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Abstract— This paper presents an almost sure convergence
of the zeroth-order mirror descent (ZOMD) algorithm. The
algorithm admits non-smooth convex functions and a biased
oracle which only provides noisy function value at any desired
point. We approximate the subgradient of the objective function
using Nesterov’s Gaussian Approximation (NGA) with certain
alternations suggested by some practical applications. We prove
an almost sure convergence of the iterates’ function value to
the neighbourhood of optimal function value, which can not be
made arbitrarily small, a manifestation of a biased oracle. This
paper ends with a concentration inequality, which is a finite time
analysis that predicts the likelihood that the function value of
the iterates is in the neighbourhood of the optimal value at any
finite iteration.

Index Terms— Almost sure convergence, subgradient approx-
imation, mirror descent algorithm

I. INTRODUCTION

One of the earliest subfields of optimization is derivative-
free optimization [1]–[3] or, more specifically zeroth-order
optimization. It refers to an optimization problem with an
oracle that only provides function value at a desired point
and obtaining a subgradient may not be feasible at that point.
As a result, we must approximate the function’s subgradient
from the noisy measurement of function value. Every step
in the zeroth-order algorithm is similar to its first-order
counterpart (such as gradient descent or mirror descent),
except that the function’s subgradient must be approximated
at every point. There has recently been a surge of interest
generated in different variants of zeroth-order optimization,
for both convex and non-convex functions [4]–[8], where
the subgradient is approximated by NGA [9]. For a full
introduction of zeroth-order optimization and its various
applications in diverse domains, see [10] (and the references
therein).

In this paper, We extend the analysis of zeroth-order
optimization focusing on the ZOMD algorithm, where the
approximated subgradient established in [9] replaces the
subgradient of the convex objective function in standard
mirror descent algorithm [11]. Originally, the mirror descent
algorithm generalizes the standard gradient descent algorithm
in a more general non-Euclidean space [12]. The problem
framework and analysis in this work differ significantly from
the recent literature [4]–[8]. The main objective of this study
is to show the almost sure convergence of the function value
of iterates of the ZOMD algorithm to a neighbourhood of
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optimal value, as compared to the bulk of the literature,
which focuses on showing that the expected error in function
value converges to the neighbourhood of zero. An almost
sure convergence guarantee to a neighbourhood of optimal
value is more significant than the convergence in expectation
since it describes what happens to the individual trajectory in
each iteration. To the best of our knowledge, no prior work
on almost sure convergence for zeroth-order optimization has
been published. The problem framework in this study differs
from most other works in that it includes a biased oracle
that delivers only biased measurement of function value (the
expectation of noise in the function measurement is non-
zero) at any specified point. The motivation to consider
“biased oracle” can be found in application of reinforcement
learning and financial risk measurement (see [13] and ref-
erences therein for more details). Furthermore, unlike other
publications, we consider that the oracle returns distinct noise
values for two different points. Lastly, in addition to showing
almost sure convergence, we estimate the likelihood that the
function value of the iterates will be in the neighbourhood
of optimal value in any finite iteration. This analysis aids
in determining the relationship between the convergence of
the ZOMD algorithm and the various parameters of the
approximated subgradient. The following list summarises the
key contribution of this study.

1) We present ZOMD algorithm with a biased oracle. For
the biased oracles, we re-evaluate the parameters of the
approximated subgradient of the objective function at
a specific location, which is calculated using NGA.

2) We prove that, under certain assumptions, the function
values of the iterates of ZOMD algorithm almost surely
converges to the neighbourhood of optimal function
value. This neighbourhood is determined by several
parameters, which are explored in this study.

3) Finally, we show that for any confidence level and
a given neighbourhood, the function value of the
iterate sequence should be in that neighbourhood after
some finite iteration with that confidence. This analysis
helps us in determining the convergence rate of the
algorithm.

II. NOTATION AND MATHEMATICAL PRELIMINARIES

Let R and Rn represent the set of real numbers, set of n
dimensional real vectors. Let ∥.∥ denote any norm on Rn.
Given a norm ∥.∥ on Rn, the dual norm of x ∈ R is
∥x∥∗ := sup{⟨x, y⟩ : ∥y∥ ≤ 1, y ∈ Rn}. x[i] denotes the
ith component of the vector x. In is n× n identity matrix.
A random vector X ∼ N (0n, In) denotes a n- dimensional
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normal random vector with zero-mean and unit standard-
deviation. For two random variables X and Y , σ(X,Y ) is the
smallest sigma-algebra generated by random variables X and
Y . We consider ∥.∥∗ ≤ κ1 ∥.∥2 because of the equivalence
of norm in finite dimension.

Let f : Rn → R be a convex function. For δ ≥ 0, the
vector gδ ∈ Rn is called a δ-subgradient of f at x if and
only if f(y) ≥ f(x) + ⟨gδ, y − x⟩ − δ ∀ y ∈ Rn [9].
The set of all δ-subgradients at a point x is called the δ-
subdifferential of f , denoted by ∂δf(x). If δ = 0, we simply
write the notation ∂f(x). If f is differentiable at x, then
∂f(x) = {∇f(x)}, gradient of f at x. We say f ∈ C0,0

if ∃ L0 > 0 such that ∥f(x)− f(y)∥ ≤ L0 ∥x− y∥ and
f ∈ C1,1 if f is continuously differentiable and ∃ L1 > 0
such that ∥∇f(x)−∇f(y)∥ ≤ L1 ∥x− y∥ ∀ x, y ∈ Rn.

If f has directional derivative in all directions, then we
can form the Gaussian approximation as follows: fµ(x) =

1

(2π)
n
2

∫
Rn

f(x+µu)e−
1
2∥u∥

2

du, where µ > 0 is any constant.

The function fµ is differentiable at each x ∈ Rn and
∇fµ(x) =

1

(2π)
n
2 µ

∫
Rn

uf(x+ µu)e−
1
2∥u∥

2

du. It can also be

seen that ∇fµ(x) ∈ ∂δf(x), where, δ = µL0
√
n if f ∈ C0,0

and δ = µ2

2 L1n if f ∈ C1,1 [9].
Let (Ω,F ,P) denote a probability space. An event A ∈

F is occurred almost surely (a.s.) if P(A) = 1. If X ∼
N (0n, In), it can be shown that E[∥X∥p2] ≤ n

p
2 if p ∈ [0, 2]

and E[∥X∥p2] ≤ (p+n)
p
2 if p > 2. We will use the following

two Lemmas in our analysis.
Lemma 1 ( [14]): Let {Xt}t≥1 be a martingale with re-

spect to a filtration {Ft}t≥1 such that E[∥Xt∥] < ∞ and
{β(t)} is a non-decreasing sequence of positive numbers
such that lim

t→∞
β(t) = ∞

and
∑
t≥1

E[∥Xt−Xt−1∥2|Ft−1]
β(t)2 < ∞, then lim

t→∞
Xt

β(t) = 0 a.s.

Lemma 2: If {Xt,Ft}t≥1 is a non-negative submartin-
gales, then, for any ϵ > 0 we have P( max

1≤t≤T
X(t) ≥ ϵ) ≤

E[X(T )]
ϵ .

III. PROBLEM STATEMENT

Consider the following optimization problem

min
x∈X

f(x) (CP1)

The constraint set X is a convex and compact subset of Rn

with diameter D. The function f : Rn → R is a convex.
Define f∗ = min

x∈X
f(x) and X∗ = {x∗ ∈ X|f(x∗) = f∗}.

Observe that X∗ is nonempty due to compactness of the
constraint set X and continuity of f . We assume in this paper
that we have an oracle which generates a noisy value of the
function at a given point x ∈ X. That is, at each point x ∈ X,
we have only the information f̂(x) = f(x)+ e(x, ω), where
e(x, ω) : Rn × Ω → R is a random variable for each x ∈ X
satisfying

E[e(x, ω)] = b(x) with ∥b(x)∥∗ ≤ B

and E[∥e(x, ω)∥2] ≤ V2
(1)

where, B is a non-negative constant, and V can be any
constant.

Remark 1: In the context of zeroth-order stochastic op-
timization problem [4]–[6], the objective is to solve the
optimization problem: min

x∈X
f(x) = E[F (x, ω)] and the oracle

only provides F (x, ω) at any desired x ∈ Rn. In such a
situation, it is straightforward to verify that E[e(x, ω)] = 0,
implying that B = 0. The assumption of positive B makes
the problem more generic than previous recent studies. In
a broader sense, if B = 0, we call it an unbiased oracle.
However, B is non-zero in many applications (see [13] and
references therein for further details), therefore the problem
in this study is more general than in other recent works due to
the presence of positive B. For sake of brevity, we henceforth
use e(x) to denote e(x, ω). In the next section, we discuss
the zeroth-order mirror descent algorithm.

IV. ZEROTH-ORDER MIRROR DESCENT ALGORITHM

Mirror descent algorithm is a generalization of standard
subgradient method where the Euclidean norm is replaced
with a more general Bergman divergence as a proximal
function. Let R be the σR-strongly convex function and
differentiable over an open set that contains the set X. The
Bergman divergence DR(x, y) : X× X → R is DR(x, y) :=
R(x)−R(y)−⟨∇R(y), x− y⟩ ∀ x, y ∈ X. It is clear from
the definition of strong convexity that

DR(x, y) ≥ σR

2 ∥x− y∥2 and DR(z, y) − DR(z, x) −
DR(x, y) = ⟨∇R(x)−∇R(y), z − x⟩ ∀ x, y, z ∈ X.
We outline the steps of the mirror descent algorithm.

At iteration t, let xt be the iterates of the ZOMD algo-
rithm. We approximate the subgradient of function f(x) at
x = xt as follows. We generate a normal random vector
ut ∼ N (0n, In). We use the zeroth-order oracles to get the
noisy function values (f̂ ) at two distinct values, that is,
f̂(xt + µut) = f(xt + µut) + e(xt + µut, ω

1
t ) and

f̂(xt) = f(xt) + e(xt, ω
2
t ). Note that ω1

t and ω2
t are two

independent realizations from the sample space Ω accord-
ing to the probability law P. Hence, we approximate the
subgradient of f at x = xt, denoted by g̃(t) as g̃(t) =
f̂(xt+µut)−f̂(xt)

µ ut. The next iterate xt+1 is calculated as
follows:

xt+1 = argmin
x∈X

{⟨g̃(t), x− xt⟩}+
1

α(t)
DR(x, xt))} (2)

where, α(t) is the step-size of the algorithm. To show
almost sure convergence, we consider weighted averaging
akin to the recent work [15] in first-order algorithm as

zt =

t∑
j=1

α(j)xj

t∑
k=1

α(k)

. The Bergman divergence should be chosen

in such a way that a closed form solution to (2) is available
[16].

Assumption 1: The step-size α(t) is a decreasing se-

quence which satisfies
∞∑
t=1

α(t) = ∞ and
∞∑
t=1

α(t)2 < ∞.

From Assumption 1, we can conclude that lim
t→∞

α(t) = 0.
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Assumption 2: Let the following hold.
1) The generating random vectors ut ∈ Rn(∀ t ∈ N) are

mutually independent and normally distributed and for
each t ∈ N ut is independent of xt.

2) The random variables e(xt, .) : Ω → R and e(xt +
µut, .) : Ω → R ( ∀ t ∈ N) are mutually independent
and identically distributed in the probability space
(Ω,F ,P).

3) The random variables e(xt + µut) and e(xt) are
independent of xt and ut.

Using Assumption 2 and (1), we can write
E[e(xt + µut)|σ{xt, ut}] = b(xt + µut) and
E[e(xt)|σ{xt}] = b(xt), where, ∥b(xt + µut)∥∗ and
∥b(xt)∥∗ ≤ B a.s. Similarly, E[∥e(xt + µut)∥2 |σ{xt, ut}]
≤ V2 and E[∥e(xt)∥2 |σ{xt}] ≤ V2 a.s. For an unbiased
oracle B = 0.

Remark 2: Note that, most recent literature on zeroth-
order stochastic optimization (e.g. [4]–[9], [17], [18]) com-
putes function values at two separate points xt and xt+µut

under the assumption that the stochastic parameters e(xt)
and e(xt+µut) are the same. For many applications, this is
rather a stringent assumption. In this paper, we avoid such
an assumption, which in turn leads to significant deviation in
the properties of approximated subgradient and the pertinent
properties will be discussed in the ensuing section.

V. MAIN RESULT

In this section we discuss the properties of approximated
subgradient, almost sure convergence and the finite time anal-
ysis. Before proceeding further, first define Ft = σ{xl|1 ≤
l ≤ t} ∀ t ∈ N. Hence we get a filtration such as F1 ⊆
F2 ⊆ · · · ⊆ Ft. Observe that g̃(t − 1) is Ft measurable
in view of (2) and also the Bergman divergence DR(x, xt)
(∀ x ∈ X) is Ft measurable. Define another filtration as
{Gt}t≥1 such that Gt−1 = Ft, which will be helpful in the
subsequent analysis.

A. Properties of Approximated Subgradient

The analysis in this subsection borrows some steps from
[9]. However, our analysis contains significant deviations,
most notably, the result concerning the properties of ap-
proximated subgradient, which is derived using the noisy
information of the function value.

Lemma 3: E[g̃(t)|Ft] = ∇fµ(xt) + B(t) a.s. where,
B(t) satisfies ∥B(t)∥∗ ≤ 2κ1B

µ

√
n a.s and we have (a.s.)

E[∥g̃(t)∥2∗ |Ft]

≤

κ2
1(2L

2
0(n+ 4)2 + 8

(
V
µ

)2

n) if f ∈ C0,0

κ2
1(

3
4L1µ

2(n+ 6)3 + 3G2(n+ 4)2 + 12V2

µ2 n) if f ∈ C1,1.

Proof: Consider the σ-algebra Ht defined as Ht =
σ({xk}tk=1, ut). Consider the term

E[g̃(t)|Ht]

=∇fµ(xt) + E
[e(xt + µut)− e(xt)

µ
ut|σ(xt, ut)

]
a.s.

(3)

Note that because of Assump-
tion 2,E

[
f(xt+µut)−f(xt)

µ ut|Ht

]
=

E
[
f(xt+µut)−f(xt)

µ ut|σ(xt, ut)
]

a.s. and∥∥∥∥E[e(xt + µut)− e(xt)

µ
ut|σ(xt, ut)

]∥∥∥∥
∗

≤
∥∥∥∥b(xt + µut)− b(xt)

µ

∥∥∥∥
∗
∥ut∥∗ ≤ 2B

µ
∥ut∥∗ a.s.

Observe that Ft ⊆ Ht and hence by using
the Towering property we get E[g̃(t)|Ft] =
E[E[g̃(t)|Ht]|Ft] = ∇fµ(xt) + B(t), Where,
B(t) = E

[
E
[
e(xt+µut)−e(xt)

µ ut|σ(xt, ut)
]
|Ft

]
satisfies

∥B(t)∥∗ ≤ 2Bκ1

µ E[∥ut∥2 |Ft] ≤ 2Bκ1

µ

√
n a.s.

Consider the term
∥∥∥ f(xt+µut)+e(xt+µut)−f(xt)−e(xt)

µ ut

∥∥∥2
∗

≤ 2κ2
1

∥∥∥ f(xt+µut)−f(xt)
µ ut

∥∥∥2
2
+ 2κ2

1

∥∥∥ e(xt+µut)−e(xt)
µ .ut

∥∥∥2
2
.

Applying the definition of C0,0, we have∥∥∥∥f(xt + µut) + e(xt + µut)− f(xt)− e(xt)

µ
.ut

∥∥∥∥2
∗

≤2κ2
1L

2
0 ∥ut∥42 + 2κ2

1

∥∥∥∥e(xt + µut)− e(xt)

µ
.ut

∥∥∥∥2
2

.

(4)

Consider the term E
[ ∥∥∥ e(xt+µut)−e(xt)

µ ut

∥∥∥2
2
|Ht

]
=E

[ ∥∥∥∥e(xt + µut)− e(xt)

µ
ut

∥∥∥∥2
2

|σ(xt, ut)
]

≤ 2

µ2

(
E[(e(xt + µut))

2 ∥ut∥22 + e(xt)
2 ∥ut∥22 |σ(xt, ut)]

)
≤4V2

µ2
∥ut∥2 a.s.

Hence, by applying Towering property in (4), we get the

result. For f ∈ C1,1,
∥∥∥ f(xt+µut)+e(xt+µut)−f(xt)−e(xt)

µ ut

∥∥∥2
∗

≤3κ2
1

∥∥∥∥f(xt + µut)− f(xt)− µ ⟨∇f(xt), ut⟩
µ

ut

∥∥∥∥2
2

(5)

+ 3κ2
1 ∥∇f(xt)∥22 ∥ut∥42 + 3κ2

1

∥∥∥∥e(xt + µut)− e(xt)

µ
ut

∥∥∥∥2
2

Note that
∥∥∥ f(xt+µut)−f(xt)−µ⟨∇f(xt),ut⟩

µ ut

∥∥∥2
2
≤ L2

1µ
2

4 ∥ut∥62
because of the definition of C1,1. Taking conditional expec-
tation on (5) we get the result.
Using the similar procedure we can extend the analysis for
f ∈ C2,2 and so on. It is important to note that because
of consideration of more generic framework E[∥g̃(t)∥2∗] =
O( 1

µ2 ) for small values of µ, as opposed to [9] because of
consideration of more general framework. This result plays
a significant role in the subsequent discussion of this paper.

Corollary 1: For unbiased oracle, E[g̃t|Ft] = ∇fµ(xt)
a.s.

3329



B. Almost Sure Convergence of the ZOMD Algorithm

Based on the discussion in Lemma 3, we redefine proper-
ties of biased subgradient as follows : E[g̃(t)|Ft] = gδ(t) +
B(t), where, gδ(t) ∈ ∂δf(x) at x = xt and B(t) is Ft

measurable and ∥B(t)∥∗ ≤ B1 a.s. Then there exists a
random vector ζ(t) such that (a.s.) g̃(t) = gδ(t)+B(t)+ζ(t).
Moreover, E[ζ(t)|Ft] = 0 and E[∥g̃(t)∥2∗ |Ft] ≤ K a.s. Note
that we can get an expression of δ, B1 and K from Lemma 3
depending on the properties of the noise and the smoothness
of f .

Theorem 1: Under Assumptions 1 and 2 and ∀ ϵ > 0, for
the iterate sequence generated by ZOMD algorithm {xt}, ∃
{xtk} ⊆ {xt} such that f(xtk)− f∗ ≤ δ +B1D + ϵ a.s.
For the iterate sequence {zt}, ∃ t0 ∈ N such that ∀ t ≥ t0
we have f(zt)− f∗ ≤ δ +B1D + ϵ a.s.
Before proving the Theorem 1, we need the following three
Lemmas which we discuss here.

Lemma 4:
∑
t≥1

α(t)2

2σR
∥g̃(t)∥2∗ < ∞. a.s., where, σR is the

strong convexity parameter of the function R.

Proof: lim
t→∞

E
[ t∑
k=1

α(k)2

2σR
∥g̃(k)∥2∗

]
≤

∑
t≥1

α(t)2

2σR
K < ∞

By applying Fatou’s Lemma we get

E[lim inf
t→∞

t∑
k=1

α(k)2

2σR
∥g̃(k)∥2∗] ≤ lim inf

t→∞
E[

t∑
k=1

α(k)2

2σR
∥g̃(k)∥2∗]

< ∞. Hence we can say
∑
t≥1

α(t)2

2σR
∥g̃(t)∥2∗ < ∞ a.s.

Lemma 5: ∃ C > 0 such that E[∥ζ(t)∥2∗ |Ft] < C a.s.
Proof: From the definition of ζ(t) we get that

∥ζ(t)∥2∗ ≤ 3κ2
1(∥g̃(t)∥

2
2 + ∥B(t)∥22 + ∥gδ(t)∥22). (6)

Notice that ∃ K1 > 0 such that ∥gδ(t)∥ ≤ K1 ∀ t because
of compactness of X. Taking expectation on both sides of
(6), we get (a.s.) E[∥ζ(t)∥2∗ |Ft] ≤ 3κ2

1(K+B2
1 +K1) =

∆ C.

Lemma 6:∑
t≥1

α(t) ⟨ζ(t), x− xt⟩∑
t≥1

α(t)
= 0 a.s. ∀ x ∈ X.

Proof: Define X(t) =
t∑

k=1

α(k) ⟨ζ(k), x− xk⟩. In the

light of definition of ζ(t) and since X(t) is Ft measurable
we get that E[X(t)|Ft] = X(t− 1). Hence {X(t),Gt} is a
martingale. On the other hand, it can be seen that (a.s.)∑
t≥1

E[∥X(t)−X(t− 1)∥2 |Ft]

(
t∑

k=1

α(k))2
≤

∑
t≥1

E[α(t)2 ∥ζ(t)∥2∗ ∥x− xt∥2 |Ft]

(
t∑

k=1

α(k))2
≤

∑
t≥1

α(t)2D2C

(
t∑

k=1

α(t))2
< ∞.

The last line is because of Lemma 5 and the diameter of
the compact set X. Hence by applying Lemma 1, the result
follows.

Now we are in a position to prove the main result.
Proof: The first-order optimality condition to (2) yields

α(t) ⟨g̃(t), x− xt+1⟩ ≥ − ⟨∇R(xt+1)−∇R(xt), x− xt+1⟩

≥ DR(xt+1, xt) + DR(x, xt+1)− DR(x, xt). (7)

The last inequality in (7) is because of the definition of
Bergman Divergence. From the LHS of (7), we obtain

α(t) ⟨g̃(t), x− xt+1⟩ = α(t) ⟨g̃(t), x− xt + xt − xt+1⟩

≤α(t) ⟨g̃(t), x− xt⟩+
α(t)2

2σR
∥g̃(t)∥2∗ +

σR

2
∥xt − xt+1∥2 .

The last inequality follows by applying the Young-Fenchel
inequality to the term α(t) ⟨g̃(t), xt − xt+1⟩. Hence from (7),
we get that DR(x, xt+1)

≤DR(x, xt) + α(t) ⟨g̃(t), x− xt⟩+
α(t)2

2σR
∥g̃(t)∥2∗ . (8)

Notice that DR(xt+1, xt) ≥ σR

2 ∥xt+1 − xt∥2. Consider the
term

α(t) ⟨g̃(t), x− xt⟩ = α(t) ⟨gδ(xt) + B(t) + ζ(t), x− xt⟩

≤ α(t)(f(x)− f(xt) + δ +B1D + ⟨ζ(t), x− xt⟩). (9)

The last inequality in (9) is because of δ-subgradient of
function f and the generalized Cauchy-Schwartz inequality,
where, D is the diameter of the constraint set. Plugging (9)
into (8) and on applying telescopic sum from k = 1 to t we
get

DR(x
∗, xt+1) ≤ DR(x

∗, x1) +
t∑

k=1

α(k)2

2σR
∥g̃(k)∥2∗ +

t∑
k=1

α(k)
(
f∗ − f(xk) + δ +B1D + ⟨ζ(k), x∗ − xk⟩

)
.

(10)

Let ϵ > 0 and define the sequence of stopping times {Tp}p≥1

and {T p}p≥1 as follows:

T1 = inf{f(xt)− f∗ ≥ δ +B1D + ϵ}
T 1 = inf{t ≥ T1|f(xt)− f∗ < δ +B1D + ϵ}

...
T p = inf{t ≥ Tp|f(xt)− f∗ < δ +B1D + ϵ}

Tp+1 = inf{t ≥ T p|f(xt)− f∗ ≥ δ +B1D + ϵ }.
If ∃ p ∈ N such that infimum does not exist, we assume that
Tp = ∞ or T p = ∞ .

Claim-1 - If Tp < ∞, then T p < ∞ a.s. ∀ p ∈ N.
Suppose, ad absurdum, ∃ p0 ∈ N such that Tp0

< ∞ but
T p0 = ∞ with probability (w.p.) η. Let Tp0

= t0, then it
implies that ∀ t ≥ t0, f(xt) − f∗ ≥ δ + B1D + ϵ w.p. η.
From (10), we deduce that ∀ t ≥ t0 (w.p. η)

DR(x
∗, xt+1) ≤ DR(x

∗, xt0) +
t∑

k=tt0

α(k)2

2σR
∥g̃(k)∥2∗ .

+

t∑
k=t0

α(k)
(
− ϵ+ ⟨ζ(k), x∗ − xk⟩

)
(11)
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Let t → ∞. Notice that in view of Lemma 6,
∑

k≥t0

α(k)(−ϵ+

⟨ζ(k), x∗ − xk⟩) = −∞ and also in view of Lemma 4∑
k≥t0

α(k)2

2σR
∥g̃(k)∥2∗ < ∞ a.s. Hence, from (11) we get

lim sup
t→∞

DR(x
∗, xt) = −∞ w.p. atleast η. But DR(x

∗, xt) ≥
0 because of strong convexity of R which implies η =
0. Thus, T p0 < ∞ a.s. This establishes Claim-1. Hence
∃ {xtk} ⊆ {xt} such that f(x(tk))− f∗ ≤ δ+B1D+ ϵ a.s.

From the definition of convexity of f we get that
t∑

k=1

α(k)f(zt) ≤
t∑

j=1

α(j)f(xj). Hence, from (10) we get

that

DR(x
∗, xt+1) ≤ DR(x

∗, x1) +
t∑

k=1

α(k)2

2σR
∥g̃(k)∥2∗ +

t∑
k=1

α(k)
(
f∗ − f(zt) + δ +B1D + ⟨ζ(k), x∗ − xk⟩

)
.

(12)

In a similar fashion, define the sequence of stopping times
{T̄p}p≥1 and {T̄ p}p≥1 as follows:

T̄1 = inf{f(zt)− f∗ ≥ δ +B1D + ϵ}
T̄ 1 = inf{t ≥ T̄1|f(zt)− f∗ < δ +B1D + ϵ}

...
T̄ p = inf{t ≥ Tp|f(zt)− f∗ < δ +B1D + ϵ}
T̄p+1 = inf{t ≥ T p|f(zt)− f∗ ≥ δ +B1D + ϵ }.

If T̄p < ∞ then T̄ p < ∞ a.s. The reason is similar to the
proof of Claim-1.

Claim- 2: ∃ p0 ∈ N such that T̄p0
= ∞ a.s. If this claim

is true, it proves the second part of the Theorem.
Otherwise, ∀ t1 ∈ N, ∃ t > t1 such that (f(zt) − f∗) ≥

δ+B1D+ϵ with some probability η. Hence, from (12) we get
that (11) holds for that t. Letting t → ∞ and using similar
arguments we get lim inf

t→∞
DR(x

∗, xt) = −∞ w.p. atleast η,
that means η = 0. Hence, the Claim-2 holds.

Corollary 2 (ZOMD with unbiased and biased oracle):
For unbiased oracle, ∀ ϵ > 0, ∃ t0 ∈ N such that ∀ t ≥ t0

f(zt)− f∗ ≤

{
µL0

√
n+ ϵ if f ∈ C0,0

µ2

2 L1n+ ϵ if f ∈ C1,1.
a.s.

and for biased oracle, ∀ ϵ > 0 ∃ t0 ∈ N such that ∀ t ≥ t0
the following holds

f(zt)−f∗ ≤

{
µL0

√
n+ 2κ1B

µ

√
nD + ϵ if f ∈ C0,0

µ2

2 L1n+ 2κ1B
µ

√
nD + ϵ if f ∈ C1,1.

a.s.

For unbiased oracle, by selecting a very small value of µ, we
can show function value of the iterate sequence converges
to arbitrarily close neighbourhood around optimal value.
However, this is not the case with biased oracle as suggested
by Corollary 2.

C. Concentration Bound - Finite Time Analysis
In the next Theorem, we discuss the adverse affect of

choosing a very small µ for subgradient approximation.
Gaussian random variable.

Theorem 2: Consider any t0 ∈ N such that
t0∑

k=1

α(k) ≥
3
ϵD. Then ∀ t ≥ t0, P(f(zt) − f∗ ≥ δ + B1D + ϵ) ≤

3K
ϵ

t∑
k=1

α(k)2

t∑
k=1

α(k)

+
9CD2

t∑
k=1

α(k)2

ϵ2(
t∑

k=1

α(k))2
.

Proof: The first order optimality condition to (2) yields
(as we have proved in Theorem 1) f(zt)−f∗ ≤ δ+B1D+

DR(x∗,x1)
t∑

k=1

α(k)

+

t∑
k=1

α(k)⟨ζ(k),x∗−xk⟩

t∑
k=1

α(k)

+

t∑
k=1

α(k)2∥g̃(k)∥2
∗

2σR

t∑
k=1

α(k)

.

Define X(t) =
t∑

k=1

α(k) ⟨ζ(k), x∗ − xk⟩ and Y (t) =

t∑
k=1

α(k)2

2σR
∥g̃(k)∥2∗. Choose a t0 such that DR(x

∗, x1) ≤

ϵ
3

t∑
k=1

α(k) ∀ t ≥ t0 and in view of Assumption 1, t0 < ∞ .

Consider any t > t0 and from if f(zt)− f∗ ≥ B1D+ δ+ ϵ
then atleast one of the following holds.

X(t) ≥ ϵ
3

t∑
k=1

α(k) or, Y (t) ≥ ϵ
3

t∑
k=1

α(k). That implies

that ∀ t ≥ t0; P(f(zt)− f∗ ≥ δ +B1D + ϵ)

≤P(X(t) ≥ ϵ

3

t∑
k=1

α(k)) + P(Y (t) ≥ ϵ

3

t∑
k=1

α(k)). (13)

It can be seen from the definition of g̃(t) that E[Y (t)|Ft] =

Y (t − 1) + α(t)2

2σR
∥g̃(t)∥2∗ ≥ Y (t − 1). Hence, {Y (t),Gt} is

a non-negative sub-martingale.
Note that

P(Y (t) ≥ ϵ
3

t∑
k=1

α(k)) ≤ P( max
1≤j≤t

Y (j) ≥ ϵ
3

t∑
k=1

α(k))).

Hence, by applying Lemma 2 we arrive at

P(Y (t) ≥ ϵ

3

t∑
k=1

α(k)) ≤ 3

ϵ

E[Y (t)]
t∑

k=1

α(k)

≤ 3K

ϵ

t∑
k=1

α(k)2

t∑
k=1

α(k)

.

(14)

It has already been shown in the proof of Lemma 6 that
{X(t),Gt} is a martingale, which implies {∥X(t)∥2 ,Gt} is
a sub-martingale. It can be seen that

E[X(t)2] =
t∑

k=1

E[α(k)2 ⟨ζ(k), x∗ − xk⟩2].
Noting that, k < l then
E[⟨ζ(k), x∗ − xk⟩ . ⟨ζ(l), x∗ − xl⟩] =
E[E[⟨ζ(k), x∗ − xk⟩ . ⟨ζ(l), x∗ − xl⟩ |Fl]] = 0. Hence,
by applying Generalized Cauchy-Schwartz inequality we get

E[X(t)2] ≤ CD2
t∑

k=1

α(k)2. The last inequality is because

of Lemma 5 and the diameter of the constraint set X. In a
similar fashion, by applying Lemma 2, we get

P(X(t) ≥ ϵ
3

t∑
k=1

α(k)) ≤ P(∥X(t)∥2 ≥ ϵ2

9 (
t∑

k=1

α(k))2)
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≤ 9

ϵ2
E ∥X(t)∥2

(
t∑

k=1

α(k))2
≤ 9CD2

ϵ2

t∑
k=1

α(k)2

(
t∑

k=1

α(k))2
. (15)

Hence, by plugging (14) and (15) into (13), we get Theorem
2.

Remark 3: Notice that both K and C are O( 1
µ2 ) from

Lemma 3, this implies that an arbitrary small µ makes the
convergence of the function value to the neighbourhood
of the optimal solution slower. Hence, there is a trade-off
between accuracy of the convergence to the optimal value
and convergence speed of the algorithm in the choice of µ.
In the next Corollary, we capture this in detail.

Corollary 3: For any ϵ > 0 and a confidence level 0 <

p < 1, let p1 = 1−p. Define t1 such that ∀ t ≥ t1
t∑

k=1

α(k) ≥

6K
ϵp1

t∑
k=1

α(k)2 and (
t∑

k=1

α(k))2 ≥ 18CD2

ϵ2p1

t∑
k=1

α(k)2. Then ∀ t

≥ max{t0, t1} we obtain
P(f(zt)− f∗ < δ +B1D + ϵ) ≥ p. Where, t0 is defined in
Theorem 2. Notice that t1 < ∞ due to Assumption 1.

VI. NUMERICAL SIMULATION

We illustrate the result on ZOMD algorithm using the
standard nonsmooth test problem [9] defined as follows

min
x∈X

{|x[1]− 1
10 |+

9∑
i=1

| 1
10 + x[i+ 1]− 2x[i]|}

where, X = {x ∈ R10|
10∑
i=1

x[i] = 1, x[i] ≥ 0}. The

subgradient of the objective function at a desired point is
approximated from the noisy function value (both biased
and unbiased) at that point. The commonly used Bergman
Divergence for the constraint set X is KL divergence defined

as DR(x, y) =
10∑
j=1

x[j] log(x[j]y[j] ). For the choice of Bergman

divergence, the closed form solution [19] of (2) is as follows
: x(t+1)[k] =

xt[k] exp(−α(t)g̃(t)[k])
10∑
l=1

xt[l] exp(−α(t)g̃(t)[l])

k ∈ [10].

The performance of the ZOMD algorithm is evaluated
through the following metric: Oe(t) =∆ f(zt) − f∗. The
performance of the ZOMD algorithm for both unbiased and
biased oracle is illustrated in the Figures 1 and 2.
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