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Abstract— This work shows how widely adopted longitudinal
platooning protocols can be made adaptive via an immersion
and invariance (I&I) approach. Such an I&I approach ad-
vances the state of the art on adaptive longitudinal platooning,
which mostly relies on model reference adaptive control, while
also extending the standard I&I design by compensating for
exogenous effects from the preceding vehicle in the adaptive
law. Two I&I designs are presented and compared with the
corresponding state-of-the-art model reference adaptive control
designs to demonstrate their effectiveness.

I. INTRODUCTION

Longitudinal platooning refers to formations of automated
vehicles with control protocols that use feedback from on-
board sensing (radar, tachometer, accelerometer, etc.) and
inter-vehicle wireless communication to keep a desired
distance. The name Cooperative Adaptive Cruise Control
(CACC) is nowadays standard to indicate several such pro-
tocols [1]. Historically, the term ‘adaptive’ was introduced
in Adaptive Cruise Control (ACC), the technology prior to
CACC only relying on on-board sensing, to indicate a cruise
control that could adapt to different speeds of the preceding
vehicle. As such, the term ‘adaptive’ in ACC/CACC is not
used in the same sense as in ’adaptive control’: evidence of
this is that standard longitudinal platooning protocols are not
designed using adaptive control. Yet, as the time constants
of the vehicles composing the platoon are hardly known
in practice [2]–[4], embedding longitudinal platooning with
adaptive control capabilities is practically relevant.

While it might be difficult, if at all possible, to categorize
all longitudinal platooning protocols in the literature, we
focus on two rather standard protocols: chronologically, [5]
was probably the first protocol with a string stability analysis
under constant time headway, showing improved disturbance
rejection as compared to constant distance headway. Several
studies have been conducted on this protocol, such as [4],
[6], [7], making it one of the most popular. As the under-
standing of longitudinal platooning improved, a new protocol
was later developed from the perspective of disturbance
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decoupling [8]. Such a perspective is particularly useful in
longitudinal platooning as it guarantees string stability under
constant time headway as a by-product, giving a new insight
into longitudinal platooning [9], [10].

Alternative approaches, such as protocols based on con-
sensus or energy damping [11], [12], have been proposed. We
focus on the protocols stemming from [5], [8] due to their
string stability property under constant time headway and
due to the existing adaptive control mechanisms proposed
for these protocols, namely, [13], [14] for the protocol
in [5], and [15], [16] for the protocol in [8]. The interested
reader can verify that such adaptation mechanisms rely on
model reference adaptive control (MRAC). This note shows
how, for the aforementioned widely adopted longitudinal
platooning protocols, new adaptation mechanisms can be
designed using an immersion and invariance (I&I) approach.
I&I is a tool introduced in [17] for the (adaptive) stabilization
of nonlinear systems. Over the years, I&I has been exploited
for observer design [18], [19], adaptive control for classes
of nonlinearly parametrized systems [20], contraction and
input-to-state stability designs [21], [22], and orbital stabi-
lization [23]. Despite the progress, the application of I&I to
longitudinal platooning requires peculiar features: as a matter
of fact, the I&I designs in this work extend the standard
I&I design by compensating for exogenous effects from the
preceding vehicle in the adaptive law.

The rest of the paper is organized as follows: two widely
adopted longitudinal platooning protocols are presented in
Sect. II (first the one in [8], then the one in [5]), and
the corresponding I&I designs are presented and analyzed
in Sect. III and IV, respectively. Comparisons with the
corresponding state-of-the-art MRAC designs are presented
in Sect. V, with conclusions in Sect. VI.

II. BASELINE PROTOCOLS AND PROBLEM STATEMENT

As customary in the literature [4], [11], [24], we introduce
longitudinal platooning via a pair of predecessor-follower
vehicles (see Fig. 1) indexed as i − 1 and i, respectively,
yielding the equations

ṡi(t)= vi(t), ṡi−1(t)= vi−1(t),

v̇i(t)= ai(t), v̇i−1(t)= ai−1(t), (1)
τiȧi(t)=−ai(t)+ui(t), τi−1ȧi−1(t)=−ai−1(t)+ui−1(t),

where si,vi,ai are the longitudinal position, velocity, and
acceleration of vehicle i (similar for vehicle i−1). The input
ui is a desired acceleration passing through a first-order filter
with time constant τi > 0, representing the time needed by
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ai to reach ui, due to the powertrain/braking dynamics. This
time constant is affected by vehicle mass, road slope, gear,
among other factors, hence it is often unknown in practice.

Longitudinal platooning is established through the spacing
error and the relative velocity, defined as

ei(t) = si−1(t)− si(t)−hvi(t),

νi(t) = vi−1(t)− vi(t),
(2)

where h > 0 is a time headway to represent typical driving
behavior of increasing the inter-vehicle distance as the veloc-
ity increases [1], [8], [25]. We now recall two longitudinal
platooning protocols commonly adopted in the literature.

A. Baseline non-adaptive platooning protocols

The longitudinal platooning protocol introduced in [8] in
the framework of disturbance decoupling is described by the
equation

ui(t)=θ1ei(t)+θ2νi(t)+(1− τi

h
−hθ2)ai(t)+

τi

h
ai−1(t), (3)

for arbitrary θ1 > 0 and θ2 > 0. One can recognize a
proportional-derivative feedback from ei and ėi = νi − hai,
and a term proportional to the relative acceleration. Feedback
from ei, ėi, and ai can be obtained from on-board sensing,
like radar, tachometer and accelerometer, while feedback
from ai−1 requires inter-vehicle wireless communication, in
line with the cooperative adaptive cruise control (CACC)
technology [1].

Another longitudinal platooning protocol, introduced
in [5], uses additional dynamics for ui, described by

hu̇i(t) =−ui(t)+θ1ei(t)+θ2νi(t)−hθ2ai(t)+ui−1(t), (4)

with θ1 > 0 and θ2 > 0, such that θ2 > τiθ1. One can again
recognize a proportional-derivative feedback from ei and
ėi, and feedback from ui−1 requiring inter-vehicle wireless
communication. The protocols (3) and (4) have their own
advantages and disadvantages. For example, (3) guarantees
disturbance decoupling even with heterogeneous τi−1 ̸= τi,
but requires exact knowledge of τi; on the other hand, (4)
guarantees disturbance decoupling only for homogeneous
τi−1 = τi, but the inequality θ2 > τiθ1 relaxes the exact
knowledge of τi. The interested reader is referred to the
literature for a detailed set of properties of the two protocols.

B. Control problem

As both protocols (3) and (4) cannot handle large uncer-
tainty in the vehicle time constants, an adaptive longitudinal
platooning problem is formulated as follows.

Control Problem: Consider the predecessor-follower
model (1) with spacing error (2). Design an adaptive con-
troller ui such that, for any unknown τi > 0 and τi−1 > 0,
and any bounded ai−1(·) and ui−1(·), it holds that

lim
t→∞

ei(t) = 0. (5)

The rationale for considering bounded ai−1(·), ui−1(·), is
that these terms enter as exogenous disturbances in the error

Fig. 1: Predecessor and follower in a longitudinal platoon.

dynamics. For the protocol (3) this can be seen by writingėi
ν̇i
ȧi

=

0 1 −h
0 0 −1
0 0 − 1

τi

ei
νi
ai

+

0
0
1
τi

ui +

0
1
0

ai−1. (6)

Analogously, for the protocol (4), we obtain
ėi
ν̇i
ȧi
u̇i

=


0 1 −h 0
0 0 −1 0
0 0 − 1

τi
1
τi

θ1
h

θ2
h −θ2 − 1

h




ei
νi
ai
ui

+


0
0
1
τi
0

∆ui+


0 0
1 0
0 0
0 1

h

[ai−1
ui−1

]
,

(7)
where ∆ui has been introduced as the adaptive input to be
designed.

III. FIRST IMMERSION AND INVARIANCE DESIGN

We now discuss how the protocol (3) can be made adap-
tive. Let τm > 0 be a target time constant. Because θ1 > 0
and θ2 > 0 in (3) can be arbitrary, define, without loss of
generality the control

ui = ai + τi

(
θ1

τm
ei +

θ2

τm
νi −

(
hθ2

τm
+

1
h

)
ai +

1
h

ai−1

)
, (8)

satisfying the same properties as (3). Note that (8) is linearly
parametrized with respect to the unknown τi. Using the target
time constant τm, define the target dynamics ˙̄ei

˙̄νi
˙̄ai

=

 0 1 −h
0 0 −1
θ1
τm

θ2
τm

− hθ2
τm

− 1
h


︸ ︷︷ ︸

Am

ēi
ν̄i
āi


︸ ︷︷ ︸

x̄

+

0
1
1
h


︸︷︷︸

Gm

ai−1, (9)

that arise from controlling the dynamics (6) with the ideal
controller (8). Adding and subtracting the ideal controller (8)
from (6) allows writing the actual dynamics asėi

ν̇i
ȧi

=

 0 1 −h
0 0 −1
θ1
τm

θ2
τm

− hθ2
τm

− 1
h

ei
νi
ai


︸ ︷︷ ︸

x

+

0
1
1
h

ai−1+

0
0
1
τi


︸ ︷︷ ︸

g

ũi

−

0
0
1
τi

τi

(
θ1

τm
ei +

θ2

τm
νi −

(
hθ2

τm
+

1
h

)
ai +

1
h

ai−1

)
︸ ︷︷ ︸

ψ

,

(10)
where we have defined ũi = ui−ai for compactness. Subtract-
ing the actual dynamics (10) and the ideal target dynamics
(9) gives ˙̃ei

˙̃νi
˙̃ai

=
 0 1 −h

0 0 −1
θ1
τm

θ2
τm

− hθ2
τm

− 1
h

ẽi
ν̃i
ãi

+
0

0
1
τi

ũi−

0
0
1
τi

ψτi,

(11)
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where ẽi = ei − ēi, ν̃i = νi − ν̄i, ãi = ai − āi. Let x̃ = x− x̄,
with x as in (10) and x̄ as in (9). The following result holds.

Theorem 1. The predecessor-follower dynamics (11) are
adaptively stabilizable via immersion and invariance (I&I).
An I&I design is given by the adaptive law

˙̂τi(t) =−∂β

∂ x̃
Amx̃(t)− ∂β

∂ x̄
(Amx̄(t)+Gmai−1(t)) , (12)

with the control law

ui(t) = ai(t)+ψ(t)(τ̂i(t)+β (x̃(t), x̄(t))) , (13)

and

β (x̃, x̄)=−γ ãi

[
θ1

τm
ei+

θ2

τm
νi+

1
h

ai−1−
(

ãi

2
+āi

)(
hθ2

τm
+

1
h

)]
,

(14)
with γ > 0.

Proof. Stabilizability via immersion and invariance requires
to verify a set of conditions, see [17]. Because the stability
of the target system (9), the immersion condition, and the
implicit manifold condition follow almost directly from [17],
we focus on the condition of manifold attractivity and
trajectory boundedness. This condition requires to prove that
all trajectories of the system

˙̃x(t) = Amx̃(t)+gψ(x(t))z(t)

ż(t) =
[

∂β

∂ x̃
gψ(x(t))

]
z(t),

(15)

are bounded and satisfy the condition limt→∞ x̃(t) = 0. To
this end note that the dynamics of x̃ can be calculated as

˙̃x(t) = Amx̃(t)+gũi(t)−gψ(t)τi

= Amx̃(t)+gψ(t)z(t),
(16)

where we have used the off-manifold variable z = τ̂i − τi +
β (x̃, x̄) and the controller in the form ũi = ψ(τ̂i + β (x̃, x̄)).
The dynamics of z can be calculated as

ż(t) = τ̂i(t)+
∂β

∂ x̃
˙̃x(t)+

∂β

∂ x̄
˙̄x(t) = τ̂i(t)+

∂β

∂ x̃
(Amx̃(t)+gψ(t)z(t))+

∂β

∂ x̄
(Amx̄(t)+Gmai−1(t)) .

(17)
Choosing the adaptive law (12), the z dynamics in (15) are
obtained. To prove boundedness of the trajectories in (15),
consider the Lyapunov function

W (x̃,z) = x̃⊤
P
2

x̃+
ρ

2
z⊤z, (18)

with ρ > 0, and P > 0 solution to the Lyapunov equation

PAm +A⊤
mP+Q = 0, Q > 0. (19)

The time derivative of the Lyapunov function along the
trajectories of the system gives

Ẇ = x̃⊤
PAm +A⊤

mP
2

x̃+ x̃⊤Pgψz+ρz⊤
∂β

∂ x̃
gψz. (20)

Peter-Paul inequality applied to the second term in (20) gives

x̃⊤Pgψz ≤ x̃⊤Pgg⊤Px̃
2α

+
α

2
z⊤ψψ

⊤z, (21)

for any α > 0. Using the fact that β in (14) is such that
∂β

∂ x̃
g =− γ

τi
ψ, (22)

we obtain

Ẇ ≤−x̃⊤
Q
2

x̃+
x̃⊤Pgg⊤Px̃

2α
+ z⊤ψ

(
α

2
−ρ

γ

τi

)
ψ

⊤z, (23)

which is negative semidefinite for ρ > ατi/(2γ) and α suf-
ficiently large. This results in boundedness of all trajectories
of (15). Convergence of x̃ is established using Barbalat’s
Lemma. Having established all conditions for stabilizability
via I&I, we finally verify (5) by writing ei = ēi + ẽi, where
ēi convergences to zero due to the disturbance decoupling
property of the ideal closed loop (9), whereas convergence
of ẽi has been proven via Lyapunov analysis. This concludes
the proof. ■

As compared to the standard I&I design [17], the proposed
I&I design considers exogenous terms. To tackle these ex-
ogenous effects, coming from the preceding vehicle, new
terms have been included in the adaptive law (12).

The adaptive law (12) exploits what is known in I&I
literature as realizability of the target dynamics [17, Sect. IV-
D]. Being based on a target time constant τm chosen by the
designer, the target dynamics are realizable, i.e., independent
of the unknown parameters. Such a choice of the target
dynamics is reminiscent of the reference dynamics in the
MRAC design, which allows a direct comparison between
the two approaches, as given in Sect. V.

IV. SECOND IMMERSION AND INVARIANCE DESIGN

We now discuss how the protocol (4) can be made
adaptive. Analogous to the previous design, let τm > 0
represent a target time constant, chosen so that θ2 > τmθ1.
Straightforward calculations show that the controller

∆ui(t) =
(

τi

τm
−1

)
(ui(t)−ai(t)), (24)

is stabilizing, and results in the target dynamics
˙̄ei
˙̄νi
˙̄ai
˙̄ui

=


0 1 −h 0
0 0 −1 0
0 0 − 1

τm
1

τm
θ1
h

θ2
h −θ2 − 1

h


︸ ︷︷ ︸

Am


ēi
ν̄i
āi
ūi


︸ ︷︷ ︸

x̄

+


0 0
1 0
0 0
0 1

h


︸ ︷︷ ︸

Gm

[
ai−1
ui−1

]
. (25)

Adding and subtracting the ideal controller (24) from (7), we
rewrite the actual dynamics as

ėi
ν̇i
ȧi
u̇i

=


0 1 −h 0
0 0 −1 0
0 0 − 1

τm
1

τm
θ1
h

θ2
h −θ2 − 1

h




ei
νi
ai
ui


︸ ︷︷ ︸

x

+


0 0
1 0
0 0
0 1

h

[
ai−1
ui−1

]

+


0
0
1
τi
0

∆ũi −


0
0
1
τi
0

τi
ui −ai

τm︸ ︷︷ ︸
ψ

,

(26)
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where we have defined ∆ũi = ∆ui +ui −ai for compactness.
By subtracting the actual and the ideal target dynamics (26)
and (25), we obtain

˙̃ei
˙̃νi
˙̃ai
˙̃ui

=


0 1 −h 0
0 0 −1 0
0 0 − 1

τm
1

τm
θ1
h

θ2
h −θ2 − 1

h




ẽi
ν̃i
ãi
ũi

+


0
0
1
τi
0

∆ũi +


0
0

− 1
τi

0

ψτi,

(27)
where ẽi = ei − ēi, ν̃i = νi − ν̄i, ãi = ai − āi, ũi = ui − ūi.
Let x̃ = x− x̄, with x as in (26) and x̄ as in (25). Then, the
following result holds.

Theorem 2. The predecessor-follower dynamics (27) are
adaptively stabilizable via immersion and invariance (I&I).
An I&I design is given by the adaptive law

˙̂τi(t) =−∂β

∂ x̃
Amx̃(t)− ∂β

∂ x̄

(
Amx̄(t)+Gm

[
ai−1(t)
ui−1(t)

])
, (28)

with the control law

∆ui(t) = ui(t)−ai(t)+ψ(t)(τ̂i(t)+β (x̃(t), x̄(t))) , (29)

with

β (x̃(t), x̄(t)) =− γ

τm
ãi(t)

[
ui(t)−

ãi(t)
2

− āi(t)
]
, (30)

and γ > 0.

Proof. As the proof follows similar steps as the ones of
Theorem 1, we focus on manifold attractivity and trajectory
boundedness, for a system in the same form as (15), obtained
from

˙̃x(t) = Amx̃(t)+g∆ũi(t)−gψ(t)τi = Amx̃(t)+gψ(t)z(t),
(31)

and from
ż(t) = τ̂i +

∂β

∂ x̃
˙̃x(t)+

∂β

∂ x̄
˙̄x(t), (32)

with the adaptive law (28). The Lyapunov analysis, similar
to Theorem 1, uses the Lyapunov function (18), and relies
on the fact that β in (30) is such that

∂β

∂ x̃
g =− γ

τi
ψ. (33)

We finally verify (5) by writing ei = ēi + ẽi, where ēi
converges to zero due to disturbance decoupling of the
ideal closed loop (25) (with τm taken homogeneous for all
vehicles), whereas ẽi converges to zero from the Lyapunov
analysis. ■

V. COMPARISON WITH MODEL REFERENCE ADAPTIVE
CONTROL

The dynamics (11) for the first protocol and (27) for
the second protocol describe the tracking error between the
actual closed-loop system and the target dynamics. As such,
such dynamics are amenable to be used in a model reference
adaptive control (MRAC) architecture with the reference
model playing the role of the target dynamics. Indeed,
the literature has reported adaptive longitudinal platooning

protocol inspired by MRAC. For the first protocol an adaptive
design was reported in [15], taking the form

˙̂τi =−γB⊤Px̃
(

θ1

τm
ei +

θ2

τm
νi −

(
hθ2

τm
+

1
h

)
ai +

1
h

ai−1

)
ui = ai +

(
θ1

τm
ei +

θ2

τm
νi −

(
hθ2

τm
+

1
h

)
ai +

1
h

ai−1

)
τ̂i,

(34)
with B⊤ = [0 0 h−1], and P as in the Lyapunov equation
(19). For the second protocol an adaptive design was reported
in [13], taking the form

˙̂τi =−γB⊤Px̃
ui −ai

τm
, ∆ui = ui −ai +

ui −ai

τm
τ̂i, (35)

with B⊤ = [0 0 1 0], P from its corresponding Lyapunov
equation (in the same form as (19) but with Am as in the
target dynamics (25)). By comparing (12) with (34), and
(28) with (35), it can be noted that the adaptive laws in the
proposed I&I designs depart from existing MRAC designs.
The difference between the I&I and the MRAC designs is
even more evident in the control law: indeed, the MRAC
designs adopt a certainty-equivalence control, that is, the
unknown τi is directly replaced by τ̂i. On the other hand,
the I&I designs (13) and (29) depart from the certainty-
equivalence control, due to the presence of the β term.
Certainty-equivalence control in MRAC is the result of the
use of a Lyapunov function of the form

W (x̃,z) = x̃⊤
P
2

x̃+ τ̃
⊤ ρ

2
τ̃, (36)

in which the first quadratic term is the same as in (18), while
the second term is quadratic in τ̃i = τ̂i − τi, instead of being
quadratic in the off-manifold variable z as in (18).

To verify the theoretical analysis, this section presents
simulation results of a platoon with five vehicles (one
leader indexed as 0 and four following vehicles indexed as
1, 2, 3, 4). All protocols, given for a predecessor-follower
configuration, can be easily extended to platoons of arbitrary
length, using vehicle pairs (i−1, i). The initial conditions and
vehicle time constants are shown in Table I.

TABLE I: Vehicle time constants and initial conditions

i τi di(0) vi(0) ai(0)
0 0.2 0 10 0
1 0.05 -2 12 0
2 0.1 -4 8 0
3 0.3 -6 11 0
4 0.25 -8 10 0

We simulate three scenarios:
1) non-adaptive scenario, which can be the first presented

protocol (3) or the second presented one (4);
2) state-of-the-art MRAC version of the protocols above:

(34) for the first protocol and (35) for the second one;
3) proposed I&I version of the protocols above: (12)-(13)

for the first protocol and (28)-(29) for the second one.
We set the time headway h = 0.7 in all protocols. For the
first protocol (3), we use θ1 = 1 and θ2 = 1. For the second
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(b) MRAC and I&I adaptive protocols
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Fig. 2: Comparisons between the non-adaptive protocol (3), and its MRAC and I&I adaptive versions. When the leading
vehicle has constant velocity, all protocols achieve vanishing error. Note the smooth estimation behavior of the I&I design.
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Fig. 3: Comparisons between the non-adaptive protocol (3), and its MRAC and I&I adaptive version. In the absence of
adaptation, poor knowledge of τi results in steady-state errors.

protocol (4), we use θ1 = 0.75 and θ2 = 1.25. To simulate
incorrect knowledge of τi in the first protocol, we design it
using τi = 0.2 for all vehicles. For the MRAC designs, we
use Q = 0.7I and γ = 0.3 in the first protocol, and Q = 0.25I
and γ = 0.3 in the second protocol. Both the MRAC and I&I
designs use a target time constant τm = 0.5, and γ in I&I
is adjusted to be close to the combined adaptation gain of
MRAC, by setting γ = 0.04 in the first protocol, and γ = 0.09
in the second protocol.

We start by considering the protocol (3) and its adaptive
versions with u0 = 0, implying that the leading vehicle moves
at constant velocity. The spacing errors and velocity results
are presented in Fig. 2a for the non-adaptive protocol, and
in Fig. 2b for the adaptive ones. It can be seen that all
protocols achieve vanishing spacing errors, meaning that the
inter-vehicle distances converge to the desired ones. Fig. 2c
shows that the estimation behavior in the I&I design is
much smoother than the estimation behavior in the MRAC
design. Then, when the leading vehicle proceeds with non-
stationary behavior, e.g. u0 = sin(0.1t) + 0.5sin(0.5t), the
non-adaptive protocol exhibits steady-state errors, with the

inter-vehicle distances deviating from the desired ones, as
shown in Fig. 3a: this is due to the incorrect knowledge of
τi, which makes it impossible to achieve perfect disturbance
decoupling. Fig. 3b and Fig. 3c show that, despite both
adaptive protocols are able to attain vanishing spacing errors,
the estimation behavior in the I&I design does not exhibit
the overshooting behavior of the MRAC design.

We then consider the protocol (4) and its adaptive versions
with the leading vehicle having u0 = sin(0.1t)+0.5sin(0.5t).
Fig. 4a shows steady-state errors: differently from the first
protocol, such errors are due to the vehicles having hetero-
geneous time constants, while protocol (4) is designed for
homogenous time constants. Because the MRAC and I&I
are based on homogeneous target dynamics, they achieve
vanishing errors, as shown in Fig. 4b and Fig. 4c. Once more,
the estimation behavior in the I&I design does not exhibit
the oscillating behavior of the MRAC design.

VI. CONCLUSIONS AND FUTURE WORK

This work proposed new adaptive longitudinal platooning
protocols in the framework of Immersion and Invariance
(I&I). Such I&I designs have been directly compared to
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Fig. 4: Comparisons between the non-adaptive protocol (4), and its MRAC and I&I adaptive version. In the absence of
adaptation, steady-state errors result from the fact that the vehicles have heterogenous time constants.

state-of-the-art protocols relying on model reference adaptive
control. Advantages have been discussed theoretically and
via simulations. The I&I approach to adaptive longitudinal
platooning is open to several extensions: it is of interest to
consider nonlinearities in vehicle dynamics or reduced state
measurements via output-feedback.
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