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Abstract—This letter introduces a distributed state estimation
scheme for linear time-invariant (LTI) discrete-time systems,
where observers, with partial observation of the system, com-
municate with each other over a directed and strongly connected
(but not necessarily balanced) graph topology and execute
a predefined number of average consensus steps in-between
estimation steps. Our methodology departs from previous works
in the literature in that it does not require any degree of
centralized design nor relies on procedures that might be
prone to numerical instability. By leveraging ratio consensus
and matrix perturbation theory, we establish a convergence-
guaranteeing condition for the number of consensus iterations
needed between the steps of the distributed estimation process.
This condition becomes the blueprint for a distributed initial-
ization procedure, which allows the agents to collectively select
an adequate number of ratio consensus steps.

Index Terms—Distributed Estimation, Ratio Consensus, Ma-
trix Perturbation Analysis, LTI Systems.

In recent years, the distributed estimation problem has
gained significant attention in the context of multi-agent
systems [1], [2], due to its importance in several applications
of networked systems, such as communication, networked
control, monitoring, and surveillance.

Several innovative solutions have been proposed, espe-
cially in the case of linear observers [3]–[10]. Studies such
as [4], where Kalman’s decomposition has been applied to
ease the estimation task for the agents, or [7], which focuses
on switching networks, represent important examples in this
sense. Furthermore, works like those by Wang et al. [5],
[6] and Savas et al. [8] have made significant contributions
to both discrete and continuous-time distributed estimation
theory. In particular, in [5], following the same path as the
pioneering algorithm in [3], agents are allowed to perform
a specified number of distributed agreement rounds between
state updates, and the distributed estimators are designed so
that the estimation error converges exponentially to zero at
a fixed rate that is arbitrarily chosen, under the condition
that the graph is always strongly connected. Interestingly,
in [3] time-varying measurements and graph topologies are
considered, although it is assumed that there is a subset of
core measurements and that the agents are provided with
global meta-information regarding such core measurements.
Moreover, in [8] it is shown that, if the agents are allowed
to execute a given number of average consensus steps in
between estimation steps, then the overall performance of the
distributed estimation scheme is greatly improved. Also, in
[10] a bound on the number of steps required for stability

is given, although the bound is based on knowledge of
the second largest eigenvalues of the consensus dynamical
matrix. However, the approaches in [3], [8], [10] assume
that the agents interact over an undirected graph topology;
furthermore, the schemes in [5], [8] assume that the linear
estimators (gains) and the number of steps require knowl-
edge of global information. In [11] we overcome these
limitations by relying on minimum-time ratio consensus,
which guarantees that agents reach an exact agreement in-
between estimation steps. Moreover, we develop a distributed
initialization procedure that allows the agents to distributively
compute the gains. The approach in [11], although effective,
relies on the construction of large Hankel matrices and on
the identification of characteristic polynomials, a process that
might be affected by numerical instability. In this paper, we
address the following question: Is it possible to agree on a
number of consensus steps in-between estimation steps such
that the convergence of the distributed estimation process is
guaranteed in a fully distributed fashion? Towards this end,
we develop a distributed state estimation scheme for LTI
discrete-time system where, between estimations, the agents
execute a given number of asymptotic ratio consensus steps
over a directed and strongly connected (but not necessarily
balanced) graph. The main idea of the paper is that the dy-
namics of the estimation error can be represented as the sum
of two terms: (i) a nominal term where the agents achieve
perfect agreement in between estimation steps and (ii) a
residual term that is due to the actual imperfect agreement.
By handling the second term as a perturbation and resorting
to matrix perturbation theory, we identify a condition on the
number of ratio-consensus steps that guarantees convergence
of the overall distributed estimation process. Interestingly, the
identified condition translates into a distributed initialization
procedure that allows the agents to collectively select an
adequate number of ratio consensus steps.

I. PRELIMINARIES

A. Notation and Graph Theory

We denote vectors with boldface lowercase letters and
matrices with uppercase letters. The transpose of matrix A
and vector x are denoted as A>, x>, respectively. We refer
to the (i, j)-th entry of a matrix A by Aij . We represent by
0n and 1n vectors with n entries, all equal to zero and to one,
respectively. Given two matrices A ∈ Rn×m and B ∈ Rp×q ,
we use A⊗B to denote their Kronecker product.
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Let G = {V, E} be a directed graph (digraph) with N
nodes V = {v1, v2, . . . , vN} and e edges E ⊆ V × V , where
(vi, vj) ∈ E captures the existence of a link from node vi to
node vj . A directed graph is strongly connected if each node
can be reached by every other node via the edges, respecting
their orientation. Let the in-neighborhood N in

i of a node
vi ∈ V be the set of nodes vj ∈ V such that (vj , vi) ∈ E ;
similarly, the out-neighborhood N out

i of a node vi ∈ V is
the set of nodes vj ∈ V such that (vi, vj) ∈ E . The in-
degree dini of a node vi is the number of its incoming edges,
i.e., dini = |N in

i |; similarly, the out-degree douti of a node vi
is the number of its outgoing edges, i.e., douti = |N out

i |. The
minimum distance from node vi to vj for vi, vj ∈ V, i 6= j, is
the shortest path from node vi to vj and is denoted dmin(i, j),
while in the absence of a directed path then dmin(i, j) =∞.
The diameter of G is defined as the longest shortest path
between any two nodes i.e., D = maxi,j∈V,i6=j dmin(i, j).
We use ‖ ·‖2, ‖ ·‖1, and ‖ ·‖∞ to denote the Euclidean, one-,
infinity- norms, respectively.

B. Perturbation Theory

In the context of matrix analysis, perturbation theory aims
to locate the eigenvalues of a perturbed matrix based on
knowledge of both the unperturbed and perturbation matrix.
Among several other results, the Bauer-Fike Theorem is
particularly useful, since it applies to non-symmetric matrices
and does not require the perturbation to be small.

Theorem 1 (Bauer and Fike [12]): Let M be an n × n
diagonalizable matrix satisfying M = V ΛV −1 and let E
be an arbitrary n× n matrix. Every eigenvalue µ of M +E
satisfies the inequality |µ− λ| ≤ ‖V ‖‖V −1‖‖E‖, where λ
is some eigenvalue of M , and ‖ · ‖ is any operator norm.

C. Ratio Consensus

In this section we introduce the distributed ratio consensus
algorithm [13], [14] to achieve average consensus over
a set of N agents (associated with sensor measurements)
exchanging information through a possibly unbalanced di-
rected network. In particular, each agent vi ∈ V maintains
a local state variable χi[·] ∈ Rd and an auxiliary variable
ψi[·] ∈ R that compensates for the unbalanced directed
network topology. At the beginning of the procedure, each
agent vi initializes χi[0] = χi0 and its auxiliary variable at
ψi[0] = 1. Subsequently, at each iteration m ≥ 0, each agent
vi ∈ V assigns a weight to its variables and transmits the
weighted variables pliχi[m] and pliψi[m] to its out-neighbors
vl ∈ N out

i over the links (vi, vl) ∈ E . The weight pli can be
assigned using the equal-neighbor model1, i.e., pli = 1/douti

if vl ∈ N out
i and pli = 0 otherwise. Placing each weight pli

on the l-th row and i-th column of a matrix P ∈ RN×N
≥0 ,

we obtain a column-stochastic matrix. At each consensus
iteration m, each node vi ∈ V receives the state variables

1This strategy ensures that the total mass of the variables is equally
allocated to the out-neighbors of vi, and that

∑
l∈N out

i
pli = 1.

transmitted by its in-neighbors pijχj [m] and pijψj [m], and
updates its own variables as follows:

χi[m+ 1] =
∑

j∈N in
i

pijχj [m], χi[0] = χi0, (1a)

ψi[m+ 1] =
∑

j∈N in
i

pijψj [m], ψi[0] = 1. (1b)

To further analyze the ratio consensus algorithm, we con-
catenate the agents’ individual variables into global net-
work variables χ[m] =

[
χ1[m] · · ·χN [m]

]> ∈ RN×d and
ψ[m] =

[
ψ1[m] · · ·ψN [m]

]> ∈ RN , and thus we can rewrite
the above distributed algorithm in its equivalent network
matrix form:

χ[m+ 1] = Pχ[m] = ΦP (m)χ[0], (2a)
ψ[m+ 1] = Pψ[m] = ΦP (m)ψ[0], (2b)

where ΦP (m) := Pm+1. Now, rewriting the above iterations
at node vi in a equivalent way that was first presented in [15]
(in which the weights involved in the update of the ratio are
independent of χ[m], and they are instead based on ψ[m]),
we obtain the ratio zi[m + 1] = χi[m + 1]/ψi[m + 1]. For
simplicity of exposition, assuming d = 1, we have that

zi[m+ 1]=

∑
j∈N in

i
pijχj [m]∑

j∈N in
i
pijψj [m]

=
∑

j∈N in
i

(
pijχj [m]∑

l∈N in
i
pilψl[m]

)

=
∑

j∈N in
i

(
pijψj [m]∑

l∈N in
i
pilψl[m]

)
zj [m]=

∑
j∈N in

i

sij [m]zj [m].

(3)

Interestingly the time-varying matrix S[m] ∈ RN×N collect-
ing the terms sij [m] is nonnegative and row-stochastic [15].
Hence, one can also express the ratio consensus algorithm in
its matrix form as

z[m+ 1] = S[m]z[m] = ΦS(m)χ[0], (4)

where ΦS(m) is the backward product of the row-stochastic
matrices ΦS(m) = S[m] · · ·S[1]S[0], for m ≥ 0. Notice that,
in the general case where d > 1, it can be easily shown that
ΦS(m) in Eq. (4), can be replaced by Φ̄S(m) = ΦS(m)⊗Id.

II. PROBLEM FORMULATION

Consider the following system dynamics with state
x[k] ∈ Rd, and yi[k] ∈ Rq , which evolve with time as fol-
lows:

x[k + 1] = Ax[k], yi[k] = Cix[k], (5)

where yi[k] and Ci denote the observations and observation
matrix of node vi ∈ V , respectively. In the following, we
assume that the system is jointly observable, i.e., the pair
(A,C) with C =

(
C>1 . . . C>N

)>
is observable. The state

estimate of node vi is given by

x̂i[k + 1] = Ax̃i[k] + Li

(
yi[k]− Cix̃i[k]

)
, (6)



where x̃i[k] is the result of m-steps of ratio consensus over
the strongly connected digraph G, using x̂i[k] as the initial
conditions, i.e,

x̃i[k] =

N∑
j=1

(
ΦS(m)

)
ij
x̂j [k]

is the resulting fused consensus estimate after m iterations of
consensus2. In a compact form, defining x̃[k] and x̂[k] as the
stack of the vectors x̃i[k] and x̂j [k], respectively, we have
that

x̃[k] =
(

ΦS(m)⊗ Id
)

︸ ︷︷ ︸
Φ̄S(m)

x̂[k].

In the remainder of this section, we define the dynamics
of the error between the actual state of the system and
the estimated one. In particular, the error dynamics can be
seen as the result of two contributions, i.e., the dynamics
obtained assuming exact consensus among the agents at each
estimation step and a term that accounts for the fact that
perfect consensus is not reached. This will be beneficial for
our convergence analysis, where we will interpret the second
term as a perturbation.

A. Error Dynamics

Let us now define the local estimation error at node vi
as ei[k] = x[k] − x̂i[k], and let e[k] denote the stack of
the vectors ei[k]. Based on the above definition, the local
estimation error evolves with time as follows:

ei[k + 1] = x[k + 1]− x̂i[k + 1]

= Ax[k]−Ax̃[k]− LiCi

(
x[k]− x̃i[k]

)
= (A− LiCi)

(
x[k]− x̃i[k]

)
which, in stacked form, reads as follows

e[k + 1]=

A−L1C1 0
. . .

0 A−LNCN


︸ ︷︷ ︸

Ā

x[k]− x̃1[k]
...

x[k]−x̃N [k]

.
(7)

Notably, since by construction ΦS(m)1N = 1N , we have
that Φ̄S(m)(1N ⊗ x[k]) = 1N ⊗ x[k], and thusx[k]− x̃1[k]

...
x[k]−x̃N [k]

=

x[k]
...

x[k]

− Φ̄S(m)

 x̂1[k]
...

x̂N [k]


= Φ̄S(m)

x[k]−x̂1[k]
...

x[k]−x̂N [k]

 = Φ̄S(m)e[k],

which, plugged in Eq. (7), yields

e[k + 1] = Ā Φ̄S(m) e[k]. (8)

2Notice that the iterator k represents the estimation iterations and thus it
does not change while computing x̃i[k]

Notice that, in the limit of m approaching in-
finity, the average consensus yields the exact aver-
age for all agents; in other words, we have that
ΦS(∞) = limm→∞ΦS(m) = 1

N 1N1>N . In general, for a fi-
nite value of m we have ΦS(m) = ΦS(∞) + ∆(m), where
∆(m) 6= 0 accounts for the error of the coefficients
(ΦS(m))ij with respect to the asymptotic coefficients 1/N .
Based on the above definition, we have that

Φ̄S(m) := ΦS(m)⊗ Id =
(
ΦS(∞)−∆(m)

)
⊗ Id

= ΦS(∞)⊗ Id −∆(m)⊗ Id
and we can express Eq. (8) as

e[k + 1] = Ā
(

ΦS(∞)⊗ Id −∆(m)⊗ Id
)
e[k] (9a)

=
(
ĀΦS(∞)⊗ Id︸ ︷︷ ︸

Γ∞

−Ā∆(m)⊗ Id︸ ︷︷ ︸
Γ∆(m)

)
e[k]. (9b)

III. CONVERGENCE ANALYSIS

In this section, we prove that, for a sufficiently large
number of consensus steps, the error dynamics is asymp-
totically convergent. In doing so, we develop a distributed
initialization procedure that guarantees the selection of an
adequate number of consensus steps.

A. Ideal Error Dynamics

The following lemma characterizes the stability of the ideal
error dynamical matrix Γ∞, which corresponds to an exact
consensus among agents in-between estimation steps.

Lemma 1: Assume the system in Eq. (5) is jointly ob-
servable and let the local observer gains Li be such that
the spectral radius ρ satisfies ρ

(
A†
)
< 1, where A† :=

A− 1
N

∑N
i=1 LiCi. Then, Γ∞ is Schur stable.

Proof: In order to prove the statement, we observe that

Γ∞ =
1

N

 A− L1C1 · · · A− L1C1

...
. . .

...
A− LNCN · · · A− LNCN

 .

At this point, let us consider the Nd×Nd matrix T , reported
next, along with its inverse T−1, i.e,

T =


Id −Id · · · −Id
0 Id · · · 0
...

...
. . .

...
0 0 · · · Id

 , T−1 =


Id Id · · · Id
0 Id · · · 0
...

...
. . .

...
0 0 · · · Id

 .

By some algebra, it can be noted that Γ∞ is similar to

Γ̃∞ = T−1 Γ∞ T =


A† 0 · · · 0

1
N (A− L2C2) 0 · · · 0

...
...

. . .
...

1
N (A− LNCN ) 0 · · · 0

 ,

Hence, the eigenvalues of Γ∞ are either zero or coincide
with the eigenvalues of A†. Since we assumed ρ(A†) < 1,



we conclude that Γ∞ is Schur stable. This completes our
proof.

Remark 1: In the above lemma, we assume that the gains
are such that A† is Schur stable. A possible distributed
approach to select these gains is to resort to the token-passing
procedure discussed in [11], which can easily be adapted to
the case of a strongly connected directed graph.
In view of the later developments in this section, it is
convenient to explicitly identify the transform matrices that
put Γ∞ in diagonal form. These matrices will be essential in
order to prove stability of the error dynamics.

Lemma 2: Assume A† is diagonalizable and nonsingular3

and let Πj = (A− LjCj)
(
A†
)−1

. Moreover, let Q be the
matrix that diagonalizes A†, i.e., such that Q−1A†Q is
diagonal. Matrix Γ∞ is diagonalizable, i.e., Λ∞ = V −1Γ∞V
is diagonal with

V −1 =


(Id − 1

N

∑N
i=2 Πi)Q

−1 −Id · · · −Id
1
N

Π2Q
−1 Id · · · 0

...
...

. . .
...

1
N

ΠNQ−1 0 · · · Id

 ,

and

V =


Q Q · · · · · · Q

− 1
N

Π2 Id − 1
N

Π2 − 1
N

Π2 · · · − 1
N

Π2

...
...

. . .
. . .

...
− 1

N
ΠN · · · · · · − 1

N
ΠN Id − 1

N
ΠN

 .

Proof: Let us consider

W =


Q−1 0 · · · 0

1
N Π2Q

−1 Id · · · 0
...

...
. . .

...
1
N ΠNQ

−1 0 · · · Id

 ,

which is block triangular and, thus, nonsingular. We have that

W−1 =


Q 0 · · · 0

− 1
N Π2 Id · · · 0
...

...
. . .

...
− 1

N ΠN 0 · · · Id

 .

By some algebraic manipulation, we obtain

W−1Γ̃∞W = W−1T−1Γ∞TW = Λ∞,

with Λ∞ diagonal. Noting that V = TW , the proof is com-
plete.

B. Perturbation Analysis

In order to model the effect of the imperfect agreement
among the agents in terms of a perturbation, we will resort
on Bauer-Fike Theorem. To this end, let us now provide some
ancillary results.

3These assumptions are not restrictive. In fact, since we assumed joint
observabiliy, we have that the eigenvalues of A† can be arbitrarily selected
(e.g., via the token passing approach in [11]). Thus, by selecting distinct
and nonzero eigenvalues for A†, we are guaranteed that it is diagonalizable
and nonsingular.

Lemma 3: Let the assumptions of Lemma 2 hold true.
Then it holds ‖V ‖1 ≤ ξ and ‖V −1‖1 ≤ θ, where

ξ = 1 + ‖Q‖1 +
N − 1

N
max

i=1,...,N
‖Πi‖1

and

θ = max

{
2, (1 + 2

N − 1

N
max

i=1,...,N
‖Πi‖1)‖Q−1‖1

}
.

Proof: The proof follows noting that, given the structure
of V and V −1 given in Lemma 2,

‖V ‖1 ≤ ‖Q‖1 + ‖Id‖1 +
1

N

N∑
i=2

‖Πi‖1

≤ 1 + ‖Q‖1 +
N − 1

N
max

i=1,...,N
‖Πi‖1

and that ‖V −1‖1 ≤ max {2, ζ}, with

ζ =

∥∥∥∥∥(Id −
1

N

N∑
i=2

Πi)Q
−1

∥∥∥∥∥
1

+
1

N

N∑
i=2

‖Πi‖1‖Q−1‖1

≤
(

1 + 2
N − 1

N
max

i=1,...,N
‖Πi‖1

)
‖Q−1‖1.

As a last ancillary result, let us now characterize an upper
bound on the one-norm of ∆(m). Such a result will be
the cornerstone for a distributed initialization procedure for
choosing an adequately large m ∈ N.

Lemma 4: It holds ‖∆(m)‖1 ≤ maxi=1,...,N ‖ΦS(m)ηi‖∞,
where

ηi = ei −
1

N
1N , (10)

with ei being the i-th vector in the canonical basis in RN .
Proof: In order to prove the statement, we observe that,

being ΦS(m) row stochastic, it holds

1

N
1N1>N = ΦS(m)

(
1

N
1N1>N

)
;

hence, we have that

∆(m) = ΦS(m)− 1

N
1N1>N = ΦS(m)

(
IN −

1

N
1N1>N

)
.

At this point we observe that ηi is the i-th column of

IN −
1

N
1N1>N . Noting that the 1-norm of a matrix is the

largest among the∞-norms of its columns, we conclude that

‖∆(m)‖1 =
∥∥ΦS(m)

(
η1 . . . ηN

)∥∥
1

=
∥∥(ΦS(m)η1 . . . ΦS(m)ηN

)∥∥
1

= max
i=1,...,N

‖ΦS(m)ηi‖1.
,

This completes our proof.

C. Proof of Convergence

We are now in position to prove convergence of the
proposed distributed state estimation scheme.



Theorem 2: Let the assumptions of Lemma 2 hold true.
The error dynamics is asymptotically stable if there is a
number of ratio consensus steps m∗ ∈ N such that

max
i=1,...,N

‖ΦS(m∗)ηi‖1 <
1

c

(
1− ρ

(
A†
))
, (11)

with ηi defined in Eq. (10) and c = ξ θ maxi{‖A−LiCi‖1}.
Proof: In order to prove the result we observe that, by

using the Bauer-Fike theorem, the eigenvalue µ of Ā Φ̄P (m∗)
with largest magnitude satisfies

|µ− λ| ≤ ‖V ‖1‖V −1‖1‖Γ∆(m∗)‖1
≤ ‖V ‖1‖V −1‖1‖Ā‖1‖∆(m∗)⊗ Id‖1
≤ ‖V ‖1‖V −1‖1 max

i
{‖A− LiCi‖1}‖∆(m∗)‖1,

where λ is one of the eigenvalues of Γ∞ and V
is the matrix of all eigenvectors of Γ∞. Moreover,
by Lemma 3, we have that ‖V ‖1‖V −1‖1 ≤ ξ θ,
hence ‖V ‖1‖V −1‖1 maxi{‖A− LiCi‖1} ≤ c. Therefore, by
Lemma 4, we have that

|µ− λ| ≤ c max
i=1,...,N

‖ΦS(m∗)ηi‖1 < 1− ρ(A†).

Since A† is Hurwitz stable, we have that |λ| < 1; hence, we
conclude that |µ| < 1, hence the real system is Schur stable.
The proof is complete.

IV. A DISTRIBUTED INITIALIZATION PROCEDURE

Theorem 2 guarantees asymptotic stability of the proposed
distributed estimation scheme as long as a suitably large m∗

is identified. This section presents a distributed initialization
procedure to select such an m∗.

Let us now show how to identify m∗i such that
‖ΦS(m∗i )ηi‖1 < ε for a given ε > 0. In order to accomplish
this task, let us assume that the agents execute a ratio consen-
sus procedure with initial condition4 z[0] = ηi. Whenever k
is an integer multiple of D we execute a max-consensus with
initial conditions r[k] = |z[k]|, where | · | is the component-
wise absolute value, so that at time k +D all agents know

max
i
|zi[k]| = ‖z[k]‖∞ = ‖ΦS(k)ηi‖∞ ≥

1

n
‖ΦS(k)ηi‖1.

Based on this knowledge, the agents stop
the ratio consensus procedure at time hD if
maxj |zj [(h− 1)]| < 1

cn

(
1− ρ

(
A†
))
, so that it holds

‖ΦS(k)ηi‖1 < 1
c

(
1− ρ

(
A†
))
, and the procedure returns

m∗i = (h− 1)D. Let us now assume that the agents execute
the above procedure for all i ∈ {1, . . . , N}, thus obtaining
m∗1, . . . ,m

∗
N . By setting m∗ = maxi{m∗i }, the agents are

guaranteed that m∗ satisfies the condition in Theorem 2 and
that the error dynamics is asymptotically convergent.

Remark 2: The constant c can be computed in a distributed
fashion during the initialization. In fact, assuming all agents
know A† (e.g, by accumulating information in a token
as done in [11]), A − LiCi (as they compute it locally),

4The agents need to know N to set their initial conditions to ηi; to this
end, they could resort to max-consensus [16].

and Πi (also computed locally if the agents know A†),
they can run max-consensus procedures [16] to compute
maxi=1,...,N ‖Πi‖1, maxi{‖A−LiCi‖1} and N , while they
can compute Q locally.

V. SIMULATIONS

Consider a directed network G = {V, E} comprised of four
nodes, i.e., N = 4, associated with the column-stochastic
matrix P where the weights pli are assigned by each node
vi ∈ V as described in Section I-C. Moreover, each node has
access to an LTI system of d = 8 states, modeled by the
dynamical matrix A ∈ Rd×d. Within this setup, the nodes
aim at cooperatively estimating the state of the LTI system
by exchanging and coordinating their local state estimates
through m?-rounds of the ratio consensus algorithm. The
local estimates are computed using (6) where the local
estimation gains for node vi is given by the i-th column of
matrix L. Here it is important to note that, the rounds of ratio
consensus m? to be executed at each node, and guarantee
stability, are obtained through the distributed initialization
procedure presented in Section IV.

A=



0.94 0.5 0 0 0.39 0 0 0
1.1 0 0 0 1 0 0 0
0 0 2.3 0.5 0 0 0 0
0 0 0.9 0.9 0 0 0 0

1.1 0 0 0 90.1 0.3 0 0
1.1 0 0 0 90.1 0.2 0 0
90.1 0 0 0 0 0 1.1 0.2
92 0 0 0 0 0 2.99 0.2


, L=



0.4 0 0 0
4 0 0 0
0 8.4 0 0
0 4 0 0

4.4 0 0 0
4 0 0 0

90.4 0 0 4
98 0 0 12



P =

1/2 0 1/3 1/3
0 1/2 1/3 0
0 1/2 0 1/3

1/2 0 1/3 1/3

 .
Furthermore, each node vi in the network is associated

with sensors and it has computational capability to run
the ratio consensus algorithm and compute its local state
estimates. In this particular example, each node is assumed
to observe only one state of the system, i.e., the local mea-
surement matrices Ci are C1 =

[
1 0 0 0 0 0 0 0

]
, C2 =[

0 0 1 0 0 0 0 0
]
, C3 =

[
0 0 0 0 1 0 0 0

]
, and C4 =[

0 0 0 0 0 0 1 0
]
.

In Fig. 1 we present the coordinated number of rounds
of ratio consensus m?, that guarantees convergence of the
estimation error to 0 as k → ∞, for different predefined
consensus errors maxi=1,...,N ‖ΦP (m)ηi‖1.

Fig. 2 depicts the convergence rate of our proposed dis-
tributed estimation algorithm with respect to the Euclidean
norm of the estimation error e[k], for different lengths of
consensus iterations m? = {2, 5, 10, 25}. According to the
upper bound maxi=1,...,N ‖ΦP (m)ηi‖1 shown in Fig. 1, with
m? ≥ 24 ratio consensus iterations, it is guaranteed that
the estimation error will converge to 0 asymptotically, as
depicted in Fig. 2. Notably, the distributed estimators achieve
asymptotic convergence also for smaller values of m∗, e.g.,
for m? = 10; in fact, although allowing the agents to



10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2

10

20

30

maxi=1,...,N ‖ΦP (m)ηi‖1

m
?

=
m

a
x
i
{m
∗ i
}

Figure 1: Number of sufficient ratio consensus iterations m? for
different predefined consensus errors maxi=1,...,N ‖ΦP (m)ηi‖1.
The dashed vertical line provides an upper bound on
maxi=1,...,N ‖ΦS(m)ηi‖1 associated to the minimum number of
consensus iterations that satisfies the sufficient stability condition
in Theorem 2.

choose m? that guarantees convergence, Theorem 2 provides
only a sufficient condition. When m becomes too small
(e.g., m? ∈ {2, 5}) we observe that the overall estimation
process becomes unstable, and thus the estimation error
grows unbounded.
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Figure 2: Convergence of the proposed distributed estimation
algorithm within network G for m? = {2, 5, 10, 25}.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper presents a scheme for distributed state estima-
tion for LTI discrete-time systems, enabling agents to perform
a specified number of average consensus steps between esti-
mations across a directed and strongly connected graph topol-
ogy, which may not necessarily be balanced. Unlike prior
works, our approach eliminates the need for any centralized
design and addresses numerical instabilities, tackling the is-
sue of imperfect agreement’s impact on estimation accuracy.
Utilizing matrix perturbation theory, we define a condition
that ensures the convergence of the estimation process. This
condition serves as a foundation for a distributed initialization
procedure, facilitating the collective determination by agents
of an adequate number of consensus steps.

We envisage three main directions for future work: (i)
characterizing the effect of the topology on the number of
consensus steps, (ii) extending the approach to nonlinear
estimation problems and to systems affected by noises and,
(iii) handling delays and packet losses in the underlying

consensus process, characterizing the overall effect on the
estimation.
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