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Abstract— In this letter, we study the distributed formation
tracking problem for multiple double-integrator systems with
connectivity preservation over a state-dependent communica-
tion network. In particular, we employ an adaptive distributed
observer for the leader system that can estimate both the state
and the system matrix of the leader. As a result, unlike the
existing results, we do not require all vehicles to know the
system matrix of the leader. Furthermore, the adaptive dis-
tributed observer incorporates a self-tuning dynamic observer
gain, which eliminates the need of computing the observer gain
in advance. The effectiveness of our approach is illustrated by
an example.

I. INTRODUCTION

Communication plays a crucial role in the cooperative
control of multi-agent systems. Due to the limited range
of communications, the validity of the communication link
between each pair of agents may depend on their dis-
tance. Thus, a communication network is inherently state-
dependent. For this reason, it is of practical interest to study
the cooperative control problems of multi-agent systems over
state-dependent communication networks. Furthermore, it
calls for the investigation of how to preserve the connectivity
of a state-dependent communication network in cooperative
control problems.

In fact, preserving the connectivity of a state-dependent
communication network has been taken into account in
various cooperative control problems, such as the rendezvous
problem, which is also referred to as the flocking problem.
The rendezvous problem for multiple double-integrator sys-
tems has been studied for both the leaderless case in [11]
and the leader-following case in [2], [3], [13]. Specifically,
edge-based strict Lyapunov functions were proposed in [11]
to achieve velocity synchronization. A position feedback
control law was designed in [13] to synchronize the velocities
of multiple double-integrator systems while maintaining the
connectivity of the network. A dynamic distributed state
feedback control law was proposed in [2] to achieve leader-
following rendezvous with connectivity preservation. Later,
the result in [2] was enhanced in [3] from full-state feedback
to position-only feedback.

In addition to the rendezvous problem, connectivity preser-
vation has also been considered in both the leaderless [6],
[8], [9], [12] and the leader-following [10], [15], [16] for-
mation control problems. In particular, a distributed control
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law was developed in [9] such that multiple nonholonomic
agents can form a desired formation configuration while
preserving the connectivity of the communication network.
A class of Lyapunov-like barrier functions were proposed
in [8] to make a group of unicycles converge to their
desired destinations while preserving the connectivity of the
network. Considering uncertainties in the communication
network, the leaderless formation control problem for mul-
tiple nonholonomic agents was addressed by a distributed
gradient-based controller in [6]. The connectivity-preserving
leaderless consensus-based formation control for high-order
nonlinear multi-agent systems with limited-range measure-
ments and output constraints was investigated in [12]. The
connectivity-preserving leader-following formation control
problem of multiple nonholonomic mobile robots with a
time-varying leader was investigated in [15]. The result in
[15] was further extended in [16] to handle agents with non-
uniform communication ranges. The leader-following forma-
tion tracking problem for multiple n-dimensional double-
integrator systems with connectivity preservation was studied
in [10], where a distributed position feedback control law
was proposed to steer the vehicles to track a leader with
prescribed offsets.

However, the result in [10] still has the following lim-
itations. First, the design of the distributed observer for
the leader system in [10] relies on the knowledge of the
system matrix of the leader. In other words, all followers are
assumed to know the system matrix of the leader. Second,
the observer gain of the distributed observer in [10] needs to
be larger than some threshold that depends on the Laplacian
matrices of all possible connected graphs associated with
the multi-agent system. As a result, it is time-consuming to
compute such a threshold for the observer gain when the
number of agents is large. Furthermore, the observer gain
needs to be recalculated once the number of agents in the
network changes.

To overcome the aforementioned limitations, we further
study the connectivity-preserving distributed formation track-
ing problem for multiple double-integrator systems by a self-
tuning adaptive distributed observer. In comparison with the
distributed observer in [10] which requires all followers to
know the system matrix of the leader system, the self-tuning
adaptive distributed observer eliminates such a requirement.
Unlike the observer gain of the distributed observer in [10]
that is computed offline based on the knowledge of the Lapla-
cian matrices of all possible connected graphs associated
with the multi-agent system, the dynamic observer gain of
the self-tuning adaptive distributed observer is governed by

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 4494



a self-tuning law and does not rely on the knowledge of the
Laplacian matrices. The main contributions of this letter are
summarized as follows:

1) We establish a distributed position feedback control
law for multiple double-integrator systems to asymp-
totically track a moving target with desired offsets
while preserving the connectivity of the communica-
tion network.

2) By employing the self-tuning adaptive distributed ob-
server, we remove the assumption that all followers
know the system matrix of the leader system and
eliminate the need of computing the observer gain
offline.

Compared with the existing results on the cooperative
formation control problem in the literature, our result has
the following distinct features. i) Unlike [10], [15], [16]
that assumed all followers have the exact knowledge of the
leader, we use an adaptive distributed observer to estimate the
system matrix and the state of the leader for each follower. ii)
Unlike the result in [10] that required the offline computation
of the observer gain, the adaptive distributed observer in this
letter uses a self-tuning dynamic gain. iii) The leader in this
letter can generate a large class of reference trajectories,
including polynomial functions with any coefficients and
sinusoidal functions with any amplitudes, frequencies, and
initial phases, and their finite combinations. In particular, the
leader can generate a reference trajectory with an unbounded
velocity that cannot be handled by the approaches in [15],
[16].

The rest of this letter is organized as follows. We first
provide some preliminaries and formulate our problem in
Section II. We then present our main result in Section III.
In Section IV, we use an example to illustrate our approach.
The letter is concluded in Section V with some remarks.

Notation. ⊗ denotes the Kronecker product of matrices.
∥x∥ denotes the Euclidean norm of a vector x. For column
vectors ai, i = 1, . . . , s, col(a1, . . . , as) = [a⊤1 . . . a

⊤
s ]

⊤. 1N

denotes an N -dimensional column vector with all elements
being 1.

II. PRELIMINARIES AND PROBLEM FORMULATION

We consider a multi-agent system with N followers and
a leader. The dynamics of the followers are described by

q̈i = ui + di, i = 1, . . . , N (1)

where, for i = 1, . . . , N , qi ∈ Rn, ui ∈ Rn, and di ∈ Rn

are the position, the input, and the external disturbance of
the ith follower. It is assumed that, for i = 1, . . . , N , di is
generated by following exosystem:

ω̇i = Qiωi, di = Diωi (2)

where ωi ∈ Rsi , and Qi ∈ Rsi×si and Di ∈ Rn×si are
constant matrices. Without loss of generality, we assume that
the pair (Di, Qi) is detectable [5].

The dynamics of the leader system is as follows:

ẋ0 = S0x0 (3)

where x0 = col(q0, p0) with q0, p0 = q̇0 ∈ Rn and S0 =[
0n×n In
S021 S022

]
with S021, S022 ∈ Rn×n.

Like in [10], we also introduce the following design
parameters:

1) hi ∈ Rn, i = 1, . . . , N , is the desired offset between
the ith follower and the leader. Let h0 = 0 and h̄ =
maxi,j=0,1,...,N, i̸=j ∥hi − hj∥.

2) r ∈ R is the maximum sensing range of the followers.
3) ϵ ∈ (0, r) is to introduce the effect of hysteresis.
Given the multi-agent system composed of (1) and (3),

let us define a digraph Ḡ(t) = (V̄, Ē(t)) where V̄ =
{0, 1, . . . , N} is the node set with node 0 associated with
the leader (3) and node i, i = 1, . . . , N , associated with the
ith follower of (1), and Ē(t) ⊆ V̄ × V̄ is the edge set.

In what follows, we define the state-dependent communi-
cation graph as in [2], [10]. Given any r > 0 and ϵ ∈ (0, r),
for any t ≥ 0, Ē(t) = {(i, j) | i, j ∈ V̄, i ̸= j} is such that

1) Ē(0) = {(i, j) | ∥qi(0)− qj(0)∥ < (r − ϵ), i, j =
1, . . . , N}

⋃
{(0, j) | ∥q0(0)− qj(0)∥ < (r − ϵ), j =

1, . . . , N};
2) if ∥qi(t)− qj(t)∥ ≥ r, then (i, j) /∈ Ē(t);
3) for i = 1, . . . , N , (i, 0) /∈ Ē(t);
4) for i = 0, 1, . . . , N, j = 1, . . . , N , if (i, j) /∈ Ē(t−)

and ∥qi(t)− qj(t)∥ < (r − ϵ), then (i, j) ∈ Ē(t);
5) for i = 0, 1, . . . , N, j = 1, . . . , N , if (i, j) ∈ Ē(t−)

and ∥qi(t)− qj(t)∥ < r, then (i, j) ∈ Ē(t).
Let Ā(t) = [aij(t)]

N
i,j=0 ∈ R(N+1)×(N+1) be the adja-

cency matrix of Ḡ(t). For i = 1, . . . , N , j = 0, 1, . . . , N ,
and i ̸= j, let aij(t) = 1 whenever (j, i) ∈ Ē(t) and
aij(t) = 0 otherwise. At time t, the graph Ḡ(t) is connected
if every node i, i = 1, . . . , N , is reachable from node 0. For
i = 1, . . . , N , let N̄i(t) denote the neighbor set of the ith
follower at time t. Let G(t) = (V, E(t)) be a subgraph of
Ḡ(t) where V = {1, . . . , N} and E(t) ⊆ V × V is derived
from Ē(t) by removing all the edges between node 0 and
the nodes in V . Hence, G(t) is undirected. For i = 1, . . . , N ,
we denote the neighbor set of the ith follower at time t
with respect to V by Ni(t) = N̄i(t)

⋂
V . Let the Laplacian

matrix of G(t) be L(t) and let H(t) = L(t) + ∆(t) where
∆(t) = diag(a10(t), . . . , aN0(t)). By [14, Lemma 1], for
any time instant t ≥ 0, if Ḡ(t) is connected, then H(t) is
positive definite. We consider a control law of the following
form:

ui = li
(
qi − qj , ζi, ζj , j ∈ N̄i(t)

)
ζ̇i = gi

(
qi, ζi, ζj , j ∈ N̄i(t)

)
, i = 1, . . . , N

(4)

where ζ0 = (S0, q0, q̇0), and, for i = 1, . . . , N , li(·) and
gi(·) are some sufficiently smooth functions to be specified,
ζi is the state of the distributed dynamic compensator.

We describe the leader-following formation tracking prob-
lem with connectivity preservation as follows.

Problem 1: Given the multi-agent system composed of
(1) and (3). For any r > 0, ϵ ∈ (0, r), and hi ∈ Rn, i =
0, 1, . . . , N , such that h̄ < ϵ

2 , design a distributed control law
of the form (4) such that, for any initial conditions q0(0),
q̇0(0), ωi(0), qi(0), q̇i(0), ζi(0), i = 1, . . . , N , that make
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Ḡ(0) connected, the closed-loop system has the following
properties:

1) Ḡ(t) is connected for all t ≥ 0.
2) limt→∞(qi(t)− (q0(t) + hi)) = 0, i = 1, . . . , N .
3) limt→∞(q̇i(t)− q̇0(t)) = 0, i = 1, . . . , N .
We make the following assumption for the solvability of

Problem 1.
Assumption 1: S0 has no eigenvalues with positive real

parts.
Remark 2.1: Under Assumption 1, the leader system (3)

can generate a large class of reference trajectories, including
arbitrary polynomial functions, multi-tone sinusoidal func-
tions, and their combinations.

III. MAIN RESULT

Like in [3], [10], we make use of the output regulation
theory to deal with external disturbances. For this purpose,
we rewrite the system (1) into the following form:

ẋi = Axi +Bui + Eiωi (5a)
yi = Cxi (5b)

ei = xi −
(
x0 +

[
hi

0n×1

])
, i = 1, . . . , N (5c)

where, for i = 1, . . . , N , xi = col (qi, pi) with pi = q̇i,
yi ∈ Rn, and ei ∈ R2n are the state, the measurement output,
and the regulated output of the ith follower, respectively;
and A = [ 0 1

0 0 ] ⊗ In, B = [ 01 ] ⊗ In, Ei =
[
0n×si

Di

]
, and

C =
[
1 0

]
⊗ In.

Remark 3.1: Let Âi =
[

A Ei

0si×2n Qi

]
, Ĉi =

[
C 0n×si

]
.

Then we can assume without loss of generality that the pair
(Ĉi, Âi) is detectable since (C,A) is observable [5]. Hence,
there exists a Li = col(Li1, Li2) with Li1 ∈ R2n×n and
Li2 ∈ Rsi×n such that Âi + LiĈi is Hurwitz. Furthermore,
there exists a positive definite matrix P̄i such that (Âi +
LiĈi)

⊤P̄i + P̄i(Âi + LiĈi) = −I2n+si .
We perform the following coordinate transformations:

x̄i =

[
q̄i
p̄i

]
= xi −

(
x0 +

[
hi

0n×1

])
, i = 0, 1, . . . , N (6a)

ūi = ui − S02x0 +Diωi, i = 1, . . . , N (6b)

where S02 =
[
S021 S022

]
. Then, system (5) becomes the

following double-integrator system without disturbance:

˙̄qi = p̄i, ˙̄pi = ūi, i = 1, . . . , N. (7)

Let us define the potential function as follows:

ψ(s) =
1

2
((
r − h̄

)2 − s2
) , 0 ≤ s < r − h̄. (8)

Motivated by [4], [10], we propose a distributed position
feedback control law as follows:

ui = −α
∑

j∈N̄i(t)

∇q̄iψ (∥q̄i − q̄j∥)

−
∑

j∈N̄i(t)

aij(t) (ξ2i − ξ2j) + Si2ηi −Diŵi (9a)

ξ̇i = Aξi +Bui + Eiŵi + Li1 (Cξi − yi) (9b)
˙̂wi = Qiŵi + Li2 (Cξi − yi) (9c)

Ṡi = β
∑

j∈N̄i(t)

(Sj − Si) (9d)

η̇i = Siηi +
∑

j∈N̄i(t)

aij(t)γij(t) (ηj − ηi) (9e)

γ̇ij = kijaij(t) (ηi − ηj)
⊤
(ηi − ηj) , (9f)

i = 1, . . . , N, j = 0, 1, . . . , N, i ̸= j

where α, β > 0; kij = kji > 0, i, j = 1, . . . , N , i ̸= j, ki0 >
0, i = 1, . . . , N ; Si =

[
0n×n In
Si21 Si22

]
with Si21, Si22 ∈ Rn×n,

and Si2 =
[
Si21 Si22

]
; for i = 1, . . . , N , ηi ∈ R2n, ŵi ∈

Rsi , ξi = col(ξ1i, ξ2i) with ξ1i, ξ2i ∈ Rn, Li = col(Li1, Li2)
is as defined in Remark 3.1; η0 = x0 and ξ20 = p0; for
i = 1, . . . , N , j = 0, 1, . . . , N , i ̸= j, γij ∈ R. Note that
γij = γji for i, j = 1, . . . , N , i ̸= j. Thus, the control law
(9) is in the form of (4) with ζi = (ξi, ω̂i, Si, ηi, γij , j ∈
V̄, i ̸= j).

Remark 3.2: Suppose Ḡ(t) is connected for all t ≥ 0.
Under Assumption 1, by [1, Lemma 1], for any Si(0), i =
1, . . . , N , the solution Si(t) of (9d) is bounded for all t ≥ 0,
and satisfies limt→∞(Si(t)− S0) = 0 exponentially.

Remark 3.3: The control law in [10] used a conventional
distributed observer of the following form:

η̇i = S0ηi + γ
∑

j∈N̄i(t)

aij(t) (ηj − ηi) , i = 1, . . . , N (10)

where γ is the constant observer gain that needs to be greater
than some threshold depending on the Laplacian matrices of
all possible connected graphs with N+1 nodes. By contrast,
the control law (9) uses an adaptive distributed observer
(9d)–(9f) with a self-tuning dynamic gain γij(t). Unlike the
distributed observer (10) that requires all followers to know
the system matrix S0 of the leader system, the self-tuning
adaptive distributed observer (9d)–(9f) does not impose this
requirement on all followers. Furthermore, in contrast to the
observer gain γ of the distributed observer (10), which is
computed offline based on the knowledge of the Laplacian
matrices of all possible connected graphs associated with
the multi-agent system, the dynamic observer gain γij(t) of
(9d)–(9f) is governed by the self-tuning law (9f) and does
not rely on the knowledge of the Laplacian matrices.

Remark 3.4: Suppose a new edge (i, j) is added to the
graph Ḡ(t) at some time instant t∗ > 0, that is, (i, j) /∈
Ē(t−∗ ) and (i, j) ∈ Ē(t∗). By the definition of Ḡ(t), we
have ∥q̄i(t∗)− q̄j(t∗)∥ = ∥qi(t∗)− qj(t∗)− hi + hj∥ ≤
∥qi(t∗)− qj(t∗)∥ + ∥hj − hi∥ ≤ r − ϵ + h̄. Since ψ(·)
is strictly increasing on (0, r − h̄), noting that h̄ < ϵ

2 ,
we have 0 ≤ ψ(∥q̄i(t∗)− q̄j(t∗)∥) ≤ ψ(r − ϵ + h̄) =

1

2
(
(r−h̄)

2−(r−ϵ+h̄)
2
) = 1

2(2r−ϵ)(ϵ−2h̄)
<∞.

For i = 1, . . . , N , j = 0, 1, . . . , N , i ̸= j, let γ̄ij = γij−γ
with some unknown γ > 0. Let S̄i2 = Si2−S02, ξ̄i = ξi−xi,
ω̄i = ω̂i−ωi, i = 1, . . . , N , and η̄i = ηi−x0, S̄i = Si−S0,
ξ̄2i = ξ2i − pi, i = 0, 1, . . . , N . The closed-loop system

4496



composed of (7) and (9) is as follows:

˙̄qi = p̄i (11a)

˙̄pi = −α
∑

j∈N̄i(t)

∇q̄iψ (∥q̄i − q̄j∥)−
∑

j∈N̄i(t)

(p̄i − p̄j)

−

 ∑
j∈Ni(t)

(
ξ̄2i − ξ̄2j

)
+ ai0(t)ξ̄2i +Diw̄i


+ S̄i2η̄i + S02η̄i + S̄i2x0 (11b)[

˙̄ξi
˙̄wi

]
=

(
Âi + LiĈi

)[
ξ̄i
w̄i

]
(11c)

˙̄Si = β
∑

j∈N̄i(t)

(
S̄j − S̄i

)
(11d)

˙̄ηi = S̄iη̄i + S0η̄i + S̄ix0 +
∑

j∈N̄i(t)

γij (η̄j − η̄i) (11e)

˙̄γij = kijaij(t) (η̄i − η̄j)
⊤
(η̄i − η̄j) , (11f)

i = 1, . . . , N, j = 0, 1, . . . , N, i ̸= j.

For t ≥ 0, we let P (t) =

[
H(t)⊗In

Λ(t)
2 Z1

Λ⊤(t)
2 θIι 0ι×2Nn

Z⊤
1 02Nn×ι Y (t)

]
where Λ(t)=

[
0Nn×Nn H(t)⊗In block diag(D1, . . . , DN)

]
,

ι = 2Nn + s1 + · · · + sN , Z1 = − 1
2IN ⊗ S02, θ is some

positive real number, and Y (t) = γH(t)⊗I2n−IN⊗ S0+S⊤
0

2
with γ being some positive real number.

The solvability of Problem 1 is summarized as follows.
Theorem 3.1: Under Assumption 1, Problem 1 is solv-

able by the distributed position feedback control law (9).
Proof: The proof consists of four parts.

Part I: Let η̄ = col (η̄1, . . . , η̄N ), q̄ = col (q̄1, . . . , q̄N ),
p̄ = col (p̄1, . . . , p̄N ), ξ̄ = col

(
ξ̄1, . . . , ξ̄N

)
, µi =

col
(
ξ̄i, ω̄i

)
, i = 1, . . . , N , µ = col (µ1, . . . , µN ),

γ̄ = col
(
γ̄10, . . . , γ̄N0, γ̄12, . . . , γ̄1N , γ̄1N , . . . , γ̄(N−1)N

)
,

and µ̄ = col
(
ξ̄11, . . . , ξ̄1N , ξ̄21, . . . , ξ̄2N , w̄1, . . . , w̄N

)
=

Tµ with T being some orthogonal matrix satisfying
(T−1)⊤T−1 = Iι.

Consider the following energy function:

V (q̄, p̄, µ, η̄, γ̄, t)

=
1

2

N∑
i=1

α ∑
j∈Ni(t)

ψ (∥q̄i − q̄j∥) + 2αai0(t)ψ (∥q̄i∥)

+p̄⊤i p̄i + 2θµ⊤
i P̄iµi

+
1

2

N∑
i=1

η̄⊤i η̄i

+
1

2

N∑
i=1

 ∑
j∈N (t)

γ̄2ij
2kij

+ ai0(t)
γ̄2i0
ki0

 (12)

with P̄i, i = 1, . . . , N , being defined in Remark 3.1.
Let S̄ = block diag(S̄1, . . . , S̄N ) and Ŝ = block

diag(S̄12, . . . , S̄N2). The time derivative of (12) along the
trajectories of the closed-loop system (11) is

V̇ = −p̄⊤ (H(t)⊗ In) p̄− p̄⊤Λ(t)µ̄− θµ̄⊤(T−1)⊤T−1µ̄

+ p̄⊤Ŝη̄ + p̄⊤ (IN ⊗ S02) η̄ + p̄⊤Ŝ (1N ⊗ x0)

+ η̄⊤S̄η̄ + η̄⊤S̄ (1N ⊗ x0) + η̄⊤ (IN ⊗ S0) η̄

− γη̄⊤ (H(t)⊗ I2n) η̄

= −

p̄µ̄
η̄

⊤

P (t)

p̄µ̄
η̄

+ η̄⊤S̄η̄

+ η̄⊤S̄ (1N ⊗ x0) + p̄⊤Ŝη̄ + p̄⊤Ŝ (1N ⊗ x0) . (13)

For any ϵ1 > 0, let ϱ = 1+ϵ1
ϵ1

. Then, we have

η̄⊤S̄η̄ + η̄⊤S̄ (1N ⊗ x0) + p̄⊤Ŝη̄ + p̄⊤Ŝ (1N ⊗ x0)

≤ ϵ1
2
∥p̄∥2+

(
1

2
+ϱ

∥∥∥Ŝ∥∥∥2) ∥η̄∥2+ϱ
∥∥∥Ŝ (1N⊗x0)

∥∥∥2. (14)

Let Q(t) = P (t) −

[
ϵ1
2 INn 0 0
0 0 0

0 0
(

1
2+ϱ∥Ŝ∥2

)
I2Nn

]
. Then, sub-

stituting (14) into (13) gives

V̇ ≤ −

p̄µ̄
η̄

⊤

Q(t)

p̄µ̄
η̄

+ ϱ
∥∥∥Ŝ (1N ⊗ x0)

∥∥∥2 . (15)

By [4, Lemma 4.1], for any ta > 0, if Ḡ(t) is connected and
G(t) is undirected for t ∈ [0, ta), then there exist positive
constants θ, γ, and ϵ1 such that Q(t) is positive definite for
all t ∈ [0, ta). Fix such θ, γ, and ϵ1.

Part II: Next, let us show that under the control law
(9), the graph Ḡ(t) is connected for all t ≥ 0. Let V (t) =
V (q̄(t), p̄(t), µ(t), η̄(t), γ̄(t), t). Note that, by the continuity
of the solution of system (11), there exists a 0 < t1 ≤ ∞
such that Ḡ(t) = Ḡ(t1) for all t ∈ [0, t1). If t1 = ∞,
Ḡ(t) = Ḡ(0) is connected for all t ≥ 0. If t1 < ∞,
Ḡ(t) = Ḡ(0) does not hold for all t ≥ 0. We assume without
loss of generality that t1 is such that

Ḡ(t) = Ḡ(0), t ∈ [0, t1)

Ḡ(t1) ̸= Ḡ(0).
(16)

We claim that Ḡ(t1) ⊃ Ḡ(0). Since Ḡ(t) is connected for
all t ∈ [0, t1), by [4, Lemma 4.1], the positive constants
θ, γ, and ϵ1 are such that Q(t) is positive definite for all
t ∈ [0, t1). Thus, (15) implies

V̇ (t) ≤ ϱ
∥∥∥Ŝ(t) (1N ⊗ x0(t))

∥∥∥2 , ∀t ∈ [0, t1). (17)

Under Assumption 1, for all t ≥ 0, ∥x0(t)∥ ≤ p̂(t) for
some polynomial p̂(t) of t. Thus, Remark 3.2 implies that
limt→∞ Ŝ(t) (1N ⊗ x0(t)) = 0 exponentially, that is, for
any Ŝ(0) and x0(0), there exist positive real numbers ϱ1
and φ1 such that, for all t ≥ 0,∥∥∥Ŝ(t) (1N ⊗ x0(t))

∥∥∥≤ϱ1∥∥∥Ŝ(0) (1N ⊗ x0(0))
∥∥∥e−φ1t. (18)

Then, for all 0 ≤ t < t1, we have

V̇ (t) ≤ ϱϱ21

∥∥∥Ŝ(0) (1N ⊗ x0(0))
∥∥∥2 e−2φ1t = ϱ2e

−φ2t (19)
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where ϱ2 = ϱϱ21

∥∥∥Ŝ(0) (1N ⊗ x0(0))
∥∥∥2 and φ2 = 2φ1.

Then, for all 0 ≤ t < t1,

V (t) ≤ V (0) +
ϱ2
φ2

(
1− e−φ2t

)
≤ V (0) +

ϱ2
φ2
. (20)

Now, we show Ḡ(t1) ⊃ Ḡ(0) by contradiction. Sup-
pose this is not the case, then we can find some edge
(i, j) such that (i, j) ∈ Ē(0) and (i, j) /∈ Ē(t1). Hence,
limt→t−1

∥qi(t)− qj(t)∥ = r and limt→t−1
∥q̄i(t)− q̄j(t)∥ ≥

r − h̄. Note that ∥q̄i(t)− q̄j(t)∥ is a continuous func-
tion of t. Thus, there exists a t̂1 ∈ (0, t1] such that
limt→t̂−1

∥q̄i(t)− q̄j(t)∥ = r−h̄. Therefore, we can conclude
that limt→t̂−1

V (t) = ∞, which, however, contradicts (20).
The contradiction shows that Ḡ(t1) ⊃ Ḡ(0), and Ḡ(t1) is
connected.

If there exists a t2 > t1 such that

Ḡ(t) = Ḡ(t1), t ∈ [t1, t2)

Ḡ(t2) ̸= Ḡ(t1)
(21)

then we claim that Ḡ(t2) ⊃ Ḡ(t1). In fact, since Ḡ(t) is
connected for all t ∈ [t1, t2), by [4, Lemma 4.1], the positive
constants θ, γ, and ϵ1 are such that Q(t) is positive definite
for all t ∈ [t1, t2). From (15), we have

V̇ (t) ≤ ϱ
∥∥∥Ŝ(t) (1N ⊗ x0(t))

∥∥∥2 , ∀t ∈ [t1, t2). (22)

Then, applying (18) to (22) yields

V̇ (t) ≤ ϱϱ21

∥∥∥Ŝ(0) (1N ⊗ x0(0))
∥∥∥2 e−2φ1t=ϱ2e

−φ2t. (23)

Since Ḡ(t1) ⊃ Ḡ(0), there exists at least one edge
(i, j) such that (i, j) ∈ Ē(t1) and (i, j) /∈ Ē(0). We can
assume without loss of generality that there exist τ edges
(i1, j1), . . . , (iτ , jτ ) such that (ik, jk) ∈ Ē(t1) and (ik, jk) /∈
Ē(0) for k ∈ {1, . . . , τ}, where τ is a positive integer.
Recalling (20), by Remark 3.4, V (t1) satisfies

V (t1) ≤ V (0) +
ϱ2
φ2

+ ταψ
(
r − ϵ+ h̄

)
. (24)

Thus, from (23), for all t ∈ [t1, t2),

V (t) ≤ V (t1) +
ϱ2
φ2

(
e−φ2t1 − e−φ2t

)
≤ V (0) +

ϱ2
φ2

+ ταψ
(
r − ϵ+ h̄

)
+
ϱ2
φ2
e−φ2t1 . (25)

We also show Ḡ(t2) ⊃ Ḡ(t1) by contradiction.
Suppose Ḡ(t2) ̸⊃ Ḡ(t1), that is, there exists some
edge (i, j) such that (i, j) ∈ Ē(t1) and (i, j) /∈
Ē(t2). Then, limt→t−2

∥qi(t)− qj(t)∥ = r, which implies
limt→t−2

∥q̄i(t)− q̄j(t)∥ ≥ r − h̄. Note that there exists a
t̂2 ∈ (0, t2] such that limt→t̂−2

∥q̄i(t)− q̄j(t)∥ = r − h̄

since ∥q̄i(t)− q̄j(t)∥ is a continuous function of t. Then,
limt→t̂−2

V (t) = ∞, which contradicts (25). Hence, Ḡ(t2) ⊃
Ḡ(t1).

Moreover, note that Ḡ(t) can only have a finite number
of edges. Hence, by repeating the above arguments, we
conclude that there exists a finite integer k > 0 such that

Ḡ(t) = Ḡ(0), t ∈ [0, t1)

Ḡ(t) = Ḡ(ti) ⊃ Ḡ(ti−1), t ∈ [ti, ti+1), i = 1, . . . , k − 1

Ḡ(t) = Ḡ(tk) ⊃ Ḡ(tk−1), t ∈ [tk,∞). (26)

Thus, the graph Ḡ(t) remains connected for all t ≥ 0 under
the control law (9). Moreover, for all t ≥ tk,

V̇ (t) ≤ ϱ2e
−φ2t. (27)

Part III: In this part, we show that limt→∞(q̇i(t) −
q̇0(t)) = 0, i = 1, . . . , N . From (27), we have

V (t) ≤ V (tk) +
ϱ2
φ2

(
e−φ2tk − e−φ2t

)
≤ V (tk) +

ϱ2
φ2
e−φ2tk , ∀t ≥ tk. (28)

Thus, V (t) is bounded for all t ≥ tk, which implies that
p̄(t), η̄(t), q̄(t), µ(t), γ̄(t), and q̄i(t)− q̄j(t), i = 1, . . . , N ,
j ∈ N̄i(tk) are bounded over [tk,∞). Note that S̄(t) is
bounded since limt→∞ S̄(t) = 0 exponentially. From (11),
for all t ≥ tk and for i = 1, . . . , N , ˙̄pi, µ̇i, ˙̄ηi, and ˙̄Si are
bounded. Hence, for all t ≥ tk, V̈ (t) is bounded, which
implies that V̇ (t) is uniformly continuous over [tk,∞). By
a direct calculation,

lim
t→∞

∫ t

tk

V̇ (τ)dτ = lim
t→∞

(V (t)− V (tk))

≤ lim
t→∞

∫ t

tk

ϱ2e
−φ2τdτ ≤ ϱ2

φ2
e−φ2tk . (29)

Thus, limt→∞
∫ t

tk
V̇ (τ)dτ exists and is finite. By Barbalat’s

lemma (see [7, Lemma 8.2]), we have limt→∞ V̇ (t) = 0.
Using (18) in (13), for i = 1, . . . , N , we further have
limt→∞ p̄i(t) = 0, limt→∞ η̄i(t) = 0, and limt→∞ µ̄i(t) =
0. Hence, limt→∞(q̇i(t)− q̇0(t)) = 0, i = 1, . . . , N .

Part IV: Finally, we show that limt→∞(qi(t)− (q0(t) +
hi)) = 0, i = 1, . . . , N . It can be verified that ¨̄pi(t) is
bounded over [tk,∞). Hence, ˙̄p(t) is uniformly continuous
over [tk,∞). By Barbalat’s lemma again,

lim
t→∞

˙̄pi(t)

= −α
∑

j∈N̄i(t)

q̄i(t)− q̄j(t)((
r − h̄

)2 − ∥q̄i(t)− q̄j(t)∥2
)2 = 0. (30)

We let

wij(t) =

{ 1(
(r−h̄)

2−∥q̄i(t)−q̄j(t)∥2
)2 , (j, i) ∈ Ē(t)

0, otherwise.
(31)

Thus, wij(t) is nonnegative and bounded for all t ≥ tk. Let

H1(t) =


β̂1(t) −w12(t) ··· −w1N (t)

−w12(t) β̂2(t) ··· −w2N (t)

...
...

. . .
...

−w1N (t) −w2N (t) ··· β̂N (t)

 (32)

where β̂i(t) =
∑N

j=0, j ̸=i wij(t). From (30), we have

lim
t→∞

(H1(t)⊗ In) q̄(t) = 0 (33)

As shown in the proof of [10, Theorem 3.1], H1(t) is
positive definite for all t ≥ tk. Thus, (33) implies that
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limt→∞ q̄i(t) = limt→∞(qi(t) − (q0(t) + hi)) = 0, i =
1, . . . , N , which completes the proof. □

Remark 3.5: The distributed control law (9) is more
complex than the one in [10] since (9) incorporates the
self-tuning adaptive distributed observer (9d)–(9f), while the
control law in [10] used the conventional distributed observer
(10). To overcome the additional technical challenges, we
have modified the energy function V in [10] to its current
form (12) and employed a different approach to study the
convergence property of the closed-loop system.

IV. EXAMPLE

In this section, we provide an example to illustrate our
result. Consider system (1) with N = 3 with qi ∈ R2

and the leader (3) with S0 =
[

0 1
−0.4 −1

]
⊗ I2. For i =

1, 2, 3, the external disturbance di ∈ R2 is generated by (2)
with Q1 = [ 0 1

0 0 ], Q2 = 1, Q3 =
[

0 1
−1 0

]
, D1 = [ 1 0

0 0 ],
D2 = [ 10 ], and D3 =

[
1 0
−1 1

]
. Let r = 10 be the maximum

sensing range and ϵ = 4. Let h1 = col(0, 0.8603), h2 =
col(−0.7450,−0.4301), h3 = col(0.7450,−0.4301). Let
α = 10000, β = 1, and kij = 1, i = 1, 2, 3, j = 0, 1, 2, 3.
We choose a Li that makes Âi + LiĈi Hurwitz.

In the simulation, we let q0(0) = col(−1, 2), q1(0) =
col(−1,−2), q2(0) = col(−2,−7), q3(0) = col(4,−7.5),
and other initial conditions are randomly generated. Then, it
can be verified that a connected graph Ḡ(0) is formed with
edge set Ē(0) = {(0, 1) , (1, 2) , (2, 1) , (2, 3) , (3, 2)}. Under
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Fig. 1. Velocity and position tracking errors of followers
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Fig. 2. Distances between any two vehicles with initially connected edge

the above conditions, the simulation results for the closed-
loop system are shown in Figs. 1 and 2. Specifically, Fig.
1 shows that the followers approach their desired positions
and their velocities synchronize with the leader’s velocity
asymptotically, that is, formation tracking is achieved. Fig. 2

shows that the distances between any two initially connected
agents remain smaller than the maximum sensing range r =
10. Thus, the connectivity of the network is preserved.

V. CONCLUSION

In this letter, we have studied the distributed formation
tracking problem with connectivity preservation for mul-
tiple double-integrator systems by a self-tuning adaptive
distributed observer. By employing the self-tuning adaptive
distributed observer, we have removed the restrictive assump-
tion in [10] that all followers know the system matrix of the
leader and eliminated the need of computing the observer
gain offline, which makes our approach more practical.
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