸︷︷︸

ωa

where Q1(t)=

[

1

−ra(θ)

]

(8)

and where the time-varying congruent transformation x =
T1(t)x1 applied to system (1) gives the same reduced model

(4) obtained for the CVT case study.

A. Simulations

This section deals with the simulation of the full and

reduced models (1) and (4) of the considered Crank-

Connecting Rod system shown in Fig. 6. The two simulations

have been performed using the inputs, initial conditions and

0 1 2

40

42

44

46

48

50

52

54

56

58

60

0 1 2

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 1 2

-8

-6

-4

-2

0

2

4

6
ωa vb Fab

[r
p

m
]

[m
/s

]

[N
]

Time [s]Time [s]Time [s]

Fig. 7. Simulation of the CCR: full model (light blue characteristics) and
reduced model (dashed characteristics).

TABLE II

CCR: SIMULATION PARAMETERS.

R=10 cm, L=40 cm, d=5 cm, Ja=0.0013 kg m2, Mb=0.8 Kg

Kab=108 N/m, ba=0.191 Nm sec/rad, bb=0.5 Nm sec/m

dab = 10 Nm sec/m, τ =
[

1 0
]T

Nm, ω0=
[

0 0
]T

, F0=0

parameters reported in Table II. The results in terms of

angular speed ωa, translational speed vb and tangential force

Fab are shown in Fig. 7: the light blue characteristics refer to

the simulation performed using the full model (1) and the red

dashed characteristics refer to the simulation performed using

the reduced model (4). The time behavior of the tangential

force Fab in the reduced model case has been obtained using

[10]-Eq. (11). Similar comments as those made in Sec. II-B

on Fig. 5 regarding the simulation of the hydraulic CVT can

be made in this case as well. In particular, from Fig. 7 it

is possible to observe the very good matching between the

results given by the full model, which is suitable for detailed

simulations, and the reduced model, which is suitable for

developing real-time control strategies.

B. Comparison with the Lagrangian Approach

The CCR could have been modeled using other approaches

too, such as the following Lagrange Equations:

d

dt

(
∂T

∂q̇i

)

−
∂T

∂qi
+

∂U

∂qi
= Qi i = 1, . . . , N, (9)

where N is the number of degrees of freedom in the system,

qi and Qi are the generalized Lagrangian coordinates and

forces, T and U are the kinetic and potential energies in the

system. By applying (9) to the CCR system, it results:

T = 1
2Jaω

2
a +

1
2Mbv

2
b U = 0, q1 = θ,

Q1 = τa − baωa − bb ra(θ)
2ωa + ra(θ)Fb.

(10)

One can verify that the model obtained applying (9)-(10)

coincides with the reduced model (4) of the CCR system.

However, the procedure we propose in this paper exhibits the

following important features over the Lagrangian approach:

a) The procedure is always the same for any physical system

including inertia and mass elements, which can be coupled

by elements that may also not belong to the mechanical

domain, e.g. hydraulic accumulators etc. This means that

our procedure allows to model a larger class of systems and

in an automatic way. b) The Lagrangian approach requires
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the exact manual computation of the kinetic energy T , the

potential energy U and the generalized force terms Qi in (9).

These terms can become very complex to compute especially

if the number and the types of frictions (e.g. relative frictions)

and the number of inertia and mass elements in the system

increase. The level of complexity further increases if one

wants to compute the full model (1) including the elastic

interactions using the Lagrangian approach. Using our sys-

tematic procedure, all these computations are automatically

given, see (8). Furthermore, the distinction between motive

and friction torques and forces is automatic using the pro-

posed systematic procedure, as the signs of the terms Qi

in (9) are automatically determined in the matrices A1(t)
and B1(t) of the reduced model (4). c) If one wanted to

find both the full model and the reduced model using the

Lagrangian approach, the Lagrangian equations (9) should

be applied twice. On the other hand, the proposed systematic

modeling procedure directly gives the two models at the same

time: the full model describing the effect of the coupling

elements (elasticities, hydraulic accumulators, etc) on the

system inertias and masses in details, and the reduced model

being suitable for developing real-time control strategies for

the considered system. Furthermore, using the proposed pro-

cedure, the output power variables of the coupling elements

can still be computed in the reduced model using [10]-

Eq. 10. d) On the contrary with respect to the Lagrangian

approach, the procedure proposed in this paper allows to

significantly extend the class of physical systems that can be

modeled using it, including many complex physical systems

involving physical interactions in different energetic domains

other than the mechanical one.

IV. CONCLUSIONS

This paper has addressed the systematic modeling of

complex physical systems involving different energetic do-

mains. The proposed procedure directly provides the full and

reduced models of the system; furthermore, the proposed

rules and algorithms automatically provide all the system

matrices and vectors. The full model is suitable for de-

tailed simulations, whereas the reduced model is suitable

for developing real-time control strategies. The proposed

modeling procedure has been applied to two different case

studies: an hydraulic continuous variable transmission for

powertrain dynamics and a crank-connecting rod system in

the mechatronic field.
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