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Abstract— We develop a best-response algorithm for solving
constrained Markov games assuming limited violations for the
potential game property. The limited violations of the potential
game property mean that changes in value function due to
unilateral policy alterations can be measured by the potential
function up to an error a. We show the existence of stationary
e-approximate constrained Nash policy whenever the set of
feasible stationary policies is non-empty. Our setting has agents
accessing an efficient probably approximately correct solver
for a constrained Markov decision process which they use
for generating best-response policies against the other agents’
former policies. For an accuracy threshold ¢ > 4a, the best-
response dynamics generate provable convergence to e-Nash
policy in finite time with probability at least 1 —¢ at the expense
of polynomial bounds on sample complexity that scales with the
reciprocal of € and §.

I. INTRODUCTION

A stochastic game involves repeated interactions among
several participants when the environment state is dynamic
and evolves in response to the actions of the agents in a
stochastic fashion. Each player optimizes its own objective
function while considering the actions of others. For many
applications, such as in the case of modeling safety criti-
cal behaviour for autonomous vehicles navigating crowded
environments, constraints are additionally needed on the
evolution of the game so that physical limitations (e.g., speed
limits for vehicles) or safety requirements (e.g., collision
avoidance) can be guaranteed (see [1]-[3]. Accordingly, here
we are interested in constrained Markov games, i.e. we con-
sider a stochastic dynamic game on an infinite time-horizon,
with the system state evolving according to a transition
kernel. The agents take actions after each transition of the
system with the goal to maximize their discounted infinite
horizon payoffs, while respecting constraints on potentially
multiple other criteria. The transition kernel is unknown to
the agents, but they can access a trajectory of sample paths
and rewards by making subsequent calls to a given simulation
oracle. Our goal is to design an algorithmic framework that
can provably reach an approximate Nash policy in finite time,
while maintaining strict feasibility throughout with bounded
sample complexity.

Constrained multi-agent reinforcement learning (RL) is
challenging. Most of the current results in multi-agent RL are
for the unconstrained setting. For example, policy gradient
(PG) methods are provably effective with good convergence
characteristics [4]. Examples include entropy regularized
natural PG [5] for Markov decision processes (MDPs),
independent PG for Markov potential games (MPGs) [6],
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for zero-sum stochastic games [7], among others. Further,
decentralized value-based methods, such as two-time scale
-learning dynamics [8] are provably convergent to Nash in
zero-sum discounted Markov games. Constrained stochastic
games, however, present non-trivial challenges even in ver-
ifying the existence of a stationary Nash Equilibrium (NE)
solution concept (see [9], [10], [11], [12] for existence results
under different assumptions on the game).

Here, we first establish that a stationary constrained e-
Nash policy exists whenever the game has an «-potential
[13], i.e, the maximum violation of the potential property
is confined to some finite o and non-empty set of feasible
policies (Theorem 1). Markov a-potential games is a new
framework for studying Markov games, formulated in [13]
and expanded upon in [14]. While the potential function
furthers understanding of non-cooperative behavior between
agents by relating the change in values to the change in
potential as a result of policy changes by the agents [15],
the framework does not extend easily to real world scenarios.
Most Markov games with Markovian transition and policies
do not admit such potentials. In addition, certifying whether a
game is a MPG can be challenging. However, every Markov
game, is a Markov a-potential game for some o > 0.

Thereafter we design a best-response framework where
agents consider their best feasible policy with respect to
maximizing their value functions if the other agents’ policies
stay fixed to their current values. We hypothesize that agents
have access to an efficient probably approximately correct
(PAC) learner to solve the resulting single agent constrained
MDP sub-problem (CMDP) with arbitrary accuracy and
confidence, at the expense of a number of samples that
grows polynomially in the reciprocal of the accuracy and
confidence parameters. PAC learners have been successfully
designed for the CMDP problem in [16]-[18], with suitable
restrictions on the underlying constrained game. Under PAC
accessibility, we show that our algorithm converges to an
e-Nash policy in finite time with a probability that can
be chosen arbitrarily at the expense of a bounded sample
complexity, the functional form of which would depend on
the particular PAC learner’s characteristics (Theorem 2). The
analysis develops on ideas in [19], where Alatur et al. have
a coordinate-ascent style algorithm (see Song et al. [20]),
albeit, for the non-discounted finite horizon case with a
stringent potential function assumption, different restrictions
on a constrained MDP solver, and a single constraint on the
game.

Notation: The notations R, N and Z represent, respectively,
the set of real numbers, natural numbers and integers. We
define Ry = {z € R: 2 > 0} and N>¢ = NU {0}. We use
A(X) to denote the space of probability distributions for any
set X' (the probability simplex). We use brackets around an



integer value k to refer to the set [k] := {1,2,...,k}. We
will use S(G) to refer to the element S of a tuple G, N(G)
to refer to the element N of a tuple G, and so on.

II. CONSTRAINED MARKOV GAMES

A. Game definition

The constrained Markov game can be speciﬁed by the
tuple G = (S, N, {A;,r:}ien, P, {cj,67} 1)- Here S is
a finite state space of size S = [S|. We use N' = [n] to
denote the set of n > 2 agents in the game. A; is the finite
action space for agent i € N with elements a; € A;. The
notation 7; : S x A — [—1,1] is the individual normalized
reward function of agent ¢ € N. The global dynamic state
s € § is driven by P, the transition probability kernel, i.e.,
P(s'|s,a) is the probability of the state variable to move
from state s to state s’ when a € A is the action profile of the
agents. We define v € (0, 1) as the discount factor for future
rewards and costs incurred for agents. For each agent i € N,
we consider a stochastic stationary policy m; : S — A(A;)
where m; € II; := A(A;)S, that determines a probability
distribution over the actions of agent 7 at each state s € S.
The constrained Markov game G enforces k discounted cost
constraints on the evolution of the game for any joint policy
profile 7 = (m;);en € IT := X;enrll; as given by

—E, {Zw (s',a)]s* = s| < B Vi € (K], (1)

where s € S is the initial state, s* € S and a® € A(A)
denote the state and action profile at time ¢ € N>o U {oo},
i SxA—=[0,1] denotes the j-th cost function at time
step t, and 3; € (0, 1= ] is the right-hand-side of constraint
j. A policy 7 is fe351ble if it satisfies all k-constraints. We
allow the constraints to be coupled across agents and time,
that is they depend on the joint actions of all agents in the
game, for all times. We use II° C II to refer to the set
of stationary feasible policies in the game. Formally, II¢ =
{m e :Ujr) < B; Vj € [k]}. We define II¢ (7_;) =
{m; € TI; : (m;,m_;) € TI®} to refer to the set of feasible
policies available to agent i € N when the remaining agents
play 7_;. Similarly, we define 11¢,(7;) := {r_; € II_; :
(m;,7_;) € I¥).

B. Value functions

For any policy = € II, the value function V;? : II — R
gives the expected cumulative reward of agent i € N' when

s’ = s and the agents draw their actions a' = (af,a’ )
for time ¢ > 0 using the policies (m;,7_;). Define 7! :=
r;i(st,a'). Then
=E, [Z virt|s® = s]. 2
t=0

V:? is a deterministic quantity, given fixed initial state s.
Define V#(n)sr == S 1L, ~'r! as the random variable that
captures the horizon-truncated value for agent ¢ following
policy m € II®. We define the average horizon truncated

value for agent ¢ as the random variable

Vs _ 1 EM (7S @)
=1

where M € N is the number of episodes selected to perform
the average on, and V* (7‘()5:1[) is V;*(m) g for the I-th episode.
When H = oo, we drop H from notation in (3). Whenever
clear from the context, we drop the fixed initial state s from
the superscript of the value functions.

C. The a-potential

Definition 1 The function ® : S x II — R is an a-potential
for game G if

|(q)(sa7~71',,77—7',) - @(S,ﬂ'i,ﬂ'_i))
— (VP Fm) — Vi) <o ()

is satisfied for some o > 0 forall s € S, i € N, (m;,7_;) €
I, (7, m—;) € 1L

Definition 2 A constrained Markov game is a constrained
Markov a-potential game, if it admits an a-potential function
for some o > 0.

In [13], the authors show that for a Markov game G,
an a-potential is guaranteed to exist, under some continuity
conditions of the potential with respect to the policies. Thus,
any Markov game G is a Markov a-potential game for some
a. When a = 0, the corresponding ® is a candidate potential
function (see Leonardos et al. [15] for more exposition on
MPGs). In Markov games, verifying whether a potential
function exists or not can be prohibitive, and the potential
function assumption is not satisfied by most games. Thus we
relax the potential function assumption as in [13].

Assumption 1 The approximation value o is finite and
known for the constrained Markov game G.

Remark 1 In [I13], the authors provide an optimization
based approach to find the value of « for different Markov
games. Clearly, from definition 2, every Markov game is a
Markov a-potential game for some a. The focus of this work,
however, is not to find the value of o for different games.
Instead, we assume we are given a constrained Markov game
with an a-potential. We need not necessarily know the exact
functional form of the a-potential, but we know that such a
potential exists for the given value of o > 0.

D. Solution concept: e-NE policy profile

Assumption 2 The initial state of the game is fixed to any
arbitrary state s € S.

The initial state serves as the boundary condition for the
game G. We define the solution concept that agents seek to
achieve in game G.

Definition 3 (Constrained Stationary e-NE) A policy profile

7% = (7f,7*;) € IC is a constrained stationary e-Nash



Equilibrium (e-NE) of a constrained Markov game G, for
some € > 0 if for any i € N and m; € TIS (1* ) we have,

VE(r,m5) + e > Vi(m,m,) VsEeS. 5)

When € = 0, we retrieve the stationary NE definition. The
NE is defined as a set of policies of the players which
satisfy simultaneously all the constraints and for which, in
addition, no player can improve his payoff when unilaterally
modifying his policy while still satisfying its own constraints.
In the following, we show that when the constrained Markov
game is an a-potential game, for some o > 0, we can claim
that an approximate stationary NE policy must exist.

Theorem 1 In a constrained Markov game G with «-
potential ®, a constrained stationary e-Nash policy exists
for all € > o, when TI¢ # () and ® is continuous in policies.

Proof: Given 11 # (), we have that G has stationary
feasible policies. Since the constraints in (1) can be satisfied
via equality, II€ is closed. Moreover, since IT1¢ CII =
Xien'A(A;)S, TI¢ is bounded. Therefore TI¢ is compact,
which implies that 7* € argmax, .o ®(s,m) must exist
(using the extreme value theorem) for continuous ®, where
s is the arbitrary fixed initial state of the game. We claim
that 7* is a constrained stationary e-Nash policy profile for
€ > a. Assume for the sake of contradiction that 7* is not
an e-Nash profile, for € > «. Then, there exists i € N such
that #; € argmax, cpe(r- ) V;(mi, m*;) such that

Vi (i, m™,) > VI (") + € (6)
Now, because ® is an a-potential for G, we have
(I)(S’ iy ﬂ-ii) - CD(SJT*) > Vis(ﬁivﬂ-ii) - Vis(ﬂ'*) -
>e—a (7)

where the second-inequality is due to (6). Since € > « is
given, we have a contradiction, as (7) indicates that 7* is
not the maximizer for . |

III. SEQUENTIAL BEST-RESPONSE DYNAMICS

The goal of the agents is to produce a constrained sta-
tionary e-NE policy profile for the game G. We proceed
to show that our prescribed Algorithm 1, a sequential best-
response dynamic, is guaranteed to converge to e-NE with
high probability, under some restrictions on accuracy e.

A. The constrained MDP sub-problem

Definition 4 The Slater condition states that 11€ #+ 0, and
7B exists in the relative interior of II¢. Given G, we define

its Slater constant ¢ = (Cj)l?zl € R as follows

¢ =min min max{f—U(m,m)} ()

Assumption 3 The constrained Markov game G is strictly
feasible, and satisfies the Slater’s condition.

G is strictly feasible if and only if ¢; > 0 for all
J € [k]l. Thus ¢; € (0, = ] for all j € [k|, and % =
(I/Cj)?zl is well-defined. We further assume that agents

do not have access to the state-transition distributions and
payoffs, but can learn by interacting with a sampling or-
acle of the game that returns a sample of the next state,
when given a state-action pair as input. Define I(G) :=
(S(G), N(G), {Ai}ien(9), {¢;. B;}5_1(G)) as the informa-
tion available to the agents 7 € in constrained Markov
game G. Further, the sampling oracle available to learning
agents M takes input (s,a) and generates an immediate
payoff #;(s,a) and a state transition to next state § such that
the next state is chosen with probabilities P(§|s,a)(G). Let
G_; refer to the constrained MDP (CMDP) obtained from the
constrained Markov game G when all agents other than ¢ fix
their policies to w_; € II_;. Then the solution to the CMDP
G_; (the policy w; that maximizes the value function for
agent ¢ when other agents play 7m_;), under the assumption
that agent 7 has access to information I(G) and sampling
oracle M, is a RL problem.

Definition 5 A learning algorithm L; is a (€, 3)—ejﬁcient
probably approximately correct (PAC) learner for the RL
problem G_;, if for any approximation factor ¢ > 0 and
confidence factor 0 € (0,1), ¢ > 0, L; produces policy

7t; € ¥ (7_;) such that
Po [Vi(rr my) = V(R m_g) < >1—6  (9)
where T is the optimal policy solution to G_; and L;

produces 7; in time poly(|S|, | A, é, 1, 1, T 1,y,7"max) where

T'max IS the maximum immediate reward on any transition in
the problem, and s is the arbitrary fixed initial state.

Assumption 4 (PAC accessibility for agents) Agent i has
access to a (¢€,0)-efficient PAC learner L; for solving RL
problem G_;, for any € > 0 and 6 € (0,1) and i € N.

That is, L; solves the Aproblem G_; with € accuracy, with
probability at least 1 — 4, while making at most a polynomial
number of calls to the sampling oracle. A higher accuracy
(smaller €) or a higher confidence (smaller §) causes the
number of samples required to grow. Under the assumption
that each call to the sampling oracle M can be resolved
in O(1), the sample complexity of the PAC-learner L; is
(’)(poly(|8|, |AZ‘ 27 % (1;’ 1 1A,7Tmax)

Remark 2 We remark here that not all constrained MDPs
have a sample efficient PAC solver. In [16], [17], [18], sam-
ple efficient PAC solvers have been designed under suitable
assumptions on the constrained MDP. Our main result (see
Theorem 2, section IV) holds whenever the constrained MDP
subproblem admits an efficient PAC solver.

B. Algorithm 1 under the lens

We are now ready to highlight the core components of
Algorithm 1. Starting with a feasible policy 72, which we
assume exists, the algorithm improves the policy through a
sequence of best-response steps, where each agent ¢ evaluates
its best-response policy, assuming the policies of other agents
remaining the same, via solving the RL problem G_;.



Algorithm 1 Sequential Best-Response Dynamics

Require: G is a constrained Markov game, initial state s
Ensure: ¢ >0, TcZ,, 2 cll9 sc S
1: function SEQUENTIAL-BR(G, €, T, w5)

2: 79— 7B

3: forallt=1,...,7 do

4 Estimate V;*(7!~1) g for all i € NV.
5: for all agent i =1,...,n do

6: it Li(G-i, 1(G), M)

7: Estimate V(#!, 7'~ 1)H

8: Al Vs (&t it 1) VE(rt Yy
9: end for

10: if max;cn Al > 6/2 then

11: J <— argmaxlef,\/

12: Tt (7h,

13: else

14: mt 7t

15: return 7t

16: end if

17: end for

18: end function

Following Line 6, agents estimate their value functions
using the new policy (7;,7—;) in Line 7, and store the
improvement in the value function V;® in the variable A,.
To estimate the value function for a policy 7, an agent
simulates the system with actions sampled from the policy
for M € N episodes, starting from the fixed initial state
s € §. Moreover, for each episode, the agent terminates the
simulation of the policy after H € N discrete time steps.
After all agents calculate their individual improvements in
estimated values, the agent whose update provides the best
improvement in estimated values (Line 11) larger than ¢/2
gets to update the policy, where € is the approximation
parameter of the problem.

IV. ANALYSIS OF BEST-RESPONSE

Theorem 2 (Main Result) Let Assumptions 1-4
hold. Given any € > max(4a, 3— > ), 6 € (0,1),
M = [16,22810953(25224%], we have that with probability at

least 1 — 9, Algorithm 1 converges to an e-Nash policy in
at most T = | 22 | steps of the for-loop in Line 3, with a

e—4a
sample complexity of

141 1 8n*o/ MH
Zpoly(|S|, |‘Ai|7 E? 27 gv 1— V,rmax) + ﬁ
iEN
(10)
where f = D, o0 4 12 and ¢ = (1 —7) -

H+1

8y and H is the simulation episode length for agents.

The theorem guarantees Algorithm 1 will converge to an

e-Nash in t = T steps (see Line 3) with probability at least
1 — 9, while consuming a bounded number of samples.

H+1
Remark 3 The technical assumption € > max( = )
in Theorem 2 emphasizes the latent accuracy limitation of
our proposed best-response dynamic. Given the known «

for the game, Algorithm 1 is guaranteed to reach an e-NE

policy for € > 4a. That is, the performance guarantee does

not hold if agents want to converge to € < 4a. The term
H+1

871_7 appears as a result of the restriction that agents must
estimate the value by simulating the policy for a truncated
horizon length of H. For sufficiently large H, the term 7 +!
ap%roaches 0 for v € (0,1). This implies that the restriction

87— " on the accuracy threshold € for Nash policy becomes
negligible when agents use a sufficiently large horizon.

Remark 4 The sample complexity of Algorithm 1 is poly-
nomial in 1/§', and &' grows linearly with 6. This implies
a higher confidence in convergence comes at the expense of
a larger sample complexity requirement. Moreover, %(Z =
—24(e + &)(no/)_2 which indicates the quadratic rate
of decline of &' with growth in o. Our provable guarantee
therefore highlights that for a fixed confidence level §, games
which admit a-potentials for larger values of o would have a
more stringent requirement in terms of the sample complexity
of the best-response dynamic, as ¢' declines quadratically
with respect to « for the game.

To prove theorem 2, we shall first show a few auxiliary
results in what follows.

Lemma 1 Assume agents have access to a feasible policy
7B € 1I€ in game G. Then ®(r) — ®(7B) < no/, for all
policies , where ® is an a-potential.
Proof: Define {ﬁ'(“)}uzov_’n as
7 = (nB, .

(1)

for u = 0,1,...n. Then, 7’%(0)‘ =7 and 7?(7l) = 7B, For any
agent i € N, the policies 7*~1) and 7#(*) differ only in the
index for agent 7. Then, we know that

—a < (®FEY) — o7 D)) — (Vi(70D) —

B
T s Tty ooy T2

V(@) < a
(12)

since ® is an a-potential. Note that we dropped the fixed,
arbitrary initial state s from the superscript of the value
functions above. Summing over ¢ = 1,...,n, we have the
following upper bound
o(m) <an+ Y (Vi(E) = V(D)) + &(xF). (13)
i=1
Now, see that

—2(1— )< VEEY) — (D) <21 - 9)7t (14)

holds because we work with normalized rewards between
[-1,1]. Thus the right hand side of inequation (13) is at
most an + 2n(1 — )"t + &(7B), or &(7) — &(7P) < na’
holds, substituting for o/ = o + 2(1 — ) L. [
Thus, the maximum increase in the potential value is
bounded by na/, for any a-potential & € F. We shall now
show that for each step ¢ in line 3 of Algorithm 1, there
is a strict increase of the potential function value between
7t+1 and 7! for all a-potentials. Recall here that V;(7)z is
a random variable, while V;(7) is a deterministic quantity.



Definition 6 (k-accurate value estimation) Agents are capa-
ble of k-accuracy for the value function estimation when for
all policies m € 11 encountered in the execution of Algorithm
1, the event |V;(m)y — Vi(7)| < k for k € Ry happens with
probability 1 for all agents i € N, for all steps t in Algorithm
1, line 3.

Lemma 2 When agents are capable of €/8-accuracy in
value function estimation, then each step of line 3 in Al-
gorithm 1 ensures a strict increase in the potential value of
the current policy as

O(n' ) — o(nt

for any a-potential ® € F, given finite o and € > 4.

) >e/d— (15)

Proof: 1If the Algorithm 1 does not terminate at step t,
then there exists 7 € A such that At > €/2. Since P is an a-

potential, we have (7!, 7'~") — <I>(7rt Y > Vi(at, w ) -

Vj(7rt_1) — . Conditionmg on the event that agents have
€/8-accurate value estimations in the course of execution of
Algorithm 1, we have, V; (7, = 1) >V (75, mt ]1 —€/8
holds. Again, following the same condmonlng argument, we

get Vi(7'=1) < Vi(x*~ ") g + ¢/8. Thus,
V(@55 = Vi(r' ) —

> V(7 7w —e/8 = V(' ™y — ¢/8 —a. (16)

The right-hand-side of (16) is equal to At —€/4 — a (See
Algorithm 1, line 8). Since A} > ¢/2, we have (15) from
(16). [ |

Corollary 1 When agents have k-accurate value estimations
Sor k = €/8, Algorithm 1 converges in at most T = LE/Z“_O(J
steps of the for-loop in line 3.

Proof: Since the maximum increase in the potential
value is bounded (Lemma 1), and there is a strict increase in
the potential value for every iteration of the for-loop in line
3 (Lemma 2), we have the desired result. |

Definition 7 (Event £y) We define £~ as the event where
in Line 6 of Algorithm 1, an agent i uses L; to produce
an ¢ = ¢/4-optimal policy for G_;, for all i € N, for all
time-steps t € [T] in Line 3.

Lemma 3 Conditioning on agents making €/8-accurate
value estimations and event Ey during the execution of
: T ; : _ na’
Algorithm 1, © is an e-Nash policy where T = L€/47QJ.

Proof: For any i € N,
V(ﬁ'T 7TT 1) V;( T—l)
< Wi, 7T m +¢/8) — (Vi(x" M) — €/8)
= V& 7T e = Vilm" e + /4

since agents make k-accurate value estimations, k = ¢/8.
Since at step ¢ = 7', the algorithm converges as per Corollary
1, we must have AT = V; (77, 77, Ny —Vi(xT Ny < ¢/2
for all ¢ € A/. This implies

Vi(al, T -

a7)

Vi(rT=1) < 3¢/4 (18)

for all 5 € AV, from (17). Conditioning on £, we get

max  Vi(m, 7l ) — V(7T 7l <e/4 (19)
TFEHC(ﬂ'Ti )
for all 4 € NV. Thus,
max V(7T7r )<e/4—|—V( 7T Tll)
WEH?(ﬂ'T;l)
<e/A+3e/d+ V(") = e+ Vi(nTTh,
(20

where we use (18) to obtain the second inequality. Thus
77=1 is an e-NE policy. Since at time ¢ = T, the policy
is not updated, 77 = 771, [

A. Proof of Main Result

Proof Define the events & = {Vi € NVt €
[T], |V (7, 7t 1)H V( 71| < e/8} and & := {Vi €
NVt € [ ],|W( )H—V( t=1)] < ¢/8} in which 7!
is a solution to G_; obtained using the PAC learner L; and
T < %. Given the conditions on ¢, M and T, in the
following we show that

PExNENE]>1-0. 1)

where &£ is as given in Definition 7. Once we establish
the inequality (21), the convergence in T steps follows from
Lemma 3.

Claim [P[&; N &) > 1 — 6/2]: For some policy 7 € II and
x > 0, consider the event,

&= |V(m)m ~

See that Vj(m)y and Vj(n) (the non-truncated version)

PN ~ H+1

are related as V;(m)g — V;(m) < 5 M >0 17 = =
given normalized rewards and recalling V( ) definition in

(3). Thus, we have

Vim)| >k, VieN. (22

. . FHH
Vi(mn = V() < T— @3
See that event £, implies the event . := |V () — V;(7)| >

H+1
K — ,Vj € N using (23). That is, P[x,]| > P[gn]
Cons1der the estimator of the value function in the [-th
episode V()" for some j € NV and | € [M], for which we
have E[V;(m)()] = V;(r) by definition of the (deterministic)
value function in (2). Also, V;(m)®) for | € [M] are
independent random variables, bounded between —ﬁ and

L Using Hoeffding’s inequality, we get

1-y
M —2M2s"2

P Vi(m® = MV;(m)] > Mr] < 2eFTaC0—07
=1

(24)
where £’ :=
Vi(m) = &350, J( )@, after some arithmetic, we get
P[ge/8] < P[XG/S] < 267%(41,%”77H+1)2 67%6/2
(25)



where we use the assumption € > 87 . Plxs] = P[&].
and ¢ = e(1—~)—8yH#*1. Now, using the union bound and
then (25), we obtain the following bound

PlEfUES] < PIET] + PlEY]

<ZZ [|Vi(at, ™

w5 = Vi, w5 > €8]

t= 11_

+ZZPIV TN = Vi) > ¢/8]

t=1 =1

< AnTe <" 26)
Using T < jfz; and M = [12810953(&4%)1 >

128 32n2%a’

Flog sy we get that P[EF UES] < §/2, which further
1mphes that P[€; N &) > 1 — /2. Thus with probability at
least 1 — §/2 agents make e/8-accurate value estimations
during the course of Algorithm 1. At this point, also note
that each value estimation consumes M H samples, thus the
total number of samples used by the algorithm for value
estimation is bounded by 2nTMH < 8":‘7’# using the
upper bound for 7.

Claim [P[€] > 1 — 6/2]: Using the union bound, we get

n T
< Z Z P[#! is worse than ¢/4 optimal.]  (27)
i=1 t=1
because £$ = U, (A7} is worse than ¢/4 optimal.} Since

agents have access to the PAC-learner for solving G_;, agents
are guaranteed to get an arbitrary accurate solution (¢ > 0)
with arbitrary confidence (6 € (0,1)), when the adequate
number of samples have been used. Plugging in é = ¢/4 and
=14, agents are guaranteed to get an ¢/4-optimal solution
to G_,; with probability at least 1 —¢’ with a sample complex-
ity bounded by SC; == poly(|S|, | Ail, L 7 1.4, 117,rmax)
This implies that P[EC] < nT¢', with agents consummg
> i1 SCi, samples overall. Plugging in 0’ = 2leda) =
ffjfa, after some arithmetic, we have P[£{] < nT&’ =4§/2
or PEx] >1-4/2.

Since & is independent of & N &, we have that the
probability in (21) is bounded by (1 —§/2)? from which we
have the inequality in (21) since (1 —§/2)% > 1 —4.

Given (21), using lemmas 1, 2 and 3, we guarantee that
Algorithm 1 converges in at most 7' steps to an e-NE policy.
Noting that the sum of a finite number of polynomials is
a polynomial, we derive the sample complexity in (10) by
summing the sample complexity requirement of the PAC
solvers with the samples needed for the value estimations
obtained by multiplying M value with 7" bound. [ ]

V. CONCLUSION

In this paper, we showed that when the constrained
Markov game has an a-potential for finite «, and agents
have an efficient PAC learner for the constrained MDP sub-
problem, the sequential best-response algorithm provably
converges to a stationary e-approximate NE policy profile
with probability at least 1 — ¢ in finite time. The sample

complexity grows as a polynomial of the reciprocal of spe-
cific accuracy and confidence parameters and the reciprocal
of the problem dependent Slater’s constants.
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