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Abstract— This paper considers the problem of optimizing
a finite-horizon constrained Markov decision process (CMDP)
where the objective and constraints are sums of additive and
multiplicative utilities. To solve this, we construct another
CMDP with only additive utilities whose optimal value over a
restricted set of policies is equal to that of the original CMDP.
Further, we provide a finite-dimensional bilinear program
(BLP) whose value equals the CMDP value and whose solution
provides the optimal policy. We also suggest an algorithm to
solve the proposed BLP.

I. INTRODUCTION

In this paper, we consider constrained Markov decision
processes (CMDPs) whose objective as well as constraints
involve combination of multiplicative and additive utilities.
We are interested in optimizing the expected value of∑T

t=0 rt(Xt, At) + α
∏T

t=0 ft(Xt, At), a weighted combi-
nation of the two. Dynamic programming equations are not
known directly for such MDPs. One can solve finite horizon
variants by augmenting an additional state

∏τ
t=0 ft(Xt, At)

that tracks the multiplicative cost upto time τ ; however
the state space grows exponentially with the time horizon
and the paper aims to fill this gap by working towards an
implementable solution.

Towards the first motivation for such MDPs, first observe
that risk-sensitive costs (a special case of multiplicative
costs) provide one way of robust control by optimizing a
weighted sum of moments (e.g., robust control of a queuing
system as in [1]). There can be examples in which some
objectives require robustness, while for others it is sufficient
to optimize the first moment. Secondly, there are applications
where one or more objectives directly have multiplicative
form. For example in [2], [3] while optimizing the failure
probability in a delay tolerant networks with a two-hop pro-
tocol results in a risk-sensitive MDP, additionally considering
resource constraints results in a combined MDP. In [3], the
combined MDP is converted to a classical MDP with two
additive costs, by optimizing an upper bound on the failure
probability using Jensen’s inequality.

Unconstrained MDPs with only multiplicative cost com-
ponents can be solved using dynamic programming [1].
Reference [1] provides an LP-based solution for a finite-
horizon MDP having only multiplicative (specifically, risk-
sensitive) objective with additive constraint. The solution
technique of [1] is based on augmenting the state space with
a variable that keeps track of the running multiplicative cost
as already mentioned. In principle, using this approach, one
can solve the combined-cost MDPs, however the state space
and thus the size of the LP grows exponentially with the

horizon. One cannot implement a numerical solution even
for moderate-sized MDPs, [4] discusses the difficulty even
for short horizons like 10-15. A recent algorithm in [5]
solves constrained risk-sensitive MDPs, however, they do
not consider combined MDPs. The unique contribution of
our paper is to find an optimal Markov policy for a finite-
horizon CMDP with combined multiplicative and additive
costs and also to suggest an implementable algorithm.

We provide a Bi-linear programming (BLP) based solution
technique that involves augmenting the state with binary vari-
ables, one for every multiplicative component appearing in
either the objective or the constraint. We construct a CMDP
defined on the augmented state space such that the additive
and multiplicative cost components of the original CMDP are
absorbed into the additive stage-wise costs and the controlled
transition functions, respectively, of the augmented CMDP.
We prove that both the CMDPs have the same optimal value
under a slight restriction on the augmented policy space.
Moreover, an optimal policy for the augmented CMDP can
be constructed using the solution of the BLP. We further
suggest an iterative algorithm (inspired by [5]) to solve
the BLP. Each iteration of the algorithm solves a finite-
dimensional linear program. We conclude this section with
a relevant application.
Epidemics and Delay Tolerant Networks

Consider an area with N individuals where an epidemic
is spreading fast. The government has to devise a lock-down
policy to efficiently combat the disease, keeping in view
lock-down costs in the form of economical losses. The time-
frame is divided into T -time slots and the policy prescribes
the level of lock-down to be imposed for each time slot based
on the system state at the beginning of the time slot.

Any infected person can infect a normal/susceptible person
when they come in contact with each other (see [6] for
similar details). The successive contacts between any two
persons are modelled by a Poisson process (as in [2],
[6]). The rate of this contact process is determined by the
imposed level of lock-down. Let Λt represent the contact
rate chosen in slot t and let g(Λt) be the economic cost
due to the corresponding level of lockdown. Any infected
person recovers in a slot with probability r; a person infected
in a time slot can infect others only from the next slot.
Let Xt represent the number of infected individuals at the
beginning of time slot t. Then the number infected in the next
slot Xt+1 = B(N − Xt, qt) − B(Xt, r), where B(·, ·), is a
binomial random variable, B(Xt, r) represents the number
of recoveries and qt = 1 − exp(−ΛtXt) is the probability
that a susceptible gets infected. We are interested in the
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probability PS(π) that a given typical individual survives
without infection in the given time-frame for a given lock-
down policy π. By conditioning on state trajectory {Xt},
details as in [2], PS(π) = Eπ

[
e−

∑T
t=1 ΛtXt

]
. Thus in all

we would optimize a combined cost that also considers the
economic losses due to lock-down (α > 0 – trade-off factor):

min
π

Eπ

[∑
t

g(Λt)− αe−
∑T

t=1 ΛtXt

]
.

A similar problem (excluding recoveries) arises in delay
tolerant networks ( [2]), when one considers a combined cost
related to delivery failure probability and power-budget. One
can further have a bound on the expected number of copies.

The aim of this paper is to consider a general class of
problems that are similar in nature to the above example.

II. MODEL FORMULATION AND PROBLEM STATEMENT

We consider a finite-horizon Markov decision process
(MDP) M := (X ,A, Q, {0, 1, . . . , T}), where X is the finite
state space, A is the finite action space, T > 0 is the terminal
time, Q is the transition function (or transition law) and
{0, 1, · · · , T} is the set of discrete decision epochs. Here
Q(x′|x, a) is the probability that the system transitions to
state x′ when action a is taken at state x.

A Markov randomized (MR) decision rule is a map
d : X → P(A), where P(A) is the set of probability
distributions on the action space A. We denote by d(a|x)
the probability of choosing action a in the state x under the
MR decision rule d. An MR policy is a sequence of MR
decision rules indexed by the decision epochs. We denote
the set of MR policies by ΠMR. For every initial state s, a
policy π := {dt}T−1

t=0 ∈ ΠMR induces a probability measure
Pπ
s on the space of state-action trajectories ( [7, Ch2.]).

Let Eπ
s [·] denote the corresponding expectation. To provide

implementable algorithms, we restrict ourselves only to the
space of MR policies and avoid history-based policies.

This paper considers an MDP involving additive as well
as multiplicative stage-wise components with one objective
function and K number of constraints. These quantities are
defined using (K+1) number of additive and multiplicative
components, rt,i : X×A×X → R and ft,i : X×A×X → R,
respectively, where 0 ≤ i ≤ K and t ∈ {0, 1, . . . , T−1}. We
consider the following optimization problem: given s ∈ X
and bi ∈ R for each 0 ≤ i ≤ K, find

inf
π∈ΠMR

wπ
0 (s), subject to, wπ

i (s) ≤ bi, ∀ 1 ≤ i ≤ K, (P )

where, for any policy π ∈ ΠMR, for each 0 ≤ i ≤ K and
αi ∈ R, we define

wπ
i (s)

△
= Eπ

s

[ T−1∑
t=0

rt,i(Xt, At, Xt+1) +αi

T−1∏
t=0

ft,i(Xt, At, Xt+1)

]
.

We assume that, for each t and i the multiplicative cost
component ft,i has the same sign everywhere on X × A ×
X . By appropriately scaling and then absorbing the scaling
factor and common sign into the coefficient αi, we assume
without loss of generality that 0 ≤ ft,i ≤ 1 for all t and i.
Special Cases:

The problem (P ) is fairly general, and covers the following
special cases: a) with αi = 0 for all i, we have the well
known classical MDP with constraints ( [8]) (e.g., we have
discounted-cost MDPs when rt,i ≡ βtri and αi = 0
in the problem); b) setting rt,i ≡ 0 and ft,i(x, a, x

′) =
exp(βtci(x, a)) reduces (P ) to the well known risk-sensitive
MDP ( [1]); and c) by setting ft,1(x, a, x

′) = 11E(x, a) and
rt,i ≡ 0, (P ) reduces to the problem of optimizing the cost
under a constraint on the probability of entering a set E of
undesirable “error” states ( [9]).

III. EQUIVALENT CMDP AND MAIN RESULTS

In this section, we provide the two main results of
this work. The first result gives the equivalence between
the original CMDP (P ) and a newly constructed CMDP
involving only additive costs. The second result provides
an equivalence to a finite dimensional optimization problem
with linear objective function and with linear and bilinear
constraints. The proofs of the results are in the appendix.

We augment the state space with one binary variable per
multiplicative cost; each variable starts with 1 and can get
absorbed to 0. The core idea is to capture the multiplicative
cost via the expectation of terminal value of the binary vari-
able. In the next subsection, we give precise mathematical
details of this construction.
Equivalent CMDP: We now construct a new CMDP in-
volving only additive cost and constraint components. To
simplify the exposition, consider αi ̸= 0 for each i in (P ).
Define the augmented state space by X̄ := X × Z , where
Z = {0, 1}K+1. For each (x, z), (x′, z′) ∈ X̄ , a ∈ A and
t ∈ {0, . . . , T −1} the transition function of the new CMDP
at epoch t, i.e., from (Xt−1, Zt−1) to (Xt, Zt) is

Q̄t

(
(x′, z′)

∣∣∣∣(x, z), a) :=


0, if zi=1− z′i = 0 for at least one i,

Q(x′|x, a)
K∏
i=0

ρt−1,i(x, x
′, a, z, z′), else,

where ρt,i(x, x
′, a, z, z′) := (ft,i(x, a, x

′))ziz
′
i

×(1− ft,i(x, a, x
′))zi(1−z′

i),

for each t ∈ {0, . . . , T − 1} and 0 ≤ i ≤ K.
It is easy to check that the transition law Q̄t(·|(x, z), a)

is indeed a probability distribution on the set X̄ for all
(x, z) ∈ X̄ and a ∈ A. This allows us to define a Markov
control model, M̄ := (X̄ ,A, Q̄t, {0, 1, . . . , T}) to represent
the state evolution of the process {X̄t}Tt=0 where X̄t :=
(Xt, {Zt,i}Ki=0). Here, for every i, Zt,i ∈ {0, 1}. The central
idea of this construction is two fold: (a) the transitions of
the original Markov chain {Xt}Tt=0 are not affected by the
process {Zt}Tt=0 and (b) as we shall soon see, the expected
value of the binary variable ZT,i equals the expected value
of the multiplicative cost

∏
t ft,i(Xt, At, Xt+1).

Next, we define Π̄ to be the set of MR policies w.r.t M̄
which are indifferent to values of the augmented state. More
precisely, Π̄ is the set of policies π̄ = {d̄t}T−1

t=0 such that
d̄t(a|(x, z)) = d̄t(a|(x,1)) for all t ∈ {0, . . . , T − 1} where
1 := (1, . . . , 1) ∈ RK+1. It is easy to observe that Π̄ is in
a one-to-one correspondence with ΠMR, the space of MR
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Let W1 := {wt(x,1, a); for all x, a, t < T} and W2 := {wt(x, z, a); for all x, a, t < T, z ̸= 1},W = (W1,W2).

(1)

BLP (W1,W2): min
{W=(W1,W2)}

T−1∑
t =0

∑
(x,z) ∈X̄

∑
a ∈A

r̄t,0((x, z), a)wt((x, z), a) +
∑

(x,z) ∈X̄

r̄T,0(x, z)Φ(x, z;W)

s.t.
∑
a ∈A

w0((x, z), a) = 11{(s,1)}(x, z), Φ(x, z;W) =
∑

x′,z′,a

Q̄T

(
(x, z)

∣∣∣∣(x′, z′), a

)
wT−1((x

′, z′), a) for all (x, z) ∈ X̄ ,

∑
a

wt((x, z), a)−
∑

x′,z′,a

Q̄t

(
(x, z)

∣∣∣∣(x′, z′), a

)
wt−1((x

′, z′), a) = 0, (x, z) ∈ X̄ , and 1 ≤ t ≤ T − 1

T−1∑
t =0

∑
(x,z) ∈X̄

∑
a ∈A

r̄t,i((x, z), a)wt((x, z), a) +
∑

(x,z) ∈X̄

r̄T,i(x, z)Φ(x, z;W) ≤ bi, for i = 1, . . . ,K,

wt(x, z, a)
∑
a′

wt(x,1, a
′) = wt(x,1, a)

∑
a′

wt(x, z, a
′), wt((x, z), a) ≥ 0, ∀(x, z) ∈ X̄ , a ∈ A, t ≤ T − 1.

policies w.r.t the original model M . We set the initial state
in M̄ to be (s,1), where s is initial state in M .

Further, we define the stage-wise costs in M̄ by

r̄t,i((x, z), a) :=
∑
x′∈X

rt,i(x, a, x
′)Q(x′|x, a),

r̄T,i(x, z) := αizi for all i, t < T. (2)

Finally, we define the following optimization problem the
newly constructed augmented MDP,

min
η∈Π̄

vηT,0(s,1)

subject to, vηT,i(s,1) ≤ bi, ∀ 1 ≤ i ≤ K, where,
(P̄ )

vηT,i(x, z) := Eη
(x,z)

[ T−1∑
t=0

r̄t,i

(
(Xt, Zt), At

)
+ r̄T,i(XT , ZT )

]
.

Observe, that the objective and constraints of the problem
(P̄ ) are both linear/additive only. We define the projection
map Γ : Π̄ 7→ ΠMR as follows; for any η = {d̄t}T−1

t=0 ∈ Π̄,
define Γ(η) = {dt}T−1

t=0 where dt(a|x) = d̄t(a|x,1) for all
t, a and x.

A. Main Results

We now give the first main result of this paper: the
equivalence of (P ) and (P̄ ).

Theorem 1: Let p∗, p̄∗ be the optimal values of (P ) and
(P̄ ), respectively. Then p∗ = p̄∗. Further, η∗ is an optimizer
of (P̄ ) if and only if Γ(η∗) is an optimizer of (P ). ■

Theorem 1 provides an alternative CMDP (P̄ ) where the
objective as well as constraints are additive (or linear) as
in a standard MDP, but the policy space is restricted to the
policies which are indifferent to the augmented state compo-
nent. There many solution techniques to solve standard MDP
( [8]), however the restricted policy space requires special
attention.

The second main result of this paper is the Bi-linear
programming (BLP), given by (1) provided at the top of
the page, which solves the new problem (P̄ ). The un-
known variables of BLP (1) are indexed by t, x, z and a,

whose linear constraints represent the initial state conditions,
state transitions and constraints of the MDP. The bilinear
constraint in (1) ensures that the solution is indifferent to
augmented state z. The decision function of the optimal
policy using these variables are obtained as given below in
theorem 2.

Theorem 2: [Solution using BLP] The value of BLP
(1) is the value of the problems (P ) and (P̄ ). Let
{w∗

t ((x, z), a)}t,x,z,a for 0 ≤ t ≤ T − 1, x ∈ X , z ∈ Z
and a ∈ A be the solution of the BLP. Then, the optimal
policies π̄∗ := {d̄∗t }t for the augmented problem (P̄ ) and
π∗ := {d∗t }t for the original (P ) are given by

d̄∗t (a|(x, z)) = d∗t (a|x) =
w∗

t ((x,1), a)∑
a′∈A

w∗
t ((x,1), a

′)
,

for x ∈ X , a ∈ A, z ∈ Z, t < T. (3)
IV. ALGORITHM

By Theorem 2, constrained global optimization problem of
BLP (1) is equivalent to the combined-CMDP problem given
in (P̄ ). We now suggest an algorithm to solve the BLP which
can rewritten as

inf
W

B(W) s.t. C1(W) ≤ b and C2(W) = 0, (BLP )

for appropriate functions (B,C1, C2) and b, for example:

B(W) =

T−1∑
t=0

∑
(x,z)∈X̄

∑
a∈A

r̄t,0((x, z), a)wt((x, z), a)

+
∑

(x,z)∈X̄

r̄T,0(x, z)wT (x, z). (4)

This BLP has W = (W1,W2) as variables, and when
one of them is fixed then it is clearly an LP in the other
variable. Let L1(W2) and L2(W1) represent the solution
set of the respective LPs when W2 and W1 are fixed. One
can define a relevant fixed point equation using the above
two LP solutions, to be precise we are interested in the fixed
points W ∈ W(W), where the solution setW is defined as,

W(W) := {W̃ : W̃1 ∈ L1(W2),W̃2 ∈ L2(W1)}. (5)
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Define W = {W : W ∈ W(W)}, the set of all fixed points.

It is not difficult to verify that the solution of the following
global fixed point problem (GF ) provides the solution to
BLP (1): inf

W∈W
B(W). (GF )

Thus any fixed point iterative algorithm is useful in solving
the BLP, however one needs to ensure that it is converging
towards the best fixed point (as define above). This is
similar to alternate convex search (ACS) algorithm [10].
The global optimization problem defined in (BLP ) can be
useful in this context. This solution approach provided below,
exactly parallels that in the recently provided algorithm [5];
the authors in [5] consider constrained risk-sensitive MDP
problem and also have a fixed point equation and global
optimization problem as in (BLP ) and (GF ). We believe
the justification of the algorithm can parallel that provided
in [5], however skip those details due to lack of space.

This global optimization problem can for example be
solved using random restarts [11]. It has two types of update
steps (at any iterative step k): i) random search step – a
random new point is chosen from the feasible region with
probability pk, and, ii) local improvement step as in (6) is
chosen otherwise. The probability pk diminishes with k.

The aim in the local improvement step is to converge to
a fixed point in W as given by the following:

Wk = Wk−1 + ϵk

(
Ψ(Wk−1)−Wk−1

)
, ϵk = 1/k, (6)

where Ψ(Wk) (a single solution) is chosen from the set
W(Wk) according a fixed rule determined by the solver
used for LP. The complete procedure is in Algorithm 1.

Algorithm 1 Global combined-CMDP algorithm

Initialize W0 randomly, set B∗ = −∞, Ŵ∗ = W0; choose
a constant w; U set of all possible policies.
For k = 1, 2, . . .

Wk←
{

random policy chosen from U w.p. pk = w
k

Local improvement (Wk−1) of (6) w.p. 1− pk

Calculate C1(Wk) and C2(Wk)
if C2(Wk) = 0 and C1(Wk) ≤ b then

Calculate B(Wk) using (4)
if B(Wk) ≤ B∗ then

Ŵ∗ ←Wk

B∗ ← B(Wk)
end if

else
Choose random policy from U (random restart again)

end if

Complexity comparison

For finite-horizon problem, one may argue that the prob-
lem can be converted to standard linear cost MDP problem,
by augmenting the accumulated multiplicative cost as an
additional state, one for each multiplicative component, e.g.,
Yτ,i :=

∏τ−1
t=0 ft,i(Xt, At, Xt+1), and then the accumulated

multiplicative component becomes terminal cost. The com-
plexity of problem obtained after such an augmentation is
high, as the state space grows geometrically with t. Similar
approach was used in [1]. Our solution, the problem (P̄ ) also
augments the state space – but as the augmented variables
are binary the state space does not increase geometrically.

The number of unknowns (or decision variables) in LP
of [1] grows exponentially in T while that in our BLP
grows only linearly. Table I compares the two problems
for risk-sensitive MDP with one additive constraint. In [4],
we observed that one cannot implement LP of [1] for even
small time horizons due to curse of dimensionality, while the
algorithm in [5] was implemented comfortably for T even
as big as 1000. Algorithm discussed in section IV closely
resembles that in [5] and solves the BLP. Thus we anticipate
its complexity to be on par with that in [5]; therefore we
have an implementable algorithm for not just constrained
risk-sensitive MDPs, but also for MDPs with combined costs.

TABLE I: Comparison with m = |X | and n = |A|
Reference No. of Decision Variables No. of Constraints

LP as in [1] mn((mn)T−1)
(mn−1)

m+
m((mn)T−1)

(mn−1)
+ 1

BLP 2Tmn 2m(T + Tn− n) + 1

V. PROOF OF THEOREMS

The mapping η 7→ Γ(η) given in the hypothesis between
the domains of the problems (P ) and (P̄ ) is bijective.
Therefore, to prove the first result of theorem 1, it is enough
to prove that the corresponding objective and constraint costs
are also equal, when respectively started in states s and
(s,1), which the below theorem asserts .

Theorem 3: For the policies η ∈ Π̄ and its corresponding
policy Γ(η) ∈ ΠMR, the following holds:

vηT,i(s,1) = w
Γ(η)
i (s) for all i. ■ (7)

Towards Theorem 2, observe that the problem (P̄ ) is a
standard CMDP, but for the domain of optimization. LP
based techniques are well known to solve standard CMDPs (
[7], [8]). But Π̄ includes only a special class of policies which
are indifferent to the augmented state z. This restriction is
captured via the bilinear constraint of the BLP (1), where the
variables are indifferent to the value of z. The rest of the BLP
without this particular condition is same as in [12] extended
to the constraints. The variable wt(x, z, a) is representative
of the probability that the system is in state (x, z) at time t
and decision a is made. The rest of the proof of Theorem 2
is given in the Appendix. ■

CONCLUSIONS

Many applications require sequential decision models in-
volving a combination of multiplicative and additive cost
components which can be formulated as CMDP. One can
convert them to standard MDP models, that was recently
done (for risk-sensitive MDPs) by augmenting the state space
by taking the total costs to cover the multiplicative costs; but

7821



the complexity grows exponentially in time horizon making
such problems unsolvable even with moderate time horizons.
This paper fills this gap and makes an important contribution
addressing not only risk-sensitive MDPs, but also MDPs
involving a combination of multiplicative and additive cost
components in objective and/or constraint. We address this
by augmenting state space with binary variables such that the
number of unknowns in the resulting optimization problem
grow linearly in time horizon. An implementable algorithm
is provided to solve such CMDPs.
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VI. APPENDIX

We provide below two basic analysis-based lemmas with-
out proof (proofs in [13]). Proof of Lemma 1 is via mathe-
matical induction, while that of Lemma 2 is straight forward.

Lemma 1: Let N ∈ Z+ and q ∈ RN be given. Then,∑
δ∈{0,1}N

N∏
i=1

qδii (1− qi)
(1−δi) = 1. ■ (8)

Lemma 2: Let f : A → R and g : B → R be two
mappings. Assume, i) for each a ∈ A there exists ba ∈ B
such that f(a) = g(ba), and, ii) for each b ∈ B there exists
ab ∈ A such that f(ab) = g(b). Then min

a∈A
f(a) = min

b∈B
g(b)

and

if a∗ ∈ argmin
a∈A

f(a) then ba∗ ∈ argmin
b∈B

g(b), and similarly,

if b∗ ∈ argmin
b∈B

g(b), then ab∗ ∈ argmin
a∈A

f(a). ■

Proposition 1: Fix j ∈ {0, 1, . . . ,K}. Denote Zj :=
{z = (zi)

K
i=0 ∈ {0, 1}K+1 : zj = 1}. Let z ∈ Zj . For

any t, x, x′ and a, we have the following identity

∑
z′∈Zj

Q̄t

(
(x′, z′)

∣∣∣∣(x, z), a) = ft−1,j(x, a, x
′)Q(x′|x, a), (9)

∑
z′∈{0,1}K+1

Q̄t

(
(x′, z′)

∣∣∣∣(x, z), a) = Q(x′|x, a). (10)

Proof: Let I := {i ∈ {0, 1, . . . ,K} : zi = 1}. Clearly,
I ̸= ∅ because j ∈ I . Observe that, in the summation
appearing in left hand side of (9), the summands where
zi = 0 = 1 − z′i, for some i ∈ {0, 1, . . . ,K}, is 0 and
so they don’t contribute to the total. Therefore, we can
restrict the summation to only those z′ = (z′i)

K
i=0 ∈ Zj

which satisfy the property that z′i = 0 for i /∈ I . Denote
Z ′

j := {z′ = (z′i)
K
i=0 ∈ Zj : z′i = 0, for all i /∈ I}. Thus,

left hand side of (9) simplifies as below, where we suppress
the parameters x, a, x′ used in immediate cost functions
ft−1,i:

∑
z′ ∈Z′

j

Q̄t

(
(x′, z′)

∣∣∣∣(x, z), a)

= Q(x′|x, a)
∑

z′∈Z′
j

(
K∏
i=0

(ft−1,i)
ziz

′
i(1− ft−1,i)

zi(1−z′i)

)

= ft−1,jQ(x′|x, a)
∑

z′∈Z′
j

 ∏
i∈I\{j}

(ft−1,i)
ziz

′
i(1− ft−1,i)

zi(1−z′i)



= ft−1,jQ(x′|x, a)
∑

z′∈Z′
j

 ∏
i∈I\{j}

(ft−1,i)
z′i(1− ft−1,i)

(1−z′i)


= ft−1,jQ(x′|x, a).

We used Lemma 1 in the last equality. Thus proving
(9). The proof of (10) is easy to verify, therefore skipped.
For more detailed explanations regarding the proof of this
proposition, see [13]. ■

Proposition 2: Let η ∈ Π̄. For 0 ≤ t ≤ T − 1, we have
for all x, x′, a,∑
z∈Z

P η
(s,1)((Xt = x, Zt = z), At = a) = PΓ(η)

s (Xt = x,At = a).

Proof: Let η = {d̄t}t and Γ(η) = {dt}t. We prove the
proposition using mathematical induction. At t = 0, it is easy
to prove that left and right hand side of the above equation
equals d0(a|s)11{x=s}. Suppose at time t−1, the proposition
holds true. The identity at t holds by following the below
steps:
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∑
z ∈Z

P η
(s,1)(Xt = x, Zt = z,At = a)

=
∑
z∈Z

d̄t(a|(x, z))P η
(s,1)

(
Xt = x, Zt = z

)
=
∑
z∈Z

dt(a|x)P η
(s,1)

(
(Xt = x, Zt = z)

)
= dt(a|x)

∑
x′,z′,a′

∑
z∈Z

Q̄t

(
(x, z)|(x′, z′), a′

)
P η
(s,1)

(
Xt−1 = x′, Zt−1 = z′, At−1 = a′

)
= dt(a|x)

∑
x′,z′,a′

Q(x|x′, a′)P η
(s,1)

(
Xt−1=x′, Zt−1=z′, At−1=a′

)
= dt(a|x)

∑
x′,a′

Q(x|x′, a′)PΓ(η)
s (Xt−1 = x′, At−1 = a′)

= PΓ(η)
s (Xt = x,At = a).

Induction hypothesis and (10) gives penultimate two
equalities.■

Proof of Theorem 3: The left hand side of (7) equals,

vηT,i(s,1) =

T−1∑
t=0

Eη
(s,1)[r̄t,i((Xt, Zt), At)]+Eη

(s,1)

[
r̄T,i(XT , ZT )

]
.

(11)
Using Proposition 2, the first term in (11) simplifies to

T−1∑
t =0

Eη
(s,1)[r̄t,i((Xt, Zt), At)]

=

T−1∑
t=0

∑
x,z,a

r̄t,i((x, z), a)P
η
(s,1)

(
(Xt = x, Zt = z), At = a

)
=
∑
t,x,

x′,z,a

rt,i(x, a, x
′)Q(x′|x, a)P η

(s,1)

(
Xt = x, Zt = z,At = a

)

=
∑

t,x,x′,a

rt,i(x, a, x
′)Q(x′|x, a)PΓ(η)

s (Xt = x,At = a)

=

T−1∑
t=0

EΓ(η)
s [rt,i(Xt, At, Xt+1)] = EΓ(η)

s

[
T−1∑
t=0

rt,i(Xt, At, Xt+1)

]
.

Define for each i ∈ {0, 1, . . . ,K}, Zi := {z ∈ Z : zi =
1} ⊂ {0, 1}K+1. We denote the decisions of the policy η
by {d̄t}t and that of policy Γ(η) by {dt}t. To simplify the
terminal cost in (11), we sum the sample path probabilities:

Eη
(s,1)

[
r̄T,i(XT , ZT )

]
= αiEη

(s,1)[ZT,i] = αiP
η
(s,1)[ZT,i = 1]

= αi

∑
xt∈X ,
zt∈Zi,
at∈A

T−1∏
t=0

d̄t(at|(xt, zt))Q̄t+1((xt+1, zt+1)|(xt, zt), at)

= αi

∑
xt∈X ,
zt∈Zi,
at∈A

T−1∏
t=0

dt(at|xt)Q̄t+1((xt+1, zt+1)|(xt, zt), at)

= αi

∑
xt∈X ,
at∈A

dt(at|xt)Q(xt+1|xt, at)ft,i(xt, at, xt+1)

= αiEΓ[η]
s

[
T−1∏
t=0

ft,i(Xt, At, Xt+1)

]
.

The penultimate equality above is due to successive ap-
plication of (9) backwards in time for t = T, T − 1, . . . , 1.

Replacing back each of the expectation operation terms in
(11) proves the identity (7). ■

Proof of Theorem 2: Let Π̄MR denote space of all MR
policies in the MDP M̄ . Recall Π̄ is a set of policies that are
indifferent to augmented component z. Note that Π̄ ⊂ Π̄MR.
Denote the feasible region of the BLP by Q. Observe that
objective function and all the constraints except the bilinear
constraints are linear and therefore the problem BLP without
the bilinear constraints is indeed a LP that solves the CMDP
(P̄ ) with the domain Π̄MR, instead of Π̄. Denote the feasible
region of this LP by L. Clearly Q ⊆ L.

We first claim that the feasible region of the problem (P̄ )
is bijective to Q by defining the mappings π 7→ wπ and
w 7→ πw respectively between these two sets.

It is easy to see that, given a feasible vector w =
{W1,W2} ∈ Q, constructing the policy πw = {dt}t by
rationalising over a and applying the bilinear constraints
immediately as below

dt(a|(x, z)) :=
wt(x, z, a)∑

a′
wt(x, z, a′)

=
wt(x,1, a)∑

a′
wt(x,1, a′)

= dt(a|(x,1)),

makes πw ∈ Π̄. Also we know that, for a given feasible
policy of the (augmented) problem (P̄ ), say, π = {dt}t ∈
Π̄ ⊂ Π̄MR, there exists a feasible vector wπ = {W1,W2} ∈
L with wt(x, z, a) := Pπ

s (Xt = x, Zt = z,At = a) ( [7]).
Now, to prove wπ ∈ Q, it is enough to prove that wπ satisfies
the bilinear constraints.

From the literature on linear MDPs ( [1], [7], [12]), we
know that, the mappings w 7→ πw and π 7→ wπ are such that
wπw

= w and πwπ
= π.

Choose any arbitrary z ∈ Z , a K + 1 dimensional vector
of 0s and 1s. Then, the t-th decision w.r.t the policy πwπ

for
the two states (x, z1), (x,1) ∈ X̄ is given by

dt(a|(x, z))=
(wπ)t(x, z, a)∑

a′
(wπ)t(x, z, a′)

, dt(a|(x,1))=
(wπ)t(x,1, a)∑

a′
(wπ)t(x,1, a′)

.

(12)
Because πwπ = π ∈ Π̄, the decisions are indif-

ferent to the vector z and 1, that is, dt(a|(x, z)) =
dt(a|(x,1)) implying, (wπ)t(x, z, a)

∑
a′(wπ)t(x,1, a

′) =
(wπ)t(x,1, a)

∑
a′(wπ)t(x, z, a

′). Thus satisfying the bilin-
ear constraint.

We state below two claims whose proof is given in [13].
Claim 1: For a given feasible policy π of the augmented

problem (P̄ ), the objective function of (P̄ ), vπT,0(s,1) at π
is equal the objective function of the BLP when evaluated at
its feasible point wπ .

Claim 2: For a given feasible vector w = (W1,W2)
of the BLP, the objective function BLP(W1,W2) at w is
equal to the objective function of augmented problem (P̄ )
vπw

T,0(s,1) at πw.
The above two claims complete the proof of the theorem,

by applying the Lemma 2. ■
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