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Abstract— This paper proposes a Control Barrier Function
(CBF)-based controller design to achieve safety for systems
subjecting to unknown input delay and additive disturbance.
Integral quadratic constraints characterizing the input-output
behavior of the unmodeled dynamics caused by the unknown
input delay are used to generate a bound of the error between
the nominal model and the true uncertain system. The bound
is incorporated into a tube-based CBF formulation to ensure
robust system safety. The proposed method guarantees that
the constraints are input affine, so the safe controller can be
implemented by solving a quadratic programming problem in
real-time. A simple example demonstrates the effectiveness of
the tube-based CBF approach.

I. INTRODUCTION

Control Barrier Functions (CBFs) combined controller is
a popular approach that can guarantee stability and safety at
the same time [1], [2]. CBF can be used as a constraint in
a Quadratic Programming (QP) problem to filter the control
actions for safety specifications. However, unmodeled input
dynamics can cause safety violations and raise robustness
concerns, leading to the necessity for a CBF design robust
to unmodeled dynamics at the plant input [3]. For safety
guarantee of uncertain systems, input-to-state CBF [4] and
robust CBFs [5], [6], [7] have been proposed, which guar-
antee safety in the presence of L∞ bounded disturbances
or stochastic disturbances. In [8], a CBF design method is
proposed to deal with known time delays. Furthermore, [3]
presents an intuitive method to design CBFs for systems with
unknown but bounded time delays, using Integral Quadratic
Constraints (IQCs) to capture the effects of the unmodeled
input dynamics. However, the IQC-CBF method in [3] intro-
duces nonlinearity when formulating CBF-based constraints,
leading to higher complexity in real-world applications. Also,
it is reported that a Lagrangian multiplier λ as a tuning pa-
rameter in the IQC-CBF design affects the performance [3].
We found that with an improperly chosen λ, a discretized
IQC-CBF controller shows aggressive behavior, which may
violate the safety constraint even more than a nominal CBF.

In this paper, inspired by [3], we use IQC to describe
the unmodeled dynamics caused by unknown input delay.
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Instead of directly combining the IQC with the CBF formu-
lation and considering the worst case of the uncertainty [3],
we first use the IQC to build a scalar system to bound
the model error between the nominal model and the input-
delayed system. A tube described by such a scalar system is
then combined with CBF to ensure safety in the presence of
unknown input delays. A similar formulation for the IQC-
based tube has been used in [9], [10] to design robust MPC.
In this paper, to guarantee that the constraints stay affine
on the control input, a point-wise optimization combined
with CBF is considered instead of an optimization with a
receding horizon. Although distinct formulated discrete-time
CBFs are proposed [11], [12], it is known that the discrete-
time CBF is no longer affine in control inputs and only en-
forces constraints at discrete-time steps [13]. Thus, extended
continuous-time CBF is needed to ensure a sufficient affine
condition to guarantee safety with discrete-time nominal con-
trollers. In this context, in this paper, we introduce tube-based
CBF to guarantee a linear constraint where discretization
error and uncertainty caused by unknown input delay are
considered. The approach is demonstrated with a simple
example and shows its efficiency with reduced complexity.
However, the current paper proposes a method that only
works for linear systems, while the IQC-CBF in [3] works
equally for nonlinear affine systems.

Notation: A continuous function α : [0, a) → [0,∞) for
some a > 0 is said to belong to class K if it is strictly
increasing and α(0) = 0. We denote the Euclidean norm as
∥x∥ =

√
xTx whereas the Euclidean norm w.r.t. P = PT ≻

0 is denoted by ∥x∥2P = xTPx. We also denote the set of
exponentially stable systems with input dimension m and
output dimension n as RHn×m

∞ . The set of sequences x in
Rn is denoted by ln2e = {(xk)k∈N|xk ∈ Rn}. The Pontryagin
set difference is defined by X ⊖ Y := {z ∈ Rn : z + y ∈
X,∀y ∈ Y }.

II. PRELIMINARIES OF CONTROL BARRIER FUNCTION

Firstly, we consider a general case of a dynamic system
with affine control inputs in a continuous-time domain:

ẋ = f(x) + g(x)u (1)

where x ∈ Rnx is the system state, u ∈ U ⊂ Rnu

is the control input, with U as a set of feasible control
inputs, and f : Rnx → Rnx and g : Rnx → Rnx×nu are
locally Lipschitz functions. We consider a set C defined as
the superlevel set of a continuously differentiable function
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h : Rnx → R, yielding

C = {x ∈ Rnx : h(x) ≥ 0},
∂C = {x ∈ Rnx : h(x) = 0},

Int(C) = {x ∈ Rnx : h(x) > 0}.
(2)

We denote Tx0
:= [0, Tmax) the maximum time interval for

which (1) has a unique solution starting from x(0) = x0.
Referring C as the safe set, our control objective is to
maintain the safety of the system (1), i.e., with x(0) ∈ C,
x(t) ∈ C for all t ∈ Tx0

. Control Barrier Function (CBF) is
one method to design a controller for such control objective,
which ensures the system state remains in the safe set C.
This paper considers a general condition where the function
h has a relative degree r ≥ 1 w.r.t. the system (1). High-
order CBFs were introduced in [14], [15] to derive necessary
conditions for guaranteeing set invariance. We define the
series of functions ψi : Rnx → R, i ∈ {1, · · · , r} and the
corresponding sets Ci, i ∈ {1, · · · , r} as follows:

ψi(x) = ψ̇i−1(x) + αr(ψi−1(x)),

Ci = {x ∈ Rnx : ψi−1(x) ≥ 0},
(3)

where αi(·), i ∈ {1, · · · , r} are class K functions of their
arguments, and ψ0(x) = h(x).

Definition 1: [15] A function h : Rnx → R with a
relative degree r is a high-order CBF for system (1) if there
exist differentiable class K functions αi, i ∈ {1, · · · , r} such
that for all x ∈ C1 ∩ C2 ∩ · · · ∩ Cr:

ψr(x) = Lr
fh(x) + LgL

r−1
f h(x)u+O(h(x))

+αr(ψr−1(x)) ≥ 0
(4)

where O(.) denotes the remaining Lie derivatives along f
with degree less than or equal to r − 1.
Given h and ψi, i ∈ {1, · · · , r}, we define the set of control
that satisfies the high-order CBF condition as

Ucbf(x) := {u ∈ U :Lr
fh(x) + LgL

r−1
f h(x)u

+O(h(x)) + αr(ψr−1(x)) ≥ 0}.
(5)

Theorem 1: [14], [15] Assume h : Rnx → R has relative
degree r w.r.t. the dynamics (1), and satisfies (4) for some
αi, i ∈ {1, · · · , r}. Then any continuous controller ksafe :
Rnx → Rnu with ksafe ∈ Ucbf(x),∀x ∈ Rnx renders the
system safe, i.e., x(0) ∈ C1 ∩ C2 ∩ ... ∩ Cr implies x(t) ∈ C
for all t ≥ 0.

Proof: Please refer to [14], [15] for details.
Then to generate a controller ksafe(x) which ensures the

closed-loop state remains in the safe set C, the following
optimization can be formulated as a Quadratic Programming
(QP) problem and solved in real-time:

ksafe(x) := arg min
u∈Ucbf

1

2
∥u− uref∥2 , (6)

with some reference controller uref. The constraint (4) is
affine in the control input u, which can be embedded into a
QP problem. However, the CBF condition (4) assumes the
control signal u is applied in continuous time, while con-
trollers operate at discrete time instants in practice. Although

distinct formulated discrete-time CBFs are proposed [11],
[12], the discrete-time CBF is no longer affine in control in-
puts and only enforces constraints at discrete-time steps [13].
Thus, we use extended continuous-time CBFs accounting for
discretization error to provide a sufficient affine condition
to guarantee safety with discrete-time nominal controllers.
Furthermore, the uncertainty introduced by the unknown
input delay is considered such that the final safe controller
is robust to unmodeled input dynamics.

III. PROBLEM STATEMENT
In this paper, we consider an uncertain discrete-time linear

time-invariant system:

xk+1 = Φxk + dk + Γ(uk + wk),

wk : = ∆(uk)
(7)

where x ∈ Rnx is the system state, u ∈ Rnu is the control
input with Φ ∈ Rnx×nx and Γ ∈ Rnx×nu . d ∈ Rnd is
the model error caused by discretization with ∥d∥ ≤ dmax,
∆ accounts for the effects of the uncertain input delay, and
w ∈ Rnw with nw = nu denotes the uncertainty representing
the deviation from the nominal behavior due to uncertain
time delay, which depends on the control signal through the
dynamics of ∆.

The control objective is to find a control law uk that
ensures the system (7) remains safe for the disturbance d
and the uncertainty w described by the dynamics of ∆,
i.e., to find a uk so that x0 ∈ C implies xk ∈ C for all
kTs ∈ (0, Tx0

], with some non-negative real number Ts
as the sampling time. For safety insurance, the high-order
CBF is considered. For the controller design, we consider
an uncertainty-free system model, i.e., the nominal model in
the discrete-time domain:

ξk+1 = Φξk + Γûk, (8)

with the nominal state ξk, and the nominal input ûk. Inspired
by the idea in [13] where the safety for the nominal state ξk
is considered instead of the safety of the actual state xk, we
propose a tube-based CBF with the affine condition on ûk to
guarantee the safety of ξk and xk at the same time. Similar
to tube MPC, we use an auxiliary controller to regulate the
error between the nominal and actual states. With the true
system in (7), and the nominal system in (8), We denote the
error between the nominal state and the true state as

ek ≜ xk − ξk. (9)

The control input ûk is combined with a feedback control
law for the error ek to make sure the error will not diverge,

uk = ûk +Kek, (10)

where K is a fixed feedback control gain. The error ek
satisfies the dynamics

ek+1 = ΦKek + Γwk + dk (11)

with ΦK ≜ Φ + ΓK. The following sections show how to
find a bound for the error ek. With such a bound, a tube-
based CBF is designed to guarantee the safety of the true
state xk.
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Fig. 1. IQC characterization allows us to replace ∆ with the dynamics F
and to consider the uncertainty output w as external input that satisfies the
constraint (12).

IV. TUBE-BASED CONTROL BARRIER FUNCTION

A. Integral Quadratic Constraints for Uncertain Input Delay

For the unmodeled input dynamics, here we aim to apply
Integral Quadratic Constraints (IQCs) to bound the effect
of the uncertain input delay. The idea is to replace the
uncertainty with quadratic constraints on its inputs and out-
puts [16]. Firstly, a special case of ρ-hard IQC is considered
for discrete-time systems.

Definition 2: [16] Let ρ ∈ (0, 1], and F (s) ∈ RHnz×nu
∞ .

A bounded operator ∆ : lnu
2e → lnw

2e is said to satisfy the
ρ-hard IQC defined by F if for all K ≥ 1 and w = ∆(u),
the following inequality holds:

K−1∑
k=0

ρ−2k(zTk zk − ωT
k ωk) ≥ 0, (12)

where z is the output of F started from zero initial condition
and driven by u.

With Definition 2, the notation ∆ ∈ IQC(F, ρ) indicates
that ∆ satisfies the ρ-hard IQC defined by F , which is a
constraint on the input/output pairs of ∆ to make sure that
the output of ∆ has less energy than the input. The dynamics
in F can be used to bound the effect of the uncertainty as
a function of frequency. For an unknown input delay, we let
Dτ denote a delay of τTs seconds with τ ≥ 0, the actual
plant input would be

Dτ (u(kTs)) := u(kTs − τTs). (13)

The system uncertainty w is then given as

w(kTs) := u(kTs − τTs)− u(kTs) = ∆(u(kTs)), (14)

with ∆ := Dτ − 1.
For a delay τTs, a ρ-hard IQC can be derived using

frequency-domain relations. To find such ρ-hard IQC, firstly,

let us define

w̃(kTs) := eαkTsw(kTs),

ũ(kTs) := eαkTsu(kTs),

z̃(kTs) := eαkTsz(kTs).

(15)

Multiplication by eαkTs in the time domain causes signals
shifted in the frequency domain:

W̃ (s) =W (s− α). (16)

Then by defining ∆̃(s) = ∆(s− α) and F̃ (s) = F (s− α),
the following relationship can be found satisfied

W̃ (s) = ∆̃(s)Ũ(s), Z̃(s) = F̃ (s)Ũ(s), (17)

The shifted filter F̃ (s) can be constructed to bound the
frequency response of ∆̃(s), which can be formulated using
Parseval’s theorem [17] in the frequency domain:∫ ∞

∞
(|F̃ (jω̃)|2 − |∆̃(jω̃)|2) · |Ũ(jω̃)|2dω̃ ≥ 0. (18)

We aim to find a F̃ (s) such that |F̃ (jω̃)| ≥ |∆̃(jω̃)|
satisfies for all ω̃, which can be realized by applying convex
optimization. Given upper bound of τ such that τ ≤ τmax, a
stable, minimum-phase F̃ (s) can be constructed to bound the
frequency responses of ∆(jω̃) generated for many possible
delay values with the range τ ∈ [0, τmax]. After constructing
the shifted filter F̃ (s), the filter for the ρ-hard IQC is then
obtained by shifting back:

F (s) = F̃ (s+ α) (19)

The state-space representation of F (s) can be found as:

ẋF = AFxF +BFu,

z = CFxF +DFu,
(20)

with xF (0) = 0, such that the following relationship is
satisfied: ∫ T

0

eαt(z(t)T z(t)− w(t)Tw(t))dt ≥ 0. (21)

With Euler discretization, the discrete-time system of the
filter can be found as

xF k+1 = ΦFxF k + ΓFuk,

zk = CFxF k +DFuk,
(22)

which satisfies the ρ-hard IQC in (12) with ρ = e−αTs .
This filter dynamics will be later utilized to bound the effect
of the unknown input delay and incorporated into the tube
formulation so that safety is guaranteed even with uncertainty
via the tube-based CBF condition.

B. Error Bound System

In this sub-section, we show the method to find the
bound for ek when given the auxiliary controller in (10)
with the following theorem, which will be used for the
tube-based CBF design later. A Linear Matrix Inequality
(LMI) is solved to help find the error bound with the IQC-
described unknown input delay where the discretization error
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as an additive disturbance is considered. Notice a similar
formulation for tube-based MPC is proposed in [9], [10]. In
this paper, we modify the formulation, especially for point-
wise optimization in the case of uncertain input delay and
discretization error.

Theorem 2: If there exists ρ ∈ (0, 1], P ≻ 0, τ > 0,
γ > 0, such that the following LMI
ATPA− ρ2P ATPBw ATPBd ATPBu

BT
wPA BT

wPBw BT
wPBd BT

wPBu

BT
d PA BT

d PBw BT
d PBd BT

d PBu

BT
u PA BT

u PBw BT
u PBd BT

u PBu


+ CT

s MCs ≺ γ

[
0(nx+nw)×(nx+nw) 0(nx+nw)×(nd+nu)

0(nd+nu)×(nx+nw) I(nd+nu)×(nd+nu)

]
with M ≻ α

[
1 0
0 −1

]
,

(23)

is feasible with

A =

[
ΦK 0
BFK AF

]
, B =

[
Γ
0

]
, Bd =

[
I
0

]
, Bu =

[
0
BF

]
,

Cs =

[
DFK CF 0 0 DF

0 0 1 0 0

]
.

Then, for all k ≥ 0, it holds that∥∥∥∥ ekxF k

∥∥∥∥2
P

≤ σk (24)

where

σ0 =

∥∥∥∥ e0xF 0

∥∥∥∥2
P

σk+1 = ρ2σk + ∥ûk∥2 + ∥dk∥2
(25)

Proof: zk defined in (22) can be rewritten as

zk = CFxF k +DFKek +DF ûk. (26)

Suppose that
k−1∑
κ=0

ρ−2κ
[
zTκ wT

κ

] [1 0
0 −1

] [
zκ
wκ

]
≥ 0. (27)

Then
k−1∑
κ=0

ρ−2κ

∥∥∥∥[zκwκ

]∥∥∥∥2
M

≥ 0 (28)

is satisfied with some α > 0,

M ≻ α

[
1 0
0 −1

]
. (29)

We define sκ =
[
eTκ xTF κ wT

κ dTκ ûTκ
]T

such that[
zκ
wκ

]
= Cssκ, (30)

with

Cs =

[
DFK CF 0 0 DF

0 0 1 0 0

]
.

Augmented state
[
eTκ xTF κ

]T
produces the dynamics[

eκ+1

xF κ+1

]
=

[
ΦK 0
BFK AF

]
︸ ︷︷ ︸

A

[
eκ
xF κ

]

+

[
Γ
0

]
︸︷︷︸
Bw

wκ +

[
I
0

]
︸︷︷︸
Bd

dκ +

[
0
BF

]
︸ ︷︷ ︸

Bu

ûκ

(31)

Then with (30) and (31), multiplying sk and its transpose
on the right and left sides of (23) leads to the following
inequality∥∥∥∥[ eκ+1

xF κ+1

]∥∥∥∥2
P

− ρ2
∥∥∥∥[ eκxF κ

]∥∥∥∥2
P

+

∥∥∥∥[zκwκ

]∥∥∥∥2
M

−γ∥dκ∥2 − γ∥ûκ∥2 ≤ 0.
(32)

By letting

σκ+1 = ρ2σκ + ∥ûκ∥2 + ∥dκ∥2 , (33)

considering κ ∈ [0, k − 1], the following inequalities can be
obtained by multiplying (32) with ρ2(k−κ−1)(∥∥∥∥[ ekxF k

]∥∥∥∥2
P

− σk

)
+

∥∥∥∥[zkwk

]∥∥∥∥2
M

− ρ2

(∥∥∥∥[ ek−1

xF k−1

]∥∥∥∥2
P

− σk−1

)
≤ 0,

...

ρ2(k−1)

(∥∥∥∥[ e1xF 1

]∥∥∥∥2
P

− σ2

)
+ρ2(k−1)

∥∥∥∥[z1w1

]∥∥∥∥2
M

− ρ2(k−1)ρ2

(∥∥∥∥[ e0xF 0

]∥∥∥∥2
P

− σ0

)
≤ 0.

Summing up the inequalities above leads to∥∥∥∥[ ekxF k

]∥∥∥∥2
P

− σk +

k−1∑
κ=1

ρ2(k−κ−1)

∥∥∥∥[zκwκ

]∥∥∥∥2
M

−ρ2(k−1)(

∥∥∥∥[ e0xF 0

]∥∥∥∥2
P

− σ0) ≤ 0.

(34)

Then, we find that with (28), by choosing σ0 =

∥∥∥∥ e0xF 0

∥∥∥∥
P

,

there exists ∥∥∥∥ ekxF k

∥∥∥∥2
P

< σk. (35)

Now with the theorem, we find the bound for ek, i.e., the
tube later used for the tube-based CBF design. Let P be

decomposed into P =

[
P11 PT

21

P21 P22

]
with P11 ∈ Rnx×nx .

Using the Schur complement for

PT
21P

−1
22 P21 − PT

21P
−1
22 P21 = 0 ⪰ 0 (36)
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Fig. 2. Frequency responses of input delay ∆̃(s) with 20 samples of delay
with evenly spaced τ restricted to [0, τmax], and a bound F̃ .

and P22 ≻ 0, we obtain
[
PT
21P

−1
22 P21 PT

21

P21 P22

]
⪰ 0 and thus[

Pe 0
0 0

]
= P −

[
PT
21P

−1
22 P21 PT

21

P21 P22

]
⪯ P, with Pe = P11−

PT
21P

−1
22 P21. Finally, this yields

∥ek∥2Pe
≤
∥∥∥∥ ekxF k

∥∥∥∥2
P

≤ σk (37)

C. Tube-based CBF
With the bound σk, we define the set Ωk at the sampling

time k
Ωk = {x ∈ Rnx : ∥x− ξk∥2Pe

≤ σk}. (38)

Then with Ωk, a reduced safe set C′
k at time k is defined as

C′
k := C ⊖ Ωk. (39)

With the reduced safe set C′
k, we can find the corresponding

function h′k such that the following statement holds:

C′
k = {x ∈ Rnx : h′k(x) ≥ 0}. (40)

Then with h′k(ξk) and corresponding ψi(ξk), i ∈ {1, · · · , r},
a set of control is defined as
U ′

cbf(x) := {u ∈U : Lr
fh

′
k(ξk) + LgL

r−1
f h′k(ξk)uk

+O(h′k(ξk)) + αr(ψr−1(ξk)) ≥ 0}.
(41)

Then a nominal controller ûk that renders the nominal state
ξk stays in the reduced safe set C′

k such that ξk ∈ C′
k can be

found by solving an optimization problem

û∗k = arg min
û∈U ′

cbf

1

2
∥ûk − urefk∥2 . (42)

With (42), the safety of xk such that xk ∈ C can be provided
by applying the feedback combined control law (10). Notice
that with the exact value of ξk and σk known, (41) is a
linear constraint affine on the nominal control input û. With
the affine tube-based CBF condition, the optimization (42)
can be solved as a QP problem. The computation complexity
is reduced compared to the result in [3], where the quadratic
form of control input is introduced into the formulation of the
CBF condition. Note that using σk defined in (25) requires
the value of dk at each sample time, which is impractical
in real-world applications. Therefore, we introduce an upper
bound σ̄k of σk, in which dmax is utilized instead of dk. The
update law for σ̄k is then

σ̄k+1 = ρ2σ̄k + γ∥dmax∥2 + γ∥ûk∥2. (43)

Each upper bound σk can be readily computed.

V. EXAMPLE

To demonstrate the performance of the proposed algo-
rithm, we performed simulations where the two-dimensional
point mass dynamics is considered [3]

ẋ(t) =

[
02 I2
02 02

]
x(t) +

[
02
I2

]
u(t), x(t) =

[
p(t)
ṗ(t)

]
∈ R4,

(44)
with position p ∈ R2 and velocity ṗ ∈ R2. Baseline
controller to track the reference position command prefk ∈
R4 is given:

uref = Kref ·
([
pref
0

]
−
[
p
ṗ

])
(45)

where Kref is computed using linear quadratic regulator. Here
we consider the obstacle of radius ro = 1.5 at the position
po =

[
2 0.2

]T
, the safe set C is then defined with (2) by

the h(x) := (p−po)T (p−po)−r2o ≥ 0. The sampling time is
chosen as Ts = 0.01sec. We consider uncertain input delay
with τ , where the true delay τ is unknown but restricted to
[0, τmax] with τmax = 0.2sec. With α = 5, the shifted filter
dynamics F̃ (s) is found via fitmagfrd in MATLAB as
F̃ (s) := 2.92s+4.93

s+7.43 , which satisfies |F̃ (jω̃)| ≥ |∆̃(jω̃)| for
every delay sample. Then by shifting back the frequency such
that F (s) = F̃ (s+α), the state-space representation of F (s)
in discrete-time domain is found as (ΦF ,ΓF , CF , DF ) =
(0.9055, 0.0095,−16.72, 2.92) via the Euler method. With
the dynamics of F , the ρ-hard IQC condition (12) is satisfied
with ρ = 0.95. Fig. 2 shows the frequency responses for
∆̃(s) = ∆(s − α) with 20 values of delay evenly spaced
between (0, τmax].

For the comparative study, we compare the proposed tube-
based CBF method with the nominal CBF and the IQC-CBF
in [3]. In the paper, with I(z, w) := zT z − wTw, the IQC-
CBF condition is introduced by

Uiqc-cbf(x) := {u ∈ U : Lr
fh(x) + LgL

r−1
f h(x)(u+ w)

+O(h(x)) + αr(ψr−1(x))− λI(z, w) ≥ 0}.

In the real-time implementation, the worst-case value of w
is considered. Note that, thus, the Lagrangian multiplier λ
for the combination of the IQC and CBF is a vital tuning
parameter in the design of the IQC-CBF, which decides the
performance of the IQC-CBF. For further details, readers
are referred to [3]. It is reported that a heuristic choice
of Lagrange multiplier and IQC filter F provides some
robustness to unmodeled dynamics [3]. We choose λ for the
IQC-CBF as λ = 0.05, 0.1, 0.3, 0.5. Firstly, with an unknown
time delay, the trajectory generated by the nominal CBF-
based controller has safety violations around the obstacle.
The IQC-CBF-based controllers with λ = 0.05 and λ =
0.1 take more cautious paths around the obstacle than the
nominal CBF-based controller. The performance, however,
largely depends on the choice of the Lagrangian multiplier
λ in the CBF design. It can be shown in Fig. 3 that the
IQC-CBF controller with λ = 0.05 takes a much more
conservative path around the vehicle than other values. In
contrast, by choosing a larger multiplier λ = 0.5, which
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Fig. 4. Control inputs for proposed tube-based CBF, IQC-CBF and nominal
CBF on point mass with delay τ ≤ 0.2sec.

is improper, i.e., not satisfying the robust CBF condition,
it turns out that the discretized IQC-CBF controller shows
aggressive behavior, which violates the safety constraint even
more than the nominal CBF. The proposed tube-based CBF
does not require the Lagrangian multipliers λ so that the
true state is maintained in the safe set less conservatively
without tuning the parameter. Also, Fig. 4 shows the control
inputs generated with the proposed method, the IQC-CBF,
and the nominal CBF. The unknown delays cause the inputs
generated by the nominal CBF to oscillate when the nominal
CBF is activated. It can be observed that the IQC-CBF still
generates control inputs with unavoidable oscillations. At the
same time, the proposed methods provide a smoother control
performance because the disturbed state is no longer used to
generate the barrier function. We consider the nominal state
in the CBF design, while the safety of the true state can
be guaranteed. We also found that by choosing a proper λ,
the conservativeness of the IQC-CBF is reduced to the same
level as the proposed controller. However, the control inputs
generated by the IQC-CBF still suffer from more oscillations
than the proposed method.

VI. CONCLUSIONS

This paper proposed a safety-ensuring algorithm based on
CBF robust to unknown input delay and discretization error.
We explored the IQCs to bound the input-output behavior of
the unmodeled dynamics and generate an LMI-based scalar
system that gives the error bound between the nominal and
true system state, where discretization error is considered an
external disturbance. With the bound, a tube-based CBF was
proposed, which guaranteed control input affine constraints,
and a QP problem with the CBF condition can be solved in
real-time to ensure safety.
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[9] L. Schwenkel, J. Köhler, M. A. Müller, and F. Allgöwer, “Model
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