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Abstract— We generalize a recently introduced data-
driven approach for model-reference control design with
closed-loop stability guarantees to the case of single-input
single-output systems with inaccessible state. By consider-
ing a dynamic controller with fixed structure and leveraging
a data-based description of the closed-loop dynamics, we
propose a two-stage strategy for the optimization of the
controller’s parameters to match the desired closed-loop
behavior. By means of a benchmark simulation example,
we show the potential of the proposed approach and the
impact of a simple strategy to handle noisy measurements.

Index Terms— Data-driven control, output-feedback con-
trol, closed-loop stability

I. INTRODUCTION

In the last years, several works have been reconsidering the
classical two-stage approach to learning-based control, namely
system identification+model-based design. The main reason
behind this shift lays in the fact that standard identification
approaches often overlook the ultimate use of the identified
model, i.e., the design of an effective controller. While efforts
have been carried out to include this last information into iden-
tification strategies (see, e.g., [1]), data-driven (DD) control
techniques are nowadays being credited as viable alternatives
to the standard learning-based control paradigm, allowing
one to directly exploit data to learn a controller (bypassing
explicit identification phases). Existing data-driven approaches
range from “traditional” model reference strategies, e.g., the
Virtual Reference Feedback Tuning (VRFT) approach [2], to
the newly proposed optimal and predictive strategies founded
on Willems’ fundamental lemma [3] and behavioral theory
(see, e.g., [4]–[6]). While closed-loop stability can eventually
be guaranteed when considering this last class of approaches,
only few direct, model reference methods have been extended
to account for closed-loop stability by design. Extensions to
existing approaches have been proposed in [7], [8] to guarantee
closed-loop stability, with results that are nonetheless asymp-
totic (i.e., hold for infinite-dimensional datasets) or rather
conservative. Instead, the model reference strategy proposed
in [9] directly enforces closed-loop stability by design, but it
relies on the (unrealistic) assumption of fully measurable state.
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In this work, we propose a first extension of the data-driven
design framework introduced in [9] to the input/output setting.
Specifically, we present a novel strategy for the direct design of
a fixed structure controller (endowed with integral action) from
a batch of input and output data, which explicitly seeks for
closed-loop stability and reference model matching while not
performing closed-loop experiments at design time. Notably,
the shift from the setting of [9] to that considered in this
work greatly increases the complexity of the problem to be
solved. Indeed, model matching cannot be simply imposed via
(strict or relaxed) matrix equalities as in [9], but it can only
be searched for by comparing the desired output behavior to
that achieved with the designed controller over a finite set of
data points. In turn, this results in a non-convex optimization
problem, which we tackle with a new (sub-optimal) two-
stage strategy, firstly focusing on model matching and then
projecting the model reference controller onto the set of
stabilizing laws. To counteract the effect of noise, this work
leverages a simple averaging strategy, whose effectiveness is
analyzed on a benchmark example.

The paper is structured as follows. Section II introduces the
main assumptions of our setup and the design problem, which
is constructed in Section III. Our two-stage approach to tackle
it is presented in Section IV, while the results of its application
on a benchmark example are shown in Section V. The paper
is ended by final remarks and directions for future work.

Notation: Given B∈Rm×n, we denote its transpose as B>,
its Frobenius norm as ‖B‖F , its Moore-Penrose inverse as B†

and (when m = n and it exists) its inverse as B−1. Identity
and zero matrices are respectively indicated as I and 0. If a
matrix Q ∈ Rn×n is positive definite (positive semi-definite),
then Q � 0 (Q � 0). Given ω ∈ Rp, we indicate with ‖ω‖
its 2-norm. Lastly, for ν(t) ∈ Rm, we denote as Ni,T−j the
Hankel matrix

Ni,T−j=
[
ν(i) ν(i+ 1) · · · ν(T − j)

]
∈ Rm×T−j−i, (1)

for i, j ∈ N, with i, j ≥ 0 and i < T − j.

II. BACKGROUND

Consider a linear, time invariant (LTI), single-input single-
output, strictly proper and controllable system S , whose
behavior is described by a set of unknown difference equations.
denote its exogenous input at time t ∈ N0 as u(t) ∈ R and
the associated noiseless output as yo(t)∈R. Given an upper-
bound n ∈ N on the order of S, let us further consider the
(unknown) extended model
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yo(t) =

n∑
i=1

aiy
o(t− i) +

n∑
j=1

bju(t− j), (2)

describing the input/output behavior of S, and the associated
non-minimal state realization x̂o(t) ∈ R2n:

x̂o(t)=
[
yo(t−n) · · · yo(t−1) u(t−n) · · · u(t−1)

]>
, (3)

comprising n past inputs/outputs. Accordingly, we can easily
obtain the following (non-minimal) state-space model

x̂o(t+1)=


0 I ··· 0 0 0 ··· 0...

...
. . .

...
...

...
. . .

...
0 0 ··· I 0 0 ··· 0
an an−1 ··· a1 bn bn−1 ··· b1
0 0 ··· 0 0 I ··· 0...

...
. . .

...
...

...
. . .

...
0 0 ··· 0 0 0 ··· I
0 0 ··· 0 0 0 ··· 0


︸ ︷︷ ︸

A∈R2n×2n

x̂o(t)+


0...
0
0
0...
0
1


︸︷︷︸
B∈R2n

u(t),

yo(t) = [ an an−1 ··· a1 bn bn−1 ··· b1 ]︸ ︷︷ ︸
C∈R1×2n

x̂o(t), (4)

which we suppose satisfies the following assumption.
Assumption 1: The 2n-dimensional state-space model in

(4) is controllable.
Remark 1 (On the controllability of (4)): Let

A(q−1) = 1− a1q−1 − . . .− anq−n,
B(q−1) = b1q

−1 + . . .+ bnq
−n,

be the polynomials in the back shift operator1 q−1 char-
acterizing (2). Then, the extended state-space model (4) is
controllable if they are coprime (see [10, Lemma 3.4.7]).

Despite no model for S is known, suppose that we have
access to a set of input/output pairs DT = {UT ,YT } of length

T ≥ 4n+ 2, (5)
with YT verifying the following assumption.

Assumption 2: The outputs in YT = {y(t)}T−1t=0 are cor-
rupted by zero-mean, white noise with covariance Ω∈R, i.e.,

y(t) = yo(t) + v(t). (6)
Let us also assume that UT satisfies the following.

Assumption 3: The sequence UT = {u(t)}T−1t=0 is persis-
tently exciting of order 2n+1 according to [3].

Then, the rank condition

rank
([

Un,T−1
X̂n,T−1

])
= 2n+ 1, (7)

holds, where Un,T−1 and X̂n,T−1 are Hankel matrices (1) of
the inputs and noisy extended states. Note that, condition (5) is
needed for UT to satisfy Assumption 3 (see [4, Section II.A]).

Remark 2 (On (7)): While in a noise-free setting (7) is
verified only when n corresponds to the true order of S (see,
e.g., the discussion in [11, Section 3.3]), this is no longer
necessary when data are corrupted by noise.

A. Goal

In this work, we aim to use the available batch of data
to design a stabilizing controller K (endowed with integral
action) to enable the closed-loop output to track as closely as

1q−ju(t) = u(t− j), ∀j ∈ Z.

∫
Kq S

Kx

M

r + eo q + u yo

+
εo

x̂o
+−

−

Fig. 1. Ideal matching scheme, where eo = r − yo, εo = yo − yd

is the mismatching error and x̂o is the extended state (see (3)).

possible the desired behavior yd(t) ∈ R dictated by the stable
reference model M:

M :

{
xd(t+1) = AMx

d(t) +BMr(t),

yd(t) = CMx
d(t) +DMr(t),

(8)

where xd(t) ∈ Rnd×nd indicates the state of the reference
model, while r(t) ∈ R is any possible user-defined set point.
The matrices AM ∈ Rnd×nd , BM ∈ Rnd×1, CM ∈ R1×nd

and DM ∈ R are assumed to be fixed by the user beforehand,
and chosen for I −AM to be invertible and for

CM (I −AM )−1BM +DM = 1,

to guarantee zero steady-state error with respect to step-like
set points. Meanwhile, among alternative structures2, we focus
on a controller parameterized as:

K : u(t) = Kxx̂
o(t) +Kqq

o(t), (9a)
with

qo(t)=qo(t− 1) + eo(t)=qo(t− 1) + (r(t)− yo(t)), (9b)

being the integral of the tracking error at time t, and Kx ∈
R1×2n and Kq ∈ R being the gains to be designed. Note that,
based on our structural choices, we separately map the effect
of past input/output behaviors and tracking performance onto
the control action. Meanwhile, due to its dependence on the
extended state, K turns out to be dynamic (differently from
the static controller considered in [9]).

III. BUILDING THE MATCHING PROBLEM WITH STABILITY

Let us consider the dynamics in (4). By further augmenting
the state as follows:

χo(t) =
[
x̂o,>(t) qo,>(t−1)

]>
. (10)

and merging (4) with the input definition (see (9)), the overall
closed-loop dynamics is given by

χo(t+ 1) =

[
A+ BK BKq

−C I

]
︸ ︷︷ ︸

Acl(Kx,Kq)

χo(t) +

[
BKq

I

]
︸ ︷︷ ︸
Bcl(Kq)

r(t) (11a)

yo(t) =
[
C 0

]
χo(t) = Cclχo(t), (11b)

with
K = Kx−KqC. (11c)

Accordingly, for the closed-loop system to be stable in the
Lyapunov sense, there should exist a symmetric, positive
definite matrix P =P> ∈ R(2n+1)×(2n+1), such that:

Acl(Kx,Kq)P [Acl(Kx,Kq)]
> − P ≺ 0. (12)

Based on the matching scheme in Fig. 1, the problem loosely
stated in Section II can be formalized as follows:

2The integral action can be also enforced by constraining the control gains.
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minimize
Eo,Kx,Kq,P

‖Eo‖2 (13a)

s.t. εo(t) = Cx̂o(t)− yd(t), ∀t, (13b)
u(t)=Kxx̂

o(t) +Kqq
o(t), ∀t, (13c)

x̂o(t+ 1)=Ax̂o(t)+Bu(t), ∀t, (13d)
qo(t) = qo(t− 1) + (r(t)− yo(t)), ∀t, (13e)

P �0, Acl(Kx,Kq)P [Acl(Kx,Kq)]
>−P ≺0, (13f)

where Eo indicates the Hankel matrix stacking all the mis-
matching errors εo(t), ∀t, while the dependence of u(t) on the
reference in (13c) is made explicit by manipulating (9a). This
problem thus seeks for a control law implicitly prioritizing one
objective with respect to the other. Indeed, closed-loop stability
is enforced by constraint, while mismatching errors are only
steered toward zero by the chosen cost (that still allows εo(t)
to be eventually non-zero for some t).

Remark 3 (On the feasibility of (13)): The constraints in
(13c)-(13e) are introduced to define the matching error in (13b)
(which is then lifted to the cost) and, thus, they are not critical
for the feasibility of (13). Meanwhile, (13f) can be satisfied if
and only if the system with extended state (10) is stabilizable.

A. Removing the dependence on the reference
Since we aim at matching the behavior of M for any

possible user-defined set point, the dependence on r(t) of (13)
might be problematic. Indeed, it would require the user to
select a single set point to be tracked beforehand, eventually
leading to a controller that matches the desired behavior only
for the given reference. Not to undermine the generality of the
designed controller, while lifting the burden of choosing the set
point from the user, in the same spirit of the VRFT approach
[12], we replace r(t) with a fictitious reference constructed
based on M. To this end, with a slight abuse of notation, let
us compactly define the input/output relationship of M as

yd(t) =Mr(t), (14)

according to which (13b) can be recast as:

εo(t) = yo(t)−Mr(t). (15)

Additionally, let us assume that the relationship in (14) can be
inverted, namely that there exists M† such that3

r(t) =M†yd(t). (16)

Exploiting this definition, we can define the fictitious reference

rf (εo(t)) =M† [yo(t)− εo(t)] . (17)

In turn, this allows us to rewrite (13c) as follows:

u(t) = Kxx̂
o(t)+Kq

t∑
τ=0

ỹo(τ)−Kq

t∑
τ=0

M†εo(τ), (18a)

with ỹo(t) = M†yo(t) − yo(t) and the terms in Kq easily
follow from the definition of the integral dynamics and that of
the fictitious reference. We can now isolate the term depending
on the mismatching error, i.e.,

Kq

t∑
τ=0

M†εo(τ)︸ ︷︷ ︸
ε(Kq,εo)

= Kxx̂
o(t)+Kq

t∑
τ=0

ỹo(τ)− u(t), (18b)

3M† can be obtained as explained in [12, Proposition 1, Section 7].

and replace the matching problem in (13) with

minimize
Eo,Kx,Kq,P

‖Eo‖2F (19a)

s.t. ε(Kq, ε
o)=Kxx̂

o(t)+Kq

t∑
τ=0

ỹo(τ)−u(t), ∀t, (19b)

x̂o(t+1)=Ax̂o(t)+Bu(t), ∀t, (19c)

ỹo(t) =M†yo(t)− yo(t), ∀t, (19d)

P � 0, Acl(Kx,Kq)P [Acl(Kx,Kq)]
>−P ≺ 0, (19e)

Note that, based on the definition of the fictitious reference,
(19) is equivalent to (13). Meanwhile, the new problem does
not feature the constraints in (13b) and (13e), since they are
exploited in the definition of the fictitious reference (see (17))
and the input in (18a), respectively. It is also worth pointing
out that the left-hand-side of (19b) depends on the product
of Kq and a filtered version of the mismatching error, thus
introducing a non-linearity in two optimization variables.

B. From model-based to (deterministic) DD matching
Problem (19) still relies on the matrices A, B and C in

(11), which are unknown in our setup. By exploiting argu-
ments similar to that of [4], we now replace the model-based
formulation with its data-driven counterpart still focusing on a
deterministic setting, i.e., the output data are noiseless. Let us
initially consider the dynamics of the non-minimal state x̂o(t)
only. The latter can be equivalently written as:

x̂o(t+1)=
[
B A

]{[K
I

]
x̂o(t)+

[
Kq

0

]
(r(t)+qo(t−1))

}
. (20)

This model-based expression can be translated into its data-
driven counterpart as follows:

x̂o(t+1)=X̂o
n+1,TGx̂

o(t)+X̂o
n+1,TGq(r(t)+q

o(t−1)), (21a)

with the additional consistency conditions

X̂o
n,T−1G = I, X̂o

n,T−1Gq = 0, (21b)

where G ∈ R(T−n+1)×2n, Gq ∈ RT−n+1, and X̂n+1,T is the
Hankel matrix of one-step-ahead extended states. This result
is formalized in the following Lemma.

Lemma 1 (Deterministic data-driven extended dynamics):
Let the noiseless dataset Do

T = {UT ,Yo
T } be informative and

long enough (in the spirit of (7) and (5), respectively). Then,
the models in (20) and (21a) are equivalent, provided that G
and Gq in (21a) satisfy the consistency conditions in (21b).

Proof: Thanks to Assumptions 3, by the Rouché-Capelli
theorem, there exists two matrices G ∈ R(T−n+1)×2n and
Gq ∈ R(T−n+1) such that:[

K
I

]
=

[
Un,T−1
X̂o
n,T−1

]
G,

[
Kq

0

]
=

[
Un,T−1
X̂o
n,T−1

]
Gq. (22)

Accordingly, the following holds:[
B A

] [K
I

]
=
[
B A

] [Un,T−1
X̂o
n,T−1

]
G = X̂o

1,TG,[
B A

] [Kq

0

]
=
[
B A

] [Un,T−1
X̂o
n,T−1

]
Gq = X̂o

1,TGq,

because of (4), ultimately leading to (21).
Note that, the control gains Kx and Kq can be straightfor-
wardly extracted from G and Gq as follows:
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Kx = Un,T−1G−Un,T−1GqĈo, (23a)
Kq = Un,T−1Gq. (23b)

Meanwhile, along the line of [4, Section VI], Ĉo is the data-
driven estimate of C, i.e.,

Ĉo = 1nX̂
o
n+1,T

[
Un,T−1
X̂o
n,T−1

]† [
0
I

]
, (24)

and 1n is the n-th block row selector, namely

1n =
[
0 0 · · · 0︸ ︷︷ ︸

n−1 times

I 0 0 · · · 0︸ ︷︷ ︸
m times

]
.

Based on Lemma 1 and (24), the stability condition in (12)
can now be translated into its data-driven counterpart[
X̂o
n+1,TG X̂o

n+1,TGq
−Ĉo I

]
︸ ︷︷ ︸

Ao
cl(G,Gq)

P

[
X̂o
n+1,TG X̂o

n+1,TGq
−Ĉo I

]>
−P ≺0.

(25)
Therefore, we can cast the (deterministic) data-driven problem
with stability guarantees as:

minimize
Eo,G,Gq,P

‖Eo‖2F (26a)

s.t. ε(Gq, εo)= ûo(t;G,Gq)−u(t), t∈IT (26b)

X̂o
n,T−1G = I, X̂o

n,T−1Gq = 0, (26c)

P � 0, Acl(G,Gq)P [Acl(G,Gq)]> − P ≺ 0, (26d)

removing the constraint in (19d), since ỹo(t) is computed
from data for all t ∈ IT . Note that, due to the data-driven
nature of the problem, model matching is now sought over
the available data only. Therefore, Eo ∈ R1×T−n+1 now
stacks the noiseless matching errors over the dataset Do

T ,
u(t) are the input samples available for data-driven design,
IT = {n, . . . , T − 1}, ûo(t;G,Gq) is

ûo(t;G,Gq) = Un,T−1Gx̂
o(t)+Un,T−1Gq

t∑
τ=0

ỹo(t), (26e)

and x̂o(t) is also computed based on the available data, while

ε(Gq, ε
o) = Un,T−1Gq

t∑
τ=0

M†εo(τ), ∀t ∈ IT . (26f)

Thanks to the equivalence established by Lemma 1, problem
(26) corresponds to a simplified version of (19), where match-
ing is required only over a finite set of instants. Therefore, (26)
admits a solution whenever (19) is feasible.

C. Handling noisy data
Differently from before, we now approach the design prob-

lem in a realistic (namely noisy) setting, based on Assump-
tion 2. This shift from a noise-free to a noisy setup entails
that the equivalence in Lemma 1 does not hold anymore and,
thus, matching and/or stability might not be attained by simply
replacing noisy data into (26). In this work, we cope with this
issue as in [9], [13], by trying to recover the noiseless data
from the noisy ones based on the following assumption.

Assumption 4: Multiple data collection experiments can be
performed using the same input sequence UT , leading to N≥1
datasets DhT = {UT ,YhT }, with h = 1, . . . , N .

Accordingly, we can define the averaged extended state

x̂av(t)=
[
ȳ(t−n) · · · ȳ(t−1) u(t−n) · · · u(t−1)

]>
, (27a)

where ȳ(t) is the average of the N available outputs, i.e.,

ȳ(t) =
1

N

N∑
h=1

yh(t). (27b)

In turn, this implies that x̂av(t) asymptotically (namely for
N → ∞) corresponds to x̂o(t) almost surely, thanks to the
features of the measurement noise4 (see Assumption 2). By
replacing the Hankel matrices X̂o

n,T−1 and X̂o
n+1,T with those

comprising the averaged extended states5, namely X̂av
n,T−1 and

X̂av
n+1,T , we can ultimately recast the problem as follows:

minimize
E,G,Gq,P

‖E‖2F (28a)

s.t. ε(Gq, ε)= ûav(t;G,Gq)− u(t), t ∈ IT (28b)

X̂av
n,T−1G = I, X̂av

n,T−1Gq = 0, (28c)

P � 0, Aav
cl (G,Gq)P [Aav

cl (G,Gq)]
> − P ≺ 0, (28d)

where E being the collection of matching errors resulting from
the averaged dataset,

Aav
cl(G,Gq)=

[
X̂av
n+1,TG X̂av

n+1,TGq
−Ĉav I

]
, (28e)

ûav(t;G,Gq)=Un,T−1Gx̂
av(t)+Un,T−1Gq

t∑
τ=0

ỹav(τ), (28f)

and

Ĉav=1nX̂
av
1,T

[
Un,T−1
X̂av
n,T−1

]†[
0
I

]
, ỹav(t)=M†ȳ(t)−ȳ(t).

Note that, when N tends to infinity, one would expect to
recover (26). In this scenario, (28) should thus be feasible if
that (deterministic) data-based problem admits a solution.

IV. A TWO-STAGE LMI-BASED APPROACH FOR MODEL
MATCHING WITH STABILITY

All constraints in problem (28) feature products between
optimization variables. Nonetheless, standard techniques [14]
can be exploited to turn (28d) into a linear matrix inequality
(LMI). Indeed, by recasting Acl(G,Gq) as

Acl(G,Gq) =

[
X̂av
n+1,T 0 0

0 −Ĉav I

]
︸ ︷︷ ︸

Ãcl

G Gq
I 0
0 I


︸ ︷︷ ︸

G̃

, (29)

the second inequality in (28d) becomes

ÃclG̃P G̃>(Ãcl)> − P ≥ 0. (30a)

that can be equivalently rewritten as[
P ÃclQ

(ÃclQ)> P

]
� 0, (30b)

after defining Q = G̃P−1 and a Schur complement. However,
introducing Q leads to the following translation of (28b):

4This result can be easily proven based on the law of large numbers.
5They are simply obtained by replacing yo with ȳ in their definitions.
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Fig. 2. Scheme of the controlled system [15]. The input is the force
applied to m2, while y is the position of m2.

ε(Gq, ε)=
[
Un,T−1 0 0

]
QP−1︸ ︷︷ ︸
G̃

[
x̂av(t)∑t
τ=0 ỹ

av(τ)

]
,

that ultimately becomes less tractable than before, due to its
dependence on P−1. To overcome this limitation, we tackle
(28) with a sub-optimal two-stage approach, by firstly finding
the matching controller and then projecting it onto the set of
stabilizing laws (as summarized in Algorithm 1). Specifically,
we initially disregard the stability and consistency constraints
in (28), considering the “reduced” matching problem:

minimize
E,G,Gq

‖E‖2F (31a)

s.t. ε(Gq, ε)= ûav(t;G,Gq)− u(t), t ∈ IT . (31b)

Note that the consistency constraint in (28c) is not considered,
with this problem being solely devoted to design a control
action parameterized as in (28f) to attain model matching. De-
spite this simplification, it still features a non-linear constraints
(see the left-hand-side of (31b)). In line with [12], we avoid
this issue by minimizing the filtered mismatching error, i.e.,
shifting to the approximated problem (step 1)

minimize
G,Gq 6=0

T−1∑
t=n

‖u(t)−ûav(t;G,Gq)‖22︸ ︷︷ ︸
J(G,Gq)

. (32)

It is worth remarking that in solving (32) we have removed the
trivial solution Gq = 0 from the feasible set, for ε(Gq, ε) not to
be steered to zero by Gq becoming zero itself. By solving this
problem, we get a first estimate of the optimization variables
G∗ and G∗q , which can be used to construct G̃∗ according to
(29). Then (step 3), we seek closed-loop stability by solving

minimize
P,Q

‖G̃∗P −Q‖F , (33a)

s.t. P � 0,

[
P ÃclQ

(ÃclQ)> P

]
� 0, (33b)[

X̂av
n,T−1 0 0

]
Q =

[
I 0

]
P, (33c)

namely searching for a stabilizing law that resembles the one
obtained at the first step, while satisfying the consistency
constraints. From the resulting matrices Q? and P ?, we can
then retrieve G̃? = Q?(P ?)−1 and consequently extract the
gains of our controller (step 6). Problem (33) is feasible
when the system with extended state composed by x̂av(t) and
the integral state is stabilizable. We stress again that solving
(32)+(33) is not equivalent to tackling (28), so the obtained
controller is sub-optimal and might lead to conservatism.

V. NUMERICAL RESULTS

The effectiveness of the proposed approach is assessed on
the benchmark system schematized in Fig. 2 [15, Section

Algorithm 1 Data-driven matching with stability

Input: Dataset DT ={UT , ȲT }, with YT = {ȳ(t)}T−1t=0 .

1. find G∗, G∗q←arg minG,Gq 6=0 J(G,Gq);
2. construct G̃∗ as in (29), with G=G∗ and Gq=G∗q ;
3. find P ?, Q? ← arg minQ,P s.t. (33b)−(33c) ‖G̃∗P −Q‖F ;
4. compute G̃? = Q?(P ?)−1;
5. extract G? and G?q from G̃? (see (29));
6. retrieve K?

x and K?
q from G? and G?q as in (23);

Output: Estimated gains K?
x and K?

q .

TABLE I
MAIN PARAMETERS OF THE BENCHMARK SYSTEM (REFER TO FIG. 2)

Parameter m1 [kg] m2 [kg] c1 [kg/s] c2 [kg/s] k1 [kg/s2] k2 [kg/s2]
Value 1 0.5 0.2 0.5 1 0.5

IV.A], with the parameters in Table I. The reference model
is described by the transfer function in the Laplace domain:

M : Y d(s) =
1

3s+ 1
R(s), (34)

where Y d(s) and R(s) are the Laplace transforms of the
desired output and reference position, respectively. Toward the
design of K in (9a), we fix n = 4 (see (3)), thus verifying
Assumption 1 while assuming to know the exact order of
the system. Meanwhile, to satisfy Assumption 3, we collect
N=100 realizations of the data with the same pseudo-binary
random open-loop input varying in [−1, 1] for 10.4 s (T =104,
as the sampling time is Ts=0.1 s), with outputs corrupted by a
zero-mean, white noise with standard deviation 0.05, yielding
an average signal-to-noise ratio (SNR) of 21.7 [dB].

To assess the robustness of our approach to different re-
alizations of the noise in the training data, we perform 100
Monte Carlo data collection for each of the N = 100 repeated
experiments, ultimately obtaining 100 averaged datasets that
are used to train different controllers with Algorithm 1. As ev-
idenced by the noise-free trajectories6 obtained by closing the
loop with the designed K in Fig. 3, the closed-loop behavior
of the system is not heavily impacted by the differences in
the controllers learned via different realizations of the training
set. This result can be related to the use of the noise handling
strategy proposed in Section III-C, as highlighted by the results
in Table II. Indeed, by progressively increasing N , closed-
loop performance tend to gradually improve7 as expected,
since the experimental conditions get progressively “closer”
to the asymptotic ones. Meanwhile, by looking at the result in
Table III, tracking performance seems to counter-intuitively
improve when the noise level increases. Nonetheless, this
slight improvement comes at a price of an increase in the
output oscillations as shown by the tracking errors in Fig. 4.

We further juxtapose the attained performance with those
achieved by closing the loop with two controllers tuned with
the VRFT approach, by using the VRFT Toolbox with the
same specifications used in [15]. In this comparison, we

6The optimization problems are solved with the CVX package [16], [17].
7RMSE denotes the average root mean square error between the attained

closed-loop output and the set point.
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Fig. 3. Mean (red line) and standard deviation (shaded area) of the
noiseless closed-loop response over the 100 Monte Carlo averaged
datasets vs reference position to be tracked (black line), desired be-
havior (blue dashed line). Note that the shaded area is barely visible.

TABLE II
PERFORMANCE INDEXES vs NUMBER N OF REPEATED EXPERIMENTS

OVER 100 MONTE CARLO DATASETS.

N 1 10 100 1000
n. diverging instances [%] 6 0 0 0
RMSE [m] 0.24 0.16 0.15 0.13

TABLE III
PERFORMANCE INDEXES vs AVERAGE SNR OVER 100 MONTE CARLO

DATASETS.

SNR [dB] 236 156 76 56 22
n. diverging instances [%] 0 0 0 0 0
RMSE [m] 0.17 0.17 0.17 0.16 0.15

Fig. 4. Mean noiseless tracking error over 100 Monte Carlo average
datasets for SNR=∞ [dB] (dashed blue) and SNR=21.7 [dB] (red).

(a) Without prefiltering

(b) With prefiltering

Fig. 5. Mean noiseless closed-loop tracking error over 100 Monte Carlo
averaged datasets for our controller (red), the PI (dashed blue) and I-FIR
(dashed dotted black).

consider a proportional, integral (PI) controller with integral
action parameterized as in [15], and a 9-th order finite impulse
response controller with integral action (I-FIR). This last con-
troller is chosen since it features the same amount of tunable
parameters of the one we propose (see (9a)). Meanwhile, we
design these controllers with and without employing the bias
shaping filter used in VRFT (see [2] for additional details),

since only in this second scenario the comparison with VRFT
is truly fair. As shown in Fig. 5, the proposed controller
tends to outperform both the I-FIR and the PI controller.
Meanwhile, the introduction of the pre-filter visibly improves
the performance of both the PI and I-FIR, with the proposed
controller still performing comparably to the PI, and the I-FIR
controller results in a slightly faster response.

VI. CONCLUSIONS

We presented a two-stage approach to design a class of
stabilizing output feedback controllers with endowed integral
action in a model reference setup. The results attained with
the method on a benchmark case study show its potential and
the effectiveness of our simple noise handling strategy.

Future works will focus on a formal analysis on the fea-
sibility, robustness and sub-optimality of the proposed two-
stage approach, the introduction of alternative strategies for
noise handling in the considered finite sample scenario, and
the generalization to other controller classes and to the multi-
input multi-output setting.
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[15] A. Carè, F. Torricelli, M.C. Campi, and S.M. Savaresi. A toolbox for
Virtual Reference Feedback Tuning (VRFT). In 60th IEEE Conference
on Decision and Control, pages 1456–1461, 2021.

[16] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex
programming, version 2.1. http://cvxr.com/cvx, March 2014.

[17] M. Grant and S. Boyd. Graph implementations for nonsmooth convex
programs. In V. Blondel, S. Boyd, and H. Kimura, editors, Recent
Advances in Learning and Control, Lecture Notes in Control and
Information Sciences, pages 95–110. Springer-Verlag Limited, 2008.

4045


