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Abstract— This paper considers online distributed con-
vex constrained optimization over a time-varying multi-agent
network. Agents in this network cooperate to minimize the
global objective function through information exchange with
their neighbors and local computation. Since the capacity
or bandwidth of communication channels often is limited, a
random quantizer is introduced to reduce the transmission
bits. Through incorporating this quantizer, we develop a quan-
tized distributed online projection-free optimization algorithm,
which can achieve the saving of communication resources and
computational costs. For different parameter settings of the
quantizer, we establish the corresponding dynamic regret upper
bounds of the proposed algorithm and reveal the trade-off
between the convergence performance and the quantization
effect. Finally, the theoretical results are illustrated by the
simulation of distributed online linear regression problem.

I. INTRODUCTION

In recent years, online distributed convex optimization
has received ever-increasing attention from researchers be-
cause of its wide applications in many areas, such as
machine learning, sensor networks, smart grids, etc.; see,
e.g., [1]–[6]. In such an online optimization problem with
constraint sets, various algorithms with projection operations
have been developed, such as distributed online gradient
descent [7], [8]. However, for some high-dimensional and
complex constrained optimization scenarios including mul-
ticlass classification [9] and matrix completion [10], [11],
projection operations incur a heavy computational burden.
On the contrary, projection-free algorithms have impressive
advantages essentially due to the use of a linear oracle.

In [9], Zhang et al. earlier proposed an online distributed
projection-free algorithm and established the static regret up-
per bound as O(T 3/4). The works [12]–[14] further analyzed
the static regret of some variants based on projection-free
methods. In [15] and [16], the dynamic regret bounds were
studied in distributed online projection-free algorithms under
convex and nonconvex conditions, respectively. Dynamic
regret is a more stringent metric than static regret due to its
dynamic reference sequence. However, the communication
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channels between agents in [15], [16] are assumed to be
perfect. In most applications, the communication channels
often have limited bandwidth or capacity, especially for the
cases with scarce communication bandwidth or capacity [17].

It is worth mentioning that quantized communication as
a communication pattern can effectively reduce the number
of communicated bits to achieve the saving of communi-
cation resources [17] through transmitting the information
quantized by a dedicated quantizer. Currently, some dis-
tributed optimization algorithms with quantized communi-
cation have been developed [3], [18]–[25], etc. In [18],
Xiong et al. investigated the quantization effects on the
convergence performance of the distributed quantized mirror
descent algorithm. The works [19]–[21] analyzed the quan-
tized distributed off-line optimization algorithms based on
subgradient and inexact proximal-gradient methods, respec-
tively. Doan et al. [22] considered a distributed off-line two-
time-scale stochastic approximation algorithm under random
quantization and established the almost sure convergence to
the optimal solution for both convex and strongly convex
loss function. In [23], Li et al. investigated the quantized
distributed subgradient optimization algorithm with the dy-
namic encoding and decoding frameworks and proved that
consensus optimization could be achieved under some mild
conditions. Further, for the online distributed optimization
problem, Yuan et al. [3] proposed a distributed online bandit
algorithm under quantized communication and established
the static regret. Up to now, there are few research results
considering distributed online optimization scenarios under
quantized communication. The above analysis of the related
literature and the state of the art motivate us to investigate the
dynamic regret of distributed online projection-free algorithm
under quantized communication, and the effect of quantizer
parameters on regret bounds.

The main contributions of this work are two-fold. Firstly,
motivated by [15] and [3], we develop a quantized distributed
online projection-free optimization (Q-DOPFO) algorithm
for solving the distributed online constrained optimization
problem over a multi-agent network. Meanwhile, the pro-
posed algorithm saves the communication resources and
computational costs as compared to the algorithms with
real-valued data and projection operations, respectively. Sec-
ondly, for different parameter settings of the quantizer, we
establish the corresponding dynamic regret upper bounds
of the proposed algorithm and reveal the trade-off between
the convergence performance and the quantization effect. In
particular, when the knowledge of HT is known, the optimal
bound O(

√
T (1 +HT )+DT ) can be achieved under proper

parameter settings, where T,HT and DT represent the total
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time, function variation and gradient variation, respectively.
The remainder of the paper is organized as follows.

The problem statement, quantizer description, and necessary
assumptions are presented in Section II. Section III shows the
algorithm design and convergence results. Sections IV and
V give simulation examples and conclusion, respectively.

Notation: Rn represents the Euclidean space with n
dimensions. [T ] denotes {1, 2, . . . , T}. ‖z‖ denotes the Eu-
clidean norm of a vector z. d·e represents the round up
function. The boundary of a set X is denoted as ∂X . The
element in the i-th row and j-th column of matrix W is
denoted as [W ]ij . [w]i denotes the i-th element of vector
w. BdR := {z ∈ Rd| ‖z‖ ≤ R} is the closed Euclidean ball
with a center point of origin and a radius of R.

II. PROBLEM FORMULATION

A. The Optimization Problem

Consider a directed time-varying network Gt =
{V, Et,Wt} that consists of n agents, where V :=
{1, . . . , n}, Et ⊆ V×V denotes the edge set. In the network,
agent i can receive the information from the agents in its
neighbor sets N in

i (t) = {j | (j, i) ∈ Et}. Wt ∈ Rn×n de-
notes the weighted matrix and satisfies double stochasticity,
i.e.,

∑n
j=1[Wt]ij =

∑n
i=1[Wt]ij = 1, ∀t ∈ [T ],∀i, j ∈ V ,

where [Wt]ii = 1−
∑
j∈N ini (t)[W ]ij . There exists a constant

ζ > 0 such that [Wt]ij > ζ, t ∈ [T ] holds when j ∈
N in
i (t) ∪ {i}, and [Wt]ij = 0 otherwise. The distributed

online optimization problem is described as follows:

min
xt∈X

T∑
t=1

Ft(xt) (1)

where Ft(xt) =
∑n
i=1 fi,t(xt), the function fi,t is convex

over the convex and compact set X ⊂ Rd. Through local
computation and information exchange with neighbor agents,
agents in the network cooperate to search for the global
optima of Problem (1).

In order to evaluate the developed algorithm in this
paper, we employ the dynamic regret defined in (2) as a
performance metric, which represents the difference between
the cumulative cost Ft(xj,t) of the agent j over time T and
the cumulative cost at benchmark sequence x∗t ∈X .

Regretjd(T ) =

T∑
t=1

Ft(xj,t)−
T∑
t=1

Ft(x
∗
t ) (2)

where x∗t ∈ arg minx∈XFt(x). Due to this varying bench-
mark x∗t , dynamic regret is more stringent than static regret
and has wider application scenarios, such as target tracking.
It is well known that the upper bound of (2) generally
depends on the regularity of the optimization problem. Con-
sidering this fact, we define the following function variation
HT and gradient variation DT .

HT :=

T−1∑
t=1

fsupt , DT :=

T−1∑
t=1

gsupt (3)

where fsupt = maxi∈V maxx∈X |fi,t+1(x) − fi,t(x)|,
gsupt = maxi∈V maxx∈X ‖∇fi,t+1(x)−∇fi,t(x)‖.

Our objective is to design a distributed online algorithm
with quantized communication for Problem (1) that achieves
sublinear dynamic regret of every agent j ∈ V .

B. Random Quantizer

In this subsection, the following random quantizer is
introduced to ensure that each agent in the network uses its
quantized information to communicate with its neighbors.

Definition 1 ( [3]): Qt(y) ∈ Rd is the time-varying
random quantizer of a vector y ∈ Rd if it satisfies that

E[Qt(y)] = y, E[‖Qt(y)− y‖2] ≤ εd,kt‖y‖2, t ∈ [T ] (4)

where εd,kt denotes a quantization resolution that is depen-
dent on the qunantization levels kt and the dimension d.

Remark 1: Several common quantizers are naturally spe-
cial cases of this random quantizer, such as randomized
gossip [26], rescaled unbiased estimators [26], stochastic
k-level quantization [3], probabilistic quantizer [18]. We
show the probabilistic quantizer in [18] as an example. De-
note Qt(y) = [Qt(a1),Qt(a2), . . . ,Qt(ad)]

T , where ai =
[y]i, i ∈ [d]. Then, for [y]i, i ∈ [d], t ∈ [T ] , we have

Qt(ai) =

{
ai
t, w.p. (ai − ait)kt,

ai
t, w.p. (ai

t − ai)kt.
(5)

where ai
t and ai

t are the round up and down ai to the
nearest integer multiple of 1/kt, respectively. It is not hard
to note that the probabilistic quantizer satisfies Definition 1
with εd,kt = d/(4kt

2).
Remark 2: According to Definition 1, εd,kt has a wide

range of values and when its value is smaller, the quantized
data is closer to the real-value data. Note that large values of
εd,kt are allowed at the early stages of the running algorithm,
which means that the quantized data at this stage is coarser
and less precise than the real-value data. In order to achieve
the sublinear dynamic regret, a sublinearly convergent se-
quence {εd,kt} over time t is desired and necessary, which
can be verified in the following sections.

C. Some Assumptions

Some necessary assumptions are needed to facilitate the
following algorithm development.

Assumption 1: The union
⋃(k+1)Q
i=kQ+1 Gi is strongly con-

nected for some positive integer Q and every integer k ≥ 0.
Assumption 2: The constraint set X ⊂ Rd is convex and

compact and satisfies that X ⊆ BdR, R > 0.
Assumption 3: The function fi,t is LX -Lipschitz, i.e.,

|fi,t(x1)− fi,t(x2)| ≤ LX‖x1 − x2‖, ∀x1,x2 ∈X , where
LX is a known positive constant.

Assumption 4: The gradient ∇fi,t(x) is GX -Lipschitz,
i.e., ‖∇fi,t(x1) − ∇fi,t(x2)‖ ≤ GX‖x1 − x2‖,∀x1,x2 ∈
X , which is equivalent to fi,t(x1) − fi,t(x2) ≤
〈∇fi,t(x2),x1 − x2〉 + GX

2 ‖x1 − x2‖2.
Remark 3: Assumptions 1-3 are common in the literature

(see [1], [27], [11], [28], etc.) on centralized and distributed
optimization. The purpose of assuming X ⊆ BdR is to
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ensure that the variance of the random quantizer is bounded,
i.e., E[‖Qt(y) − y‖2] ≤ εd,ktR

2, which is a necessary
precondition. It is worth noting that Assumption 3 implies
‖∇fi,t(x)‖ ≤ LX according to Lemma 2.6 in [29].

III. ALGORITHM DESIGN AND CONVERGENCE ANALYSIS

A. Algorithm Q-DOPFO

In this section, we develop Algorithm Q-DOPFO, which
is illustrated in Algorithm 1. The key ingredients of the
proposed algorithm include: 1) the quantized data Qt(xj,t)
and Qt[∇fi,t(x̂i,t)], instead of real-valued data, are utilized
to perform consensus steps; 2) gradient tracking technique is
introduced to correct the gradient change of loss function by
using the global gradient estimation ŝi,t instead of individual
agent gradients; 3) the decision variable xi,t+1 is updated
through a linear step. It is worth noting that the use of the
random quantizer and projection-free oracle in the proposed
algorithm can effectively save communication and computing
resources of multi-agent systems.

Algorithm 1 (Q-DOPFO) Quantized Distributed Online
Projection-free Optimization
Initialize: Initial variables xi,1 ∈ X and parameter 0 <

α ≤ 1.
1: for t = 1, 2, · · · , T do
2: for Each agent i ∈ V do
3: Agent i quantizes its state xi,t and executes
4: if Qt(xi,t) /∈X then
5: Qt(xi,t) = xi,t.
6: end if
7: Agent i receives the quantized data Qt(xj,t) from

its neighbors j ∈ N in
i (t), and updates

x̂i,t = [Wt]iiQt(xi,t) +
∑

j∈N ini

[Wt]ijQt(xj,t).

8: After the gradient value ∇fi,t(x̂i,t) is revealed,
agent i obtains Qt[∇fi,t(x̂i,t)] and executes gra-
dient tracking steps:

9: if t = 1 then
10: ∇fi,1 = Q1[∇fi,1(x̂i,1)],
11: else
12: ∇fi,t = ŝi,t−1 +Qt[∇fi,t(x̂i,t)]

−Qt−1[∇fi,t−1(x̂i,t−1)].
13: end if

ŝi,t = [Wt]ii∇fi,t +
∑
j∈N ini (t) [Wt]ij∇fj,t,

14: Frank-Wolfe step: update
vi,t = arg min

x∈X
〈x, ŝi,t〉 ,

xi,t+1 = x̂i,t + α(vi,t − x̂i,t).
15: end for
16: end for

In some extreme situations, such as xi,t ∈ ∂X at time
t, Qt(xi,t) may occasionally violate the constraint set due
to the quantizer. However, because of the variability of x∗t
over the time and the randomness of the quantizer, Qt(xi,t)
usually does not always violate set X . To ensure that the
updated decipsion xi,t+1 is always feasible, we require that

the quantized state Qt(xi,t) is in set X for all t, i.e. the step
4 of Algorithm 1.

B. Main Convergence Results

In this section, some lemmas and the bound of dynamic
regret defined in (2) for Algorithm 1 are established. To
facilitate the analysis, we define as follows the transition
matrix Φ(t, s) = WtWt−1 . . .Ws, for all t, s with t ≥ s ≥ 1,
the running average vectors xa,t, va,t, the quantization errors
ei,t,θi,t and the difference of quantized gradient ∇Q

i,t.
xa,t = 1

n

∑n
i=1 xi,t,va,t = 1

n

∑n
i=1 vi,t

ei,t = Qt(xi,t)− xi,t
θi,t = Qt[∇fi,t(x̂i,t)]−∇fi,t(x̂i,t)
∇Q
i,t = Qt[∇fi,t(x̂i,t)]−Qt−1[∇fi,t−1(x̂i,t−1)]

Lemma 1: Let the decision sequence {xi,t} be generated
by Algorithm 1. Then, under Assumptions 1 and 2, we have
for T ≥ 2 that

T∑
t=1

n∑
i=1

E[‖x̂i,t − xa,t‖] ≤
nΓ

1− σ

n∑
j=1

‖xj,1‖+ αT
2n2RΓ

1− σ

+

(
1 +

nΓσ

1− σ

) T∑
t=1

n∑
i=1

E[‖ei,t‖] (6)

where σ = (1− ζ/4n2)1/Q,Γ = (1− ζ/4n2)(1−2Q)/Q.
Proof. The technical proof is provided in [30] due to the
page limitation. A similar approach is done for Lemma 2.

Lemma 2: Let the sequence {ŝi,t,∇fi,t(x̂i,t)} be gen-
erated by Algorithm 1. Then, under Assumptions 1 and 4,
we have for any T ≥ 2 that

T∑
t=1

n∑
i=1

E
[∥∥∥∥ŝi,t − 1

n
∇Ft(xa,t)

∥∥∥∥] ≤ C1 +
2n2ΓRGX

1− σ
αT

+GXC2

T∑
t=1

n∑
i=1

E [‖x̂i,t − xa,t‖] + nLXC2

T∑
t=1

√
εd,kt

+
nΓGX
1− σ

T∑
t=1

n∑
i=1

E[‖ei,t‖] +
n2Γ

1− σ
DT (7)

where C1 =
σnΓ
√
εd,k1+nΓ

1−σ
∑n
i=1 ‖∇fi,1(x̂i,1)‖, C2 =

2nΓ
1−σ + 1.

We state the main convergence results of Algorithm 1
in the following theorem, where due to the randomness in-
troduced by the random quantizer, we consider the expected
version of the metric defined in (2).

Theorem 1: Let the decision sequence {xi,t} be gener-
ated by Algorithm 1 and suppose Assumptions 1-4 hold.
Then, for T ≥ 2 and j ∈ V , the regret is bounded as follows:

E[Regretjd(T )] ≤ D1 +D2αT +D3

T∑
t=1

√
εd,kt +

D4

α

+
D5

α

T∑
t=1

εd,kt +
2n

α
HT +D6DT (8)

1066



where D1 = nLX
∑n
i=1 ‖xi,1 − xa,1‖ + [nΓE0/(1 −

σ)]
∑n
i=1 ‖xi,1‖ + 4RC1, D2 = 4n2RLX + 4nGXR

2 +
8n2ΓGXR

2/(1−σ) + 2n2RΓE0/(1−σ), D3 = nRE0(1 +
nΓσ/(1− σ)) + n2LXR + 4nRLXC2 + 4n2ΓGXR

2/(1−
σ), D4 = 2nLXR,D5 = nGXR

2, D6 = 4n2RΓ/(1− σ) +
2nR by using the notation E0 = 4RC2GX + nLX .
Proof. Based on Algorithm 1 and double stochasticity
of Wt−1, we obtain that xa,t = 1

n

∑n
i=1[x̂i,t−1 +

α(vi,t−1− x̂i,t−1)] = 1−α
n

∑n
i=1Qt−1(xi,t−1) +αva,t−1 =

1−α
n

∑n
i=1 ei,t−1 + (1− α)xa,t−1 + αva,t−1.

Thus, according to Assumptions 2 and 3, for any t ≥ 2,
we have that Ft(xj,t) − Ft(xa,t) ≤ nLX‖xj,t − xa,t‖ ≤
nLX

∑n
i=1 ‖xi,t−xa,t‖ ≤ nLX

∑n
i=1 ‖x̂i,t−1−xa,t−1‖+

nLX
∑n
i=1 ‖ei,t−1‖+4n2LXαR. Recalling the regret notion

defined in (2) and combining the above inequality, we obtain

E[Regretjd(T )]

≤
T∑
t=1

E[Ft(xj,t)− Ft(xa,t)] +

T∑
t=1

E[Ft(xa,t)− Ft(x∗t )]

≤ nLX
n∑
i=1

‖xi,1 − xa,1‖+ nLX

T−1∑
t=1

n∑
i=1

E[‖x̂i,t − xa,t‖]

+ n2LXR

T∑
t=1

√
εd,kt +

T∑
t=1

E[Ft(xa,t)− Ft(x∗t )]

+ 4αTn2LXR. (9)

where the last inequality is obtained by using the
factE[‖ei,t‖] ≤

√
E[‖ei,t‖2] ≤

√
εd,kt‖xi,t‖2 ≤ R

√
εd,kt .

Next, we aim to bound the term
∑T
t=1 E[Ft(xa,t) −

Ft(x
∗
t )] in (9). By using Assumption 4, we have

Ft+1(xa,t+1)− Ft+1(xa,t)

≤ 〈∇Ft+1(xa,t),xa,t+1 − xa,t〉+
nGX

2
‖xa,t+1 − xa,t‖2

≤

〈
∇Ft+1(xa,t),

1− α
n

n∑
i=1

ei,t + α(va,t − xa,t)

〉

+
nGX

2

∥∥∥∥∥1− α
n

n∑
i=1

ei,t + α(va,t − xa,t)

∥∥∥∥∥
2

≤ α
n∑
i=1

〈
1

n
∇Ft+1(xa,t),vi,t − xa,t

〉
+

1− α
n

n∑
i=1

Υi,t

+GX

n∑
i=1

‖ei,t‖2 + 4nGXR
2α2. (10)

where Υi,t := 〈∇Ft+1(xa,t), ei,t〉 and the last inequality is
obtained by using the fact ‖

∑n
i=1 ei,t‖2 ≤ n

∑n
i=1 ‖ei,t‖2

[31]. It can be further verified that

〈(1/n)∇Ft+1(xa,t),vi,t − xa,t〉
≤ 〈(1/n)∇Ft+1(xa,t)− ŝi,t,vi,t − xa,t〉

+ 〈ŝi,t,x∗t − xa,t〉
≤ (2R/n) ‖∇Ft+1(xa,t)−∇Ft(xa,t)‖+ 4R ‖(1/n)·
∇Ft(xa,t)− ŝi,t‖+ (1/n) 〈∇Ft(xa,t),x∗t − xa,t〉

≤ 2Rgt,sup + 4R ‖(1/n)∇Ft(xa,t)− ŝi,t‖

+ (1/n) [Ft(x
∗
t )− Ft(xa,t)] (11)

where the first inequality is obtained by utilizing the optimal-
ity condition: 〈ŝi,t,x∗t 〉 ≥ 〈ŝi,t,vi,t〉 and the last inequality
is derived based on the convexity condition of Ft(x) together
with Assumption 4. Then, it follows from (10) and (11) that

Ft+1(xa,t+1)− Ft+1(xa,t)

≤ 2αnRgt,sup + α [Ft(x
∗
t )− Ft(xa,t)] + Ωt (12)

where Ωt = 4αR
∑n
i=1 ‖

1
n∇Ft(xa,t) − ŝi,t‖ +

1−α
n

∑n
i=1 Υi,t +GX

∑n
i=1 ‖ei,t‖

2
+ 4nGXR

2α2. Through
simplifying (12) by using the method similar to Lemma 4
in [15], we obtain that

α

T∑
t=1

E [Ft(xa,t)− Ft(x∗t )] ≤
T−1∑
t=1

E[Ωt] + 2nLXR

+ 2nHT + 2αnRDT . (13)

For the first term on the right hand of (13), we obtain

E[Υi,t] = E {〈∇Ft+1(xa,t),Q(xi,t)− xi,t〉} = 0, (14)

GX

n∑
i=1

E[‖ei,t‖2] ≤ nGXR2εd,kt . (15)

Through recalling the definition of Ωt and combining (9),
(13), (14), (15), Lemmas 1 and 2, we can readily obtain the
condition (8). The proof is complete. �

In Theorem 1, (8) shows that the upper bound of the
regret depends on Di, i ∈ {1, 2, . . . , 6}, α, T, εd,kt , HT and
DT , where Di are the scalars consisting of the initial
values, optimization problem parameters, and the network
parameters σ,Γ. It should be pointed out that the shorter
the jointed connection period Q of graph is, the tighter
the regret bound will be due to the smaller parameter Γ
and 1

1−σ in coefficients D1, D2, D3 and D6. When the
optimization problem and the network graph are determined,
the coefficient Di will be a finite fixed constants and DT , HT

will have a fixed order over time T . It is not hard to note
that the regret bound of Algorithm 1 is affected by α and
εd,kt . Thus, we have the following corollary.

Corollary 1: Suppose that the conditions in Theorem 1
and HT = o(T ), DT = o(T ) hold. Given positive scalars
κ1, γ < 1, κ2 ≤ T γ and ξ, the quantization resolution and
the step size are chosen as εd,kt = κ1

tξ
, α = κ2

Tγ , respectively.
Then, we have that

E[Regretjd(T )] ≤ (16) O
(
max

{
T 1−b, T γ(1 +HT )

}
+DT

)
,when γ < ξ < 1.

O
(
max

{
T 1−γ , T γ lnT, T γHT

}
+DT

)
,when ξ = 1.

O
(
max

{
T 1−γ , T γ(1 +HT )

}
+DT

)
,when 1 < ξ.

where b := min{γ, ξ/2, ξ − γ}.
Proof. Substituting the conditions of εd,kt , α in Corollary 1
into (8), once can verify that

∑T
t=1

√
εd,kt =

∑T
t=1

√
κ1

tξ/2
=

√
κ1 +

√
κ1

∫ T
1

1
tξ/2

dt ≤ O(T 1−ξ/2) when 0 < ξ < 2,∑T
t=1

√
εd,kt ≤ O(lnT ) when ξ = 2, and

∑T
t=1

√
εd,kt ≤

O(1) when 2 < ξ, respectively. Similarly,
∑T
t=1 εd,kt can

be bounded as O(T 1−ξ) when 0 < ξ < 1, O(lnT ) when
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ξ = 1, and O(1) when 1 < ξ, respectively. Then, (16) is
easily obtained based on different ranges of ξ. The proof is
complete. �

Remark 4: Note that the setting of the decreasing quan-
tization resolution in Corollary 1 allows relatively coarse
quantization in the early stage of algorithm execution. In
particular, when the parameter ξ is chosen as a small value,
the saving of communication resources will be significant
but the regret bound will be poor, which implies that the
setting of the parameter ξ links the trade-off between them.
It should be noted that when the total iteration time T is
large, the quantitative effect of information may be weakened
to be close to the real value, especially in the later stage of
algorithm operation. This change is actually reasonable since
the state variables must approach final optima by continually
obtaining the precise data as long as the algorithm runs.

Remark 5: The result of Corollary 1 matches the central-
ized result [32] and distributed results [15], [16] while taking
quantized communication into account. Compared with [16],
we additionally consider quantization communication and do
not require the loss function to be bounded. Moreover, the
requirements HT = o(T ) and DT = o(T ) in Corollary 1
imply that the cumulative variations of function value and
gradient value grow slower than T as T increases. This
also means that the loss functions and gradient functions
satisfy certain regularities over time, such as the variability
of function parameters decreases over time. According to
Corollary 1, it is not hard to find that this requirement is
reasonable and necessary for guaranteeing the sub-linearity
of the considered dynamic regret. In addition, if the bound
of the prior knowledge HT can be known in advance, i.e.,
HT ≤ O(T θ), 0 < θ < 1, (16) can be improved to
O(
√
T (1 +HT )+DT ) by setting γ = 1/2−logT

√
1 + T θ.

IV. SIMULATION

In this section, the following distributed online linear
regression problem with a regularization term is simulated
to verify the proposed algorithm.

min
x∈X

T∑
t=1

n∑
i=1

[
1

2

(
p>i,tx− qi,t

)2
+ ρ‖x‖22

]
(17)

where X := {x|‖x‖1 ≤ 2}, pi,t ∈ Rd, qi,t ∈ R repre-
sents the feature and label information, and ρ is a regular
parameter. The feature vector pi,t is generated randomly and
uniformly and its element satisfies [pi,t]i ∈ [−5, 5]. The
label qi,t satisfies qi,t = p>i,tx0 + ζi,t/(4t) where ζi,t is
generated randomly in the interval [0, 1]. In the following
simulation, we set the algorithm parameters n = 10, d = 30,
ρ = 5 × 10−6, α = 1/(2T 0.3) and take the probabilistic
quantizer mentioned in Remark 1 as an example. To measure
the performance of the algorithm, the global average dynamic
regret 1

n

∑n
j=1[Regretjd(T )/T ] is defined.

To investigate the convergence of Algorithm 1 and the
effect of quantization parameters on algorithm convergence,
we compare the global average dynamic regrets of Algorithm
1 under different cases: no quantization [15], quantization

levels kt = dt0.8e, dt1e, dt1.3e and dt1.5e. From Fig. 1, Al-
gorithm 1 is convergent and when kt with a larger increasing
tendency is selected, the related convergence performance is
better. Note that in the early stage of the algorithm, the per-
formance fluctuation caused by relatively coarse quantization
resolution can be tolerated and this error can be weakened
with the iteration time. Further, we analyze the effect of
the quantization level with the maximum number B ≥ kt
on the convergence performance of the designed algorithm.
Taking quantization level kt = dt1.5e as an example and
considering the case of B = 50, 80, 100, the comparison
results are shown in Fig. 2. It can be seen that when B = 100,
its convergence curve is close to that without the maximum
number, while B = 50, the convergence performance is poor.
It should be noted that the design of quantization level with
an appropriate parameter B can better save communication
resources than that without the limited parameter B, but it
always has a quantization error ei,t because the quantized
data cannot approach the real-value data.
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Fig. 1. The comparison of Al-
gorithm 1 under three quantization
resolutions.
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Fig. 2. The effect of quantization
level with an upper limit on conver-
gence performance.
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Fig. 3. The performance compar-
ison under the step sizes with and
without the knowledge of T .
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Fig. 4. The effect of the number
of agents on the convergence per-
formance.

Next, we carry out a comparative study for the conver-
gence performance of Algorithm 1 under the step size design
taking into account unknown total iteration time T as well as
the quantization level kt = dt1.5e. Without loss of generality,
setting the step size as α = 1/(2T 0.3), 0.2, 0.1, 0.05, 0.02,
respectively, the comparison results of the convergence per-
formance are revealed in Fig. 3. Among the settings of
step sizes, the dynamic regret under the step size with the
knowledge of T has a significantly better convergence effect,
while that under the step size without the knowledge of
T has a large fluctuation of the convergence performance
for different settings. Although the latter does not require
prior knowledge of T , it always has a performance gap
in a theoretical sense according to Theorem 1. In addition,
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as the horizon T varies, this step size without the horizon
T may cause the original convergence performance to be
unmaintainable due to its invariant setting. Finally, the effect
of the number of agents on the convergence performance is
studied under kt = dt1.5e. Through setting n = 10, 30, 50,
the comparison of the global average dynamic regret is
shown in Fig. 4, which verifies the theoretical results in
Theorem 1 that the smaller the value of n is, the better the
convergence performance of Algorithm 1 is.

V. CONCLUSIONS

For the distributed online constrained optimization prob-
lem under quantized communication, this paper has devel-
oped a quantized distributed online projection-free optimiza-
tion algorithm. The use of random quantizers and linear
oracle in the proposed algorithm has ensured the effective
saving of communication resources and computational costs.
For different settings of quantization resolution εd,kt , the
related dynamic regret bound has been established, in which
the optimal bound O(

√
T (1 +HT ) +DT ) can be achieved

when the knowledge HT is known and ξ > 1. In addition,
we have revealed the trade-off between the convergence
performance and the quantization effect. Finally, a simula-
tion example has been investigated to verify the theoretical
results. A promising direction in the future is to investigate
the nonconvex loss function case that will be more general
yet more challenging.
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