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Abstract— It is known that the effect of species’ density on
species’ growth is non-additive in real ecological systems. This
challenges the conventional Lotka-Volterra model, where the
interactions are always pairwise and their effects are additive.
To address this challenge, we introduce HOIs (Higher-Order
Interactions) and are able to capture, for example, the indirect
effect of one species on a second one correlating to a third
species. Towards this end, we propose a purely cooperative
higher-order Lotka-Volterra model and a higher-order Lotka-
Volterra two-faction competition model. By utilizing the theory
of monotone systems, we provide stability conditions for both
models. The stability analysis further shows that small HOIs
usually promote the coexistence of all species, while the ex-
tinction of some species is usually caused by a huge difference
among the higher-order competitive terms. Finally, illustrative
numerical examples are provided to highlight our contributions.

Index Terms— Higher-order Interactions, Lotka-Volterra
model, Stability analysis

I. INTRODUCTION

The Lotka-Volterra model is one of the most fundamental
and widely adopted population models in mathematical bi-
ology and ecology, originating from Lotka [1] and Volterra
[2]. An early analysis of the 2-species Lotka-Volterra model
was conducted by [3]. Then, the stability results of the multi-
species cooperative model (see Chapter 4 and Definition 16
[4]) were derived by [5], while [6] studied the stability of a
generalized multi-species model with both competition and
mutualism. Abundant book or textbook contributions [4], [7],
[8] provide a detailed and comprehensive introduction to
the conventional Lotka-Volterra models and their stability
results. However, all these conventional models treat the
species pair as a fundamental unit and only capture pair-
wise interactions, whose effects on the species’ growth are
additive.

Prompted by studies in ecology, such pairwise interaction
and its purely additive setting are shown to be insufficient
to represent real complex ecological systems, supported, for
example, by [9]. In the recent study [10], HOIs (Higher-
order Interactions) are introduced to represent non-additive
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effects and further incorporate the empirical evidence, e.g.
the one showing HOIs play a significant role in natural
plant communities. Followed by this idea, [11] introduced
HOIs into the Lotka–Volterra competition and then demon-
strated, by using empirical data and simulations, that HOIs
appear under almost all assumptions and help to improve
the accuracy of model predictions. Despite the advantages
brought by HOIs, the model becomes mathematically more
challenging to analyze. In order to understand what role
HOIs play in influencing the species’ coexistence, [12],
utilizing the higher-order Lotka-Volterra model, studies the
aforementioned problem through simulations. Even more
recently, in [13], numerical simulations with techniques from
statistical physics are used to estimate the HOIs’ influence on
species coexistence. The results of the existence and stability
of equilibria in the higher-order Lotka-Volterra model by
rigorous mathematical proof are still largely missing, mainly
because the higher-order system is highly nonlinear.

Alongside developments regarding the stability of the
conventional Lotka-Volterra model, there is a long history
concerning monotone systems’ theory [14], [15], which is a
useful tool whenever the system is cooperative or its Jacobian
can be permuted into an irreducible Metzler matrix. Very
recently, monotone systems’ theory has been applied to study
the bi-virus competition model [16], whereas the tri-virus
competition model is shown not to be a monotone system
[17]. In [18], an abstract system of two-subcommunity
competition is studied, but the main results are restricted
to the positive equilibrium and not applicable to the higher-
order system. Furthermore, a generalization of cooperativity
is introduced and further analyzed in [19]. All these tools
serve as a good foundation to study a higher-order Lotka-
Volterra model.

The contributions of this paper are summarized as follows:
first, inspired by [11] and taking cooperation (mutualism)
into account, we propose a purely cooperative higher-order
Lotka-Volterra model and a higher-order Lotka-Volterra two-
faction competition model. Second, by using the theory
of monotone systems and the properties of an irreducible
Metzler matrix, we provide stability conditions for each equi-
librium. Our analytical results mathematically confirm some
theoretical expectations in [12], [13], which were achieved
either via simulations or by adopting some approximation.
The results of the existence of the equilibria are obtained via
perturbation theory under the condition that the higher-order
interaction is small. Finally, we provide numerical examples
to highlight our theoretical results.

Notation: Throughout this paper, whenever a, b ∈ Rn, we
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use the notation a ≥ (≤)b to denote that ai ≥ (≤)bi, for all
i = 1, . . . , n; a > (<)b to denote that ai > (<)bi, for all i =
1, . . . , n. For simplicity, the equilibrium point denotes both
the point itself and the vector constructed from the point.

II. COOPERATIVE LOTKA-VOLTERRA MODEL

Inspired by [11], we consider a higher-order cooperative
Lotka-Volterra model for n species:

ẋi = rixi

1− aiixi +
∑
j 6=i

aijxj − biiix2i +
∑

j,k∈Q

bijkxjxk


= rixiLi(x),

(1)

where for the given focal species i, Q = {j, k | (j, k) 6=
(i, i)}, xi denotes the density of species i; ri is the per-
capita intrinsic rate of increase of the focal species; aij is
the first-order coefficient, denoting j’s additive influence on
i, and bijk is the second-order (higher-order) coefficient,
denoting j and k’s joint non-additive influence on i, or
alternatively j’s influence on i correlated with a co-occurring
third species k. Since we consider here cooperative systems,
which represent the symbiosis among several species, it is
natural to assume that the inter-specific interaction is non-
negative. We further assume that the intra-specific interaction
is non-positive, which is interpreted as competition within
the species. Thus, all parameters in (1) are non-negative. If
all parameters in the model are assumed to be real, then the
model is a generalized higher-order Lotka-Volterra model.
Throughout the section, we assume A = [aij ] is irreducible
such that G(A) is strongly connected.

Remark 1: From the perspective of network science, if we
ignore higher-order terms, then (1) is a model on a graph.
One can construct the digraph and label all the species as
nodes in the digraph. Then, one links node j to i with the
weight aij . If we further consider higher-order terms, the
model is then based on a hypergraph. Simply speaking, a
hypergraph is a higher-order network where one hyperedge
can have multiple tails and heads. In our model (1), we have
the last term for three-body interactions. For example, bijk
denotes j and k’s joint influence on i. So one can create
a hyperedge with the weight bijk, where j and k are the
heads and i is the tail. For a more detailed explanation of
the concept of a hypergraph and the dynamical systems on
it, interested readers may refer to [20]. For the definition of
a directed hyperedge, one may refer to [21].
Now we give some properties of the dynamical system (1).

Theorem 1: The system given by (1) is an irreducible
monotone system in Rn

+. Furthermore, if the system has an
open and bounded positively invariant set T = {x|0n <
x < E}, where E ∈ Rn, and if the model has a finite
number of equilibria in the closure of T , then the set of initial
conditions in T , such that the model does not converge to
an equilibrium, is a set of Lebesgue measure zero.

Proof: Firstly, we calculate the Jacobian, which has

components

∂ẋi
∂xi

= riLi +rixi(−aii−2biiixi +
∑
k 6=i

biikxk +
∑
k 6=i

bikixk),

(2)
∂ẋi
∂xj

= rixi(aij +
∑
k 6=i

bijkxk +
∑
k 6=i

bikjxk). (3)

We observe that the Jacobian is always an irreducible Metzler
matrix (Definition 10.1 [8]). This ensures that (1) is an
irreducible monotone system. Under the condition that the
equilibrium set is finite and the system domain is bounded,
by Lemma 2.3 of [16], the proof is completed.

Remark 2: Since the Jacobian of the system is an irre-
ducible Metzler matrix, the system is indeed a cooperative
system (see Chapter 4 and Definition 16 [4]). Theorem 1
requires that the positively invariant set of the system is
open and bounded. One can easily check that the system
is lower-bounded. Thus, this condition only requires that all
solutions of the system have a supremum E. It is worthwhile
to mention that the system is not always upper-bounded
and solutions may diverge to infinity due to the cooperation
terms. Moreover, to derive the equilibrium set and to see
whether it is finite, one only needs to check whether the
equation set of Li = 0 (which is a set of quadratic equations
with multiple variables) for i ≤ n has a finite number of
solutions. If we set all aij = 0 for i 6= j and bijk = 0 for
j, k ∈ Q, it is straightforward to check that the equilibrium
set is finite. Also note that this parameter setting can only be
used to check whether there is a particular choice such that
the equation has a finite number of solutions. Since this al-
gebraic question is different from the analysis of a system, it
doesn’t break the assumption that A is irreducible. According
to Theorem B.1 and Corollary B.2 in [16], since there exists
a particular choice of parameters such that the equation has a
finite number of solutions, if the parameters are generic and
do not lie on a certain algebraic set of measure zero, then
the equilibrium set is finite. Since divergence to infinity is
not natural in reality, we focus on the case when the system
is upper-bounded throughout this paper. According to the
definition of an irreducible monotone system, if there exists a
positive equilibrium X∗, then {x|0 < x < X∗} is positively
invariant.

Before we introduce further results, We recall that an
irreducible Metzler matrix has the following property.

Lemma 1 (Theorem 10.14 in [8]): If M is an irreducible
Metzler matrix, then M is a Hurwitz matrix if and only if
there is a vector x > 0 that satisfies Mx < 0.
Throughout this paper, we say that the species is a winner
when it takes some positive value in the corresponding
equilibrium or is a loser when it takes the zero value. We use
the set S to denote the set of agents of the winner faction.
A boundary equilibrium X∗ is an equilibrium where xi 6= 0
for some i ∈ S with non-empty S and xj = 0 for the rest.

Theorem 2: Consider system (1), then the following hold:
a) the origin is always an equilibrium and is unstable;
b) a boundary equilibrium, if it exists, is always unstable;
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c) if an all-species-coexistence equilibrium point X∗ =
(x∗1, x

∗
2, · · · , x∗n) ∈ T exists, and if the second-order

cooperative coefficients bijk (j, k ∈ Q) are sufficiently
small such that (J(X∗)X

∗) < 0 with J(X∗) the Jacobian
of the system (1) at X∗, then X∗ is locally stable.
Proof: For statement a), it is straightforward to see that

0n is always a solution of rixiLi = 0. For the equilibrium
point 0n, the corresponding Jacobian matrix is J(0n) =
diag((r1, · · · , rn)>). Since ri > 0, the equilibrium point 0n

is unstable.
Next, we prove statement b). By assumption, let (1) have

a boundary equilibrium of m < n winners. Consequently,
the densities of the rest n − m species are zero. Without
loss of generality, we write the boundary equilibrium as
(x∗1, x

∗
2, · · · , x∗m, 0, 0, · · · , 0) = (X∗m,0n−m). Note that any

other boundary equilibrium can be written in the previ-
ous form by index permutation. The corresponding Jaco-
bian matrix of a boundary equilibrium is J(X∗

m,0n−m) =(
M Ω

0(n−m)×m D

)
, where M is an irreducible Metzler

matrix, D is a diagonal matrix, with its diagonal entry
Di = ri(1 +

∑
j∈S aijxj +

∑
j,k∈S bijkxjxk) > 0, where

S includes all the species of the winner faction. Hence, all
boundary equilibrium points are unstable.

Finally, we investigate statement c). For the equilibrium
point X∗ = (x∗1, x

∗
2, · · · , x∗n), the corresponding Jacobian

matrix J(X∗) is an irreducible Metzler matrix. Moreover, we
see that:

(J(X∗)X
∗)i = rix

∗
iLi(x

∗)

+ rix
∗
i

−aiix∗i − 2biiix
∗2
i +

∑
k 6=i

biikx
∗
i x
∗
k +

∑
k 6=i

bikix
∗
i x
∗
k


+
∑
j 6=i

rix
∗
i

aijx∗j +
∑
k 6=i

bijkx
∗
jx
∗
k +

∑
k 6=j

bikjx
∗
kx
∗
j

 .

Recalling (1) and plugging rix∗iLi(x
∗) = 0 in the equation

above, one can get (J(X∗)X
∗)i = −rix∗i + rix

∗
i (−biiix∗2i +∑

j,k∈Q bijkx
∗
jx
∗
k). It follows that once there is equilibrium

point X∗ = (x∗1, x
∗
2, · · · , x∗n) ∈ T , and if bijk (i, j ∈ Q) is

sufficiently small, then (J(X∗)X
∗)i < 0. Thus, the Jacobian

is Hurwitz and furthermore, the equilibrium point X∗ =
(x∗1, x

∗
2, · · · , x∗n) is stable by Lemma 1.

Now that we have described the dynamics of a single-
faction model, we are ready to look into the two-faction
model.

III. HIGHER-ORDER TWO-FACTION-COMPETITION
LOTKA-VOLTERRA MODEL

Consider the case where two factions of species (or
agents), denoted by x ∈ Rm and y ∈ Rn respectively,
compete with each other but the agents inside the camp
cooperate with each other. The corresponding model reads

as:

ẋi = rixi

(
1− aiixi +

∑
j 6=i,j∈Im

aijxj −
∑
j∈In

bijyj

− ciiix2i +
∑

j,k∈Q,j,k∈Im

cijkxjxk −
∑

j,k∈In

dijkyjyk

)
= rixiLi(x, y), i ∈ Im,

(4)

ẏi = r̂iyi

(
1− âiiyi +

∑
j 6=i,j∈In

âijyj −
∑
j∈Im

b̂ijxj

− ĉiiiy2i +
∑

j,k∈Q,j,k∈In

ĉijkyjyk −
∑

j,k∈Im

d̂ijkxjxk

)
= r̂iyiL̂i(x, y), i ∈ In,

(5)

where Im = {1, 2, · · · ,m}, In = {1, 2, · · · , n}, and
m,n are the total number of species in each faction re-
spectively; aij , bij , âij , b̂ij are the first-order coefficients and
cijk, dijk, ĉijk, d̂ijk are the higher-order coefficients. As for
the modeling setup, we assume that all the parameters are
non-negative so that all the intra-faction interaction is non-
negative except the non-positive self-competition of one
agent (species) with itself, while the inter-faction interaction
is non-positive. We further assume that there is no multi-body
interaction, where head agents are from different factions,
i.e., there are no crossed terms xiyj . The modeling setting
of the two factions is similar to that of bi-virus in epidemics
[22]. We further assume throughout the section that the

matrix
(

(aij)m×m (bij)m×n
(b̂ij)n×m (âij)n×n

)
is irreducible. In general,

the model described by (1) can be regarded as a special
case of (4)-(5), where one faction is empty. For simplicity,
throughout this paper, we call x the first faction and y the
second. Define the notation z = (x>, y>)> and z0 denote
the initial condition.

Theorem 3: The system (4)-(5) is an irreducible monotone
system in Rn+m

+ .
Proof: Firstly, one can check that the Jacobian of (4)-

(5) is of the form J =

(
M1 T1
T2 M2

)
, where M1, M2 are

irreducible Metzler matrices, and T1, T2 are non-positive ma-
trices (it is irreducible as long as z > 0n+m). It follows that
J can be permuted into an irreducible Metzler matrix J̃ =(

M1 −T1
−T2 M2

)
via the matrix P =

(
Im 0m×n

0n×n −In

)
,

so the system (4)-(5) is irreducible monotone.
Remark 3: Theorem 3 tells us, in particular, that the Jaco-

bian of the two-faction competition model can be permuted
into an irreducible Metzler matrix. However, if one would
deal with competition among more than two factions, the
permutation may be no longer possible. For example, if
we consider 3 factions, the structure of the Jacobian with
3 factions is analog to the case of Theorem 1 in [17]. A
permutation is not possible for the same reason in [17]. In
addition, the two-faction system may still diverge to infinity
because of the cooperation terms.

In the following Theorems 4-8, we list all the possible
equilibria of the model and study their stability.
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Theorem 4: Consider the system (4)-(5), the origin is
always an equilibrium and is unstable.

Proof: One can check that the zero vector is always a
solution of the equation set (rixiLi = 0 and r̂jyjL̂j = 0,
i ∈ Im, j ∈ In). Since the corresponding Jacobian matrix
is J(0m+n) = diag((r1, · · · , rm, r̂1, · · · , r̂n)>), clearly the
equilibrium point 0m+n is unstable.

Theorem 5: Consider the system (4)-(5), and assume
that a one-faction-wins-all boundary equilibrium
(X∗,0n) = (x∗1, x

∗
2, · · · , x∗m, 0, 0, · · · , 0) or (0m, Y

∗) =
(0, 0, · · · , 0, y∗1 , y∗2 , · · · , y∗n) exists. Either equilibrium is
locally stable whenever the coefficients of the first-order
(bij , b̂ij | i 6= j) and second-order (dijk, d̂ijk | j, k ∈ Q)
competitive terms from the loser faction are sufficiently large
such that Di = r̂i(1 −

∑
j∈S b̂ijx

∗
j −

∑
j,k∈S d̂ijkx

∗
jx
∗
k) <

0, i ∈ In, and X∗ or Y ∗ is a stable all-species-
coexistence equilibrium point of the sub-cooperative-system
from the winner faction when ignoring the loser faction.

Proof: Without loss of generality, we first investigate
the case when the first faction is the winner. The equilib-
rium is then (x∗1, x

∗
2, · · · , x∗m, 0, 0, · · · , 0) = (X∗,0n). By

plugging the equilibrium into the Jacobian, we obtain that

J(X∗,0n) =

(
M Ω

0n×m D

)
, where M is an irreducible

Metzler matrix and represents the Jacobian of the sub-
cooperative-system from the winner faction on an all-species-
coexistence equilibrium point, D is a diagonal matrix,
and its diagonal entry reads Di = r̂i(1 −

∑
j∈S b̂ijx

∗
j −∑

j,k∈S d̂ijkx
∗
jx
∗
k), i ∈ In. Since the Jacobian is an

upper-triangular block matrix, we know that the Jacobian
is Hurwitz when all Di < 0, i ∈ In and the matrix
M is Hurwitz, which further implies that the coefficients
of the first- and second-order competitive terms from the
loser faction are sufficiently large and (x∗1, x

∗
2, · · · , x∗m) is a

stable all-species-coexistence equilibrium point of the sub-
cooperative-system from the winner faction when ignoring
the loser faction. We recall that the second condition is
satisfied when the cooperative HOIs terms are sufficiently
small for the winners. The proof, for the case when the
second faction is the winner, is exactly the same and thus
omitted here.

We then consider the following Lemma.
Lemma 2 (Corollary 3.2 and Proposition 3.5 [18]):

Consider the system (4)-(5), if (x∗1, x
∗
2, · · · , x∗m, 0, 0, · · · , 0)

and (0, 0, · · · , 0, y∗1 , y∗2 , · · · , y∗n) both exist and are
both unstable, then there exists a positive all-species-
coexistence equilibrium (x̃∗1, x̃

∗
2, · · · , x̃∗m, ỹ∗1 , ỹ∗2 , · · · , ỹ∗n)

with x̃∗i ≤ x∗i , ỹ
∗
i ≤ y∗i for arbitrary i, and

{z|0(n+m)×1 ≤ z ≤ (x∗1, x
∗
2, · · · , x∗m, y∗1 , y∗2 , · · · , y∗n)>} is

a bounded positively invariant set.
The stability of a positive all-species-coexistence equilibrium
can be checked by the following Theorem.

Theorem 6: Consider the system (4)-(5), if the all-species-
coexistence equilibrium (x∗1, x

∗
2, · · · , x∗m, y∗1 , y∗2 , · · · , y∗n) ex-

ists, then it is locally stable when the coefficients of
all the first-order competitive terms (bij , b̂ij , i 6= j) and
all the second-order terms except the self-influence term

(cijk, dijk, ĉijk, d̂ijk, j, k ∈ Q) are sufficiently small such

that
(
PJ(X∗,Y ∗)P

(
X∗

Y ∗

))
i

< 0 holds.

Proof: We know that the Jacobian J of the model (4)-
(5) can be permutated into an irreducible Metzler matrix J̃.
Thus, J and J̃ have the same eigenvalues. Therefore, J is
Hurwitz if J̃ is Hurwitz. Letting Z∗ = (X∗, Y ∗)>, we have(

J̃(X∗,Y ∗)

(
X∗

Y ∗

))
i

= rix
∗
iLi(z

∗)

+ rix
∗
i

(
− aiix∗i − 2ciiix

∗2
i +

∑
k 6=i

ciikx
∗
i x
∗
k +

∑
k 6=i

cikix
∗
i x
∗
k

)
+
∑
j 6=i

rix
∗
i

(
aijx

∗
k +

∑
k 6=i

cijkx
∗
jx
∗
k +

∑
k 6=i

cikjx
∗
jx
∗
k

)
+
∑
j 6=i

rix
∗
i

(
bijy

∗
j +

∑
k∈In

dijky
∗
j y
∗
k +

∑
k∈In

dikjy
∗
j y
∗
k

)
= −rix∗i + rix

∗
i

(
− ciiix∗2i +

∑
j,k∈Q

cijkx
∗
jx
∗
k

+ 3
∑

j,k∈Q

dijky
∗
j y
∗
k + 2

∑
j 6=i

bijy
∗
j

)
, i ∈ Im.

On the other hand, for i = j + m, j ∈ In,(
J̃(X∗,Y ∗)

(
X∗

Y ∗

))
i

= −r̂iy∗i + r̂iy
∗
i

(
− ĉiiiy

∗2
i +∑

j,k∈Q ĉijky
∗
j y
∗
k + 3

∑
j,k∈Q d̂ijkx

∗
jx
∗
k + 2

∑
j 6=i b̂ijx

∗
j

)
.

According to Lemma 1, J̃ is Hurwitz if
bij , cijk, dijk, b̂ij , ĉijk, d̂ijk are sufficiently small such

that
(
J̃(X∗,Y ∗)

(
X∗

Y ∗

))
i

< 0 for all i.

Remark 4: In [5] (Theorem 3 and (A8) in Appendix)
and [18] (Theorem 3.8), a sufficient condition for the
global stability of a positive equilibrium (all-species-
coexistence equilibrium) for the abstract system Ṅi =
NiFi (N1, N2, . . . , Nm) , i = 1, 2, . . . ,m was provided by
Lyapunov theory [5] or monotone system theory [18]. Since
both systems proposed in our paper can be written in such
a form, the results in [5] are also valid for our models.
However, Theorem 3.8 [18] can not apply to our system
because HOIs break the condition 3.2. The results in [5],
[18] miss the possibility of bistability and what kind of role
the HOIs play in the species’ coexistence. Our paper fills
this gap.

Theorem 7: Consider the system (4)-(5), the
boundary equilibrium (x∗1, . . . , x

∗
l ,0m−l,0n), l < m

or (0m, y
∗
1 , . . . , y

∗
p,0n−p), p < n, if it exists, is unstable.

Proof: We firstly investigate the first case
(x∗1, . . . , x

∗
l ,0m−l,0n), l < m. The corresponding Jacobian

matrix is J(X∗,0,··· ,0) =

(
M Ω

0(m+n−l)×l D

)
, where M

is an irreducible Metzler matrix and represents the Jacobian
of the sub-cooperative-system from the winner faction on
a boundary equilibrium point, and D is a diagonal matrix.
We know from Theorem 1, that M is unstable and thus the
equilibrium (x∗1, . . . , x

∗
l ,0m−l,0n), l < m is unstable. The

proof, for the second case, is exactly analogous.
Remark 5: Theorem 7 shows that any equilibrium where

the winners are a strict subset of a single faction, is un-
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stable because any of those equilibria can be permuted
into the equilibrium (x∗1, . . . , x

∗
l ,0m−l,0n), l < m or

(0m, y
∗
1 , . . . , y

∗
l ,0n−l), p < n by index permutation.

Theorem 8: Consider the system (4)-(5), the boundary
equilibrium M∗ = (x∗1, · · · , x∗a,0m−a, y

∗
1 , · · · , y∗b ,0n−b),

if it exists, is locally stable when the coefficients
of the first- (bij , b̂ij , i 6= j) and second-order com-
petitive terms (dijk, d̂ijk, j, k ∈ Q) of the losers
are sufficiently large, such that 1 +

∑
j∈S aijx

∗
j −∑

j∈S bijy
∗
j +

∑
j,k∈S cijkx

∗
jx
∗
k −

∑
j,k∈S dijky

∗
j y
∗
k < 0

and 1 +
∑

j∈S âijy
∗
j −

∑
j∈S b̂ijx

∗
j +

∑
j,k∈S ĉijky

∗
j y
∗
k −∑

j,k∈S d̂ijkx
∗
jx
∗
k < 0, and (x∗1, · · · , x∗a, y∗1 , · · · , y∗b ) is a

stable all-species-coexistence equilibrium point of the sub-
system of the winners when ignoring the loser agents.

Proof: Firstly, we perform index permu-
tation, and M∗ can be permuted as N∗ =
(x∗1, · · · , x∗a, y∗1 , · · · , y∗b ,0m−a,0n−b). The corresponding
Jacobian matrix after the index permutation is

JN∗ =

(
M Ω

0(m+n−a−b)×(a+b) D

)
, where M is an

irreducible Metzler matrix and represents the Jacobian of
the sub-system of all winners on an all-species-coexistence
equilibrium point, D is a diagonal matrix, with entries

Di = riLi(z
∗) = ri(1 +

∑
j∈S

aijx
∗
j −

∑
j∈S

bijy
∗
j

+
∑
j,k∈S

cijkx
∗
jx
∗
k −

∑
j,k∈S

dijky
∗
j y
∗
k);

if i denotes the loser agent in the first faction. Other-
wise, if i denotes the loser agent in the second faction,
Di takes a similar form. In order to have all negative
eigenvalues, the first- and second-order cooperative terms of
the losers must be sufficiently small, so that all Di < 0,
and (x∗1, · · · , x∗a, y∗1 , · · · , y∗b ) must be a stable all-species-
coexistence equilibrium point of the sub-system of the win-
ners when ignoring the loser agents so that M is Hurwitz.

Remark 6: Theorem 8 further implies that any equilib-
rium, where the winners are in the different camps, but not
all of them, is stable under the same condition as Theorem
8 because any of those equilibria can be permuted into the
equilibrium M∗ or N∗ by index permutation,

Remark 7: We are now able to provide a strategy different
from [5], [18] to obtain sufficient conditions for the global
stability of the positive equilibrium. If all the boundary
equilibria are unstable, under the assumption that the system
is upper-bounded, then there exists a positively invariant set
T = {x|0n < x < E}. For example, the lemma 2 is
a typical case. According to the Lemma 2.3 of [16], the
solution converges to the positive equilibrium for almost all
initial conditions in T and a generic choice of parameters,
since the generic choice of parameters will ensure that there
is a finite number of positive equilibria, because there is a
particular choice of parameters which yields a finite number
of solutions.

In summary, one can conclude that the small HOIs will
usually promote all-species coexistence, while large differ-
ences among higher-order competitive terms usually result in

the extinction of some of the species. These results coincide
with the expectations in [13].

Now, it still remains unknown under which conditions
an equilibrium other than the origin exists. Generally, it is
challenging to give a comprehensive analysis that guarantees
the existence of the equilibrium, because it is difficult to
solve the multi-variable square equation set (rixiLi = 0 and
r̂jyjL̂j = 0, i ∈ Im, j ∈ In). However, we are still able
to give the result under a special case when the second-
order interaction terms are sufficiently small so that regular
perturbation theory can be applied. Let us now consider
0 < ε� 1 and the perturbed system:

ẋi = rixi
(
1− aiixi +

∑
j 6=i

aijxj −
∑
j 6=i

bijyj

− εciiix2i +
∑

j,k∈Q

εcijkxjxk −
∑

j,k∈Q

εdijkyjyk
)
, i ∈ Im,

(6)

ẏi = r̂iyi
(
1− âiiyi +

∑
j 6=i

âijyj −
∑
j 6=i

b̂ijxj

− εĉiiiy2i + ε
∑

j,k∈Q

ĉijkyjyk − ε
∑

j,k∈Q

d̂ijkxjxk
)
, i ∈ In.

(7)

The system when all ε = 0 is called an unperturbed system.
The unperturbed system (6)-(7) with ε = 0 corresponds to
the conventional Lotka-Volterra model on a graph, which is
well-introduced in, e.g., [4], [7], and from which we know
when (6)-(7) with ε = 0 has a hyperbolic equilibrium and
whether it is stable.

Theorem 9: Consider the perturbed system (6)-(7). If the
unperturbed system (6)-(7) with ε = 0 has a hyperbolic
equilibrium point z∗ = (x∗, y∗), then the perturbed system
(6)-(7) also has a hyperbolic equilibrium point z̃∗ in the
vicinity of the hyperbolic equilibrium point z∗.Furthermore,
if z∗ is locally stable, then z̃∗ is locally stable. Otherwise, if
z∗ is unstable, then z̃∗ is unstable.

Proof: We compactly write the state variable as z =
(x, y)>. The unperturbed system can be represented as
ż = g(z) and the perturbed system as ż = G(z, ε), with
G(z, 0) = g(z). Let z∗ be an equilibrium of the unperturbed
system. By definition of the equilibrium point, G(z∗, 0) = 0
and ∂G

∂x (z∗, 0) = ∂g
∂z (z∗). Due to the hyperbolicity of z∗,

∂G
∂z (z∗, 0) = ∂g

∂z (z∗) has a nonvanishing determinant. By the
implicit function theorem, there is a unique equilibrium in the
neighborhood of z∗ for sufficiently small ε. This equilibrium
is also hyperbolic because of the continuous dependence of
the eigenvalues of ∂G

∂z on ε. Thus, the local stability of the
equilibrium persists.

IV. NUMERICAL EXAMPLE

In this section, we use some numerical examples to illus-
trate our analytical results in section 3. For the simulation
setup, we randomly pick all the parameters from the set
[0, 10]. Furthermore, the initial condition is randomly chosen
from [0, 10]. We assume a total of 5 species, 2 in one faction
and 3 in the other. Figures 1a-1c include all the possible
results we can observe and are three typical examples for
each case. Figure 1a is in line with Theorem 5, while Figure
1b corresponds to Theorem 6. Similarly, Figure 1c reflects
the analytical results of Theorem 8. Since all other equilibria
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(a) (b) (c) (d)

Fig. 1: (a) Only one faction wins and all members in the faction are the winners. (b) All species coexist. (c) Species from
different factions win but some species die out. (d) From a different initial condition but the same parameters with (a), the
solution converges to the different one-faction-wins-all boundary equilibrium. That is, bistability is reflected in an interchange
of the winner faction.

are unstable, we don’t observe that the solution converges to
them from in simulation scenarios. From figure 1a and 1d, we
confirm the bistability properties of the two-faction system.
Furthermore, to highlight the influence of HOIs, the system
parameters and initial conditions are the same in simulations
1b and 1c except that we change d1jk to 5d1jk, respectively.
As we increase the d1jk, according to the Theorem 8, the first
faction dies out, which is indeed in line with the simulation
results. This shows that our theory can also be seen as a
manipulation strategy to adjust the winner species. Since
HOIs usually denote the indirect interaction in ecology, HOIs
are potentially more suitable to adjust than pairwise direct
interaction. Finally, from simulations, we observe that large
self-competition terms (aii, âii, ciii, ĉiii) will improve the
chance that the system doesn’t diverge to infinity, which
seems only related to the system’s parameters.

V. CONCLUSION AND DISCUSSION

This paper proposes two higher-order Lotka-Volterra mod-
els. The first model is a fully cooperative model, while the
second describes a competition between two factions. We
have listed all the possible equilibria for these models. By
applying the theory of monotone systems and exploiting the
properties of an irreducible Metzler matrix, we have provided
sufficient conditions for their stability and discovered the
influence of HOIs on species’ coexistence. In the end, we
use simulations to highlight our analytical contributions.
Future research directions that stem from our findings include
the study of the general higher-order Lotka-Volterra model
among more than 2 factions. The main challenge is that the
Jacobian may no longer be permutated into an irreducible
Metzler matrix, therefore new techniques are to be developed
to address such a more general case.
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