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Abstract— Model predictive control (MPC) is promising for
fueling and core density feedback control in nuclear fusion
tokamaks, where the primary actuators, frozen hydrogen fuel
pellets fired into the plasma, are discrete. Previous density
feedback control approaches have only approximated pellet
injection as a continuous input due to the complexity that it
introduces. In this letter, we model plasma density and pellet
injection as a hybrid system and propose two MPC strategies for
density control: mixed-integer (MI) MPC using a conventional
mixed-integer programming (MIP) solver and MPC utilizing
our novel modification of the penalty term homotopy (PTH)
algorithm. By relaxing the integer requirements, the PTH
algorithm transforms the MIP problem into a series of continu-
ous optimization problems, reducing computational complexity.
Our novel modification to the PTH algorithm ensures that it can
handle path constraints, making it viable for constrained hybrid
MPC in general. Both strategies perform well with regards to
reference tracking without violating path constraints and satisfy
the computation time limit for real-time control of the pellet
injection system. However, the computation time of the PTH-
based MPC strategy consistently outpaces the conventional MI-
MPC strategy.

I. INTRODUCTION

Nuclear fusion is a prospective source of renewable energy
that has made significant progress in recent years. Nuclear fu-
sion power is produced when deuterium (D) and tritium (T),
two hydrogen isotopes, fuse into helium. When maintained
at sufficiently high density and temperature, a D-T plasma
will achieve “ignition,” producing net energy from fusion [1].
However, the plasma density and temperature necessary for
ignition are extremely challenging to reach and maintain.

The fusion power produced by the D-T reaction scales
with the square of the plasma electron density (ne) [1].
Because the torus-shaped magnetic topology confining the
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plasma is difficult to penetrate with particles for high density
core plasma fueling, large tokamaks, such as ITER, will need
to use frozen hydrogen pellets fired at a velocity sufficient
to penetrate into the plasma edge for fueling (cf. Fig. 1)
[3]–[5]. The particle flux from fired pellets must maintain
the desired fueling rate without exceeding the safety-critical
edge density limit (cf. Fig. 2b) [6]. Violating this limit leads
to a plasma disruption that can severely damage the tokamak.
The control objective is to maximize the core density (and
thus fusion power) without violating the edge density limit
[3].

Plasma core density and temperature can be modeled by
continuous nonlinear coupled drift-diffusion partial differen-
tial equations (PDEs) [7], [8], with hybrid system dynamics
arising when the controller makes a binary decision to launch
a pellet or not [9]. If the controller can choose from a
set of pellet frequencies, sizes, or fuel compositions, this
binary set extends to a larger combinatorial set of discrete
actuation decisions. Moreover, the controller cannot exceed
the maximum computation time, determined by the pellet
injection system’s maximum repetition rate [5]. Due to
the complexity that pellet fueling introduces, literature on
tokamak core fueling and density control has only integrated
pellet fueling as a discrete feedforward signal [10]–[12] or
as a continuous actuator for feedback control [13]–[15]. We
seek to progress core density control by integerating pellet
fueling as a discrete actuator.

Hybrid model predictive control (MPC) [9], [16] is a
promising strategy for controlling systems with hybrid dy-
namics arising from discrete actuators [9]. Moreover, by

Fig. 1. The pellet injection line, which fires pellets into the plasma from
inner side of the plasma torus, overlaid on a cutaway diagram of the ITER
tokamak. Image courtesy of the ITER Organization, with modifications [2]
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using MPC, we explicitly prevent the controller from vi-
olating safety-critical path constraints [14], [15]. Given a
model of system dynamics, the MPC controller solves an
optimal control program (OCP) subject to state and input
constraints over a finite prediction horizon [17]. If states or
inputs must take integer values, the OCP becomes a mixed-
integer programming (MIP) problem that may be N P-hard
and, consequently, intractable for real-time control [18]. In
this letter, we implement hybrid MPC as a strategy for the
pellet fueling and density control problem in nuclear fusion
tokamaks in a manner suitable for real-time control.

To this end, we model particle transport in a fusion plasma
with discrete fuel pellet injection as a hybrid dynamical sys-
tem. We then propose two real-time MI-MPC setups to solve
the density control problem. The conventional strategy for
solving an MI-MPC problem is to use a mixed-integer solver.
Here, we compute a mixed-integer quadratic programming
(MIQP) problem at each discrete-time step using the branch
and bound (B&B) algorithm of the Gurobi solver. Next,
we develop a novel version of the penalty term homotopy
(PTH) algorithm and apply it to the MI-MPC problem, such
that it is solvable using a quadratic programming (QP) solver
(such as qpOASES), rather than an MIP solver. The PTH
algorithm [19] transforms a MI-MPC problem into a series
of continuous optimization problems by relaxing the integer
requirements, instead penalizing non-integer solutions in the
objective function [19]. However, as originally designed [19],
the PTH algorithm may not be able to satisfy both integer
requirements and path constraints. By adding a logarithmic
barrier term, we modify the PTH algorithm in a novel way
to be viable for path-constrained hybrid MPC problems. We
then compare the performance of the two strategies in terms
of their reference tracking error and computation time.

II. PROBLEM FORMULATION

During a tokamak plasma discharge, we plan to maintain
high density in the core of the plasma using hydrogen fuel
pellets [5]. In Section II-A, we model the tokamak plasma
core temperature and density using a system of coupled 1D
drift-diffusion equations, integrating discrete pellet actuation
as a particle source. We then translate this model into a form
appropriate for control. In Section II-B, we formulate the
control problem, introducing key parameters and constraints.

A. Drift-Diffusion Model

In MPC, the model of the system dynamics is crucial for
predicting the state trajectory. Fusion plasma transport dy-
namics across nested flux surfaces (cf. Fig. 2a) are modeled
as a system of continuous coupled nonlinear PDEs [1]. As
computing the evolution of these equations in 3D space is
impractical for real-time control, we approximate transport in
a toroidal plasma with a simplified 1D drift-diffusion model
by adopting several realistic assumptions. First, we assume
that the plasma particles (electrons and ions) travel much
faster along the nested flux surfaces in Fig. 2a than they travel
perpendicular to the flux surfaces [1]. Consequently, the
density and temperature are constant along the flux surfaces,

Fig. 2. (a) Diagram showing nested flux surfaces of the cylindrical
tokamak plasma approximation, where a fuel pellet fired along the pellet
injection line in Fig. 1 will ablate near the plasma edge. Here, R0 is
the major radius, a is the minor radius, and θ is the angle from the
midplane. (b) The 1D plasma response to a fuel pellet ablating at r = 1.7
m, for tc = {0.000,0.005,0.015,0.050,0.195} s after the pellet penetrates
the plasma.

yielding a 1D model of the density and temperature gradients
normal to said surfaces. Next, we approximate the plasma
as a cylindrical torus, further simplifying the density and
temperature gradients as functions of the radius r (cf. Fig.
2a). The 1D coupled nonlinear PDEs between the plasma
density and temperature are written as
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where ne is the electron density, Te is the electron tem-
perature, Bp is the poloidal magnetic field, r is the radius
from the plasma core, tc is continuous time, η‖ is the
Spitzer resistivity, and the magnetic diffusion coefficient
is DB = η‖/µ0 [1], [7]. The device parameters (including
minor radius a) are set to those of the ITER tokamak [20].
The particle diffusion, the particle drift, and the thermal
diffusion coefficients are Dn, ν , and χ , respectively [21],
[22]. Here, a fired fuel pellet is a density source Sne(r, tc)
at the radius of deposition over the time period of ablation
O(1) ms [4]. STe(r, tc) is the plasma heat source from fusion
reactions and auxiliary heating, which we assume to be
constant in r and tc. For a detailed discussion on modeling
fusion plasma transport, the reader is referred to [1]. While
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(1) simplifies fusion plasma dynamics, it is straightforward
to analyze. Consequently, (1) is ideal as a proof-of-concept
model against which to test control strategies.

Discretizing (1) with respect to r, we construct a piecewise
smooth ODE for ne and Te using the first-order finite differ-
ence method. Boundary conditions are set as ne|r=a+λ = 0,
Te|r=a+λ = 0, ∇ne|r=0 = 0, and ∇Te|r=0 = 0. Here the edge
is a perfect sink at the virtual domain node r = a+λ [7],
where the minor radius a = 2 m and λ is the ”scrape-off
layer” width [20].

To be consistent with control conventions, we translate
(1) and nuclear fusion specific terminology to a state-space
model, constraints, and a state reference. We begin by
defining the continuous time (tc) state space description of
the dynamics as

ẋ(tc) = f (x(tc),u(tc)) , (2a)
x(tc) = [ne(tc,r1) ne(tc,r2) . . . ne(tc,rn/2),

Te(tc,r1) Te(tc,r2) . . . Te(tc,rn/2]
>,

(2b)

u(tc) = [u1(tc) u2(tc) . . . um(tc)]>. (2c)

The nonlinear, piecewise smooth ODE discretized in r from
(1) is given as the vector field f : Rn×Rm→ Rn, and is a
function of the state vector x(tc) ∈Rn for n/2 discrete radial
nodes [r1,r2, . . . ,rn/2] and input vector u ∈ Rm for m pellet
launchers. We take n = 26 corresponding to 13 radial nodes
r = {0,0.2,0.4, ...,1.6,1.7, ...,2.0} m. For simplicity, we take
m= 1 for a single pellet launcher depositing pellets at r = 1.7
m (cf. Fig. 2b). The pellets have a fixed size of 6×1021 D
atoms, which is the fuel pellet size planned for ITER [5].

To simulate the plasma behavior during the “flat-top” of
an ITER 15 MA plasma discharge [20], we discretize the
hybrid system dynamics (2) in time using the Runge-Kutta
4th order (RK4) method with a sampling time of 5 ms,
which is sufficiently fast to ensure numerical stability and
is consistent with the rate of pellet ablation in the plasma
[4], [23]. The controller supplies an input u(t), computed by
the controllers designed in Section III, in feedback to the
simulation.

B. Control Problem Description

The objective of pellet fueling and density control is to
track a reference density without violating safety-critical path
constraints. For instance, because fusion power scales ∝ n2

e ,
the reference may seek to maximize the core density. In this
section, we outline the general control problem to be solved
in Section III.

For the MPC prediction model, which is distinct from the
non-linear plasma dynamics simulation above, we take the
Jacobian linearization of (2) around a desired local equilib-
rium point [17], [23]. We compute the exact discretization of
the Jacobian linearization using the zero-order hold (ZOH)
method [23], selecting Ts,ZOH = 5 ms both for consistency
with the simulated system RK4 time discretization and that
a fired pellet ablating for 5 ms results in a constant density

source over Ts,ZOH. Thus, the linearization approximates (1)
as a linear time-invariant (LTI) state space model with state
and input matrices A and B in discrete time t.

Finally, the maximum repetition rate of the pellet injection
system must be built into the prediction model. We base
our model off of the ITER tokamak pellet injection system,
which has 2 pellet injection lines operating with a maximum
repetition rate of 4 Hz per injector [5]. As the system
requires a control decision every ≈ 100 ms, we set the control
sampling time Ts = 100 ms and define discrete time t ∈ N
with respect to continuous time as tc = tTs. The prediction
model now must include the first 5 ms of zero-order hold
actuation and subsequent 95 ms of state evolution with uk|t =
0 to account for the time between decisions. Accordingly, we
extend the LTI state prediction model as

x(t +1) = Āx(t)+ B̄u(t), (3)

where Ā = Aτ and B̄ = Aτ−1B, defining τ = Ts/Ts,ZOH ∈ N,
such that the prediction model now incorporates one control
decision every Ts = 100 ms [17].

The edge density limit of a fusion plasma, given as nGw =
Ip/(πa2) (where Ip [MA] is the total plasma current) [6],
places hard path constraints on the controller (cf. Fig 2b) and
is central to the controller design. We construct an element-
wise inequality with matrix G and vector h that MPC stricly
enforces ne(t,r = 1.8 m)≤ nGw as

Gx−h≤ 0. (4)

For reference tracking, the line-averaged electron density
n̄e(t) [24] is the key diagnostic measurement, calculated as

n̄e =
1
a

∫ a

0
nedr . (5)

We set the state reference xr(t) = n̄r
e(t) for a desired core

density [25]. The control objective is now to design a con-
troller capable of tracking xr(t) without violating constraints
(4) in real-time (given as the computation time limit Ts).

III. MODEL PREDICTIVE CONTROL STRATEGIES

To solve the problem formulated in the previous section,
we propose to use MPC. This method solves a receding hori-
zon optimization problem based on the measured state online
and applies the first control action to the plant, repeating this
process for each discrete-time step [17]. The optimization
problem seeks to minimize an objective function with respect
to the optimization variable uk|t . The objective function (see
(6a), (7a) below) consists of stage and terminal costs, which
are functions of the current state x(t), the inputs uk|t , and the
predicted state trajectory xk|t for k = {0,1, . . . ,N} discrete-
time steps after t. Solving the resulting receding horizon
optimization problem yields the optimal u∗k|t .

A. Mixed-Integer MPC

MI-MPC is a special case of MPC, where the set of
admissible states or inputs must take integer values [18].
In the case of pellet injection control, we enforce a binary
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integer constraint (6d) on all predicted inputs uk|t . At k|t, no
pellet is fired if uk|t = 0, whereas a pellet is fired if uk|t = 1.
The MI-MPC problem is defined at t for the current state
x(t) as

min
uk|t
‖(xN|t − xr(t))‖2

P +
N−1

∑
k=0
‖(xk|t − xr(t))‖2

Q +‖uk|t‖2
R

(6a)
s.t.

xk+1|t = Āx(t)+ B̄u(t), k ∈ {0,1, . . . ,N−1} (6b)

Gxk|t −h≤ 0, k ∈ {0,1, . . . ,N} (6c)

uk|t ∈ {0,1}, k ∈ {0,1, . . . ,N−1} (6d)

x0|t = x(t). (6e)

Above, the norm ‖a‖2
B := a>Ba yields the convex objective

function (6a), wherein Q ∈ Rn×n, R ∈ Rm×m, and P ∈ Rn×n

are diagonal tuning matrices that penalize the state error,
the input cost, and the terminal state error, respectively.
Q and P scale the density state to 1 and are weighted
to account for non-uniform radial discretization, while the
temperature states are weighted to 0. Lastly, we let R = 0
as we are not concerned with penalizing control actuation.
We implement the MI-MPC problem using CasADi and the
Yalmip toolbox [26], [27]. We warm-start uk|t with u∗k|t−1.
The B&B algorithm (computed online with the MIQP solver
Gurobi) searches a tree of possible candidates for u∗k|t to
find the optimal control sequence [28]. For further details on
the B&B algorithm, we direct the reader to [28].

B. Penalty Term Homotopy MPC

When the B&B algorithm solves (6) for the optimal con-
trol sequence, the size of the search tree (and thus the number
of QPs the MIQP solver computes) increases exponentially
with N. Sager [19] proposes the PTH algorithm as a means
to compute the optimal solution to a MIQP problem using
a QP solver rather than a MIQP solver. By relaxing (6d)
to uk|t ∈ [0,1], (6a) transforms into a continuous function
of uk|t in (7a). To implicitly enforce integer requirements,
the concave penalty term uk|tβ j(1−uk|t) in (7a) replaces the
binary constraint on uk|t in (6d). Each iteration of Algorithm

Algorithm 1 Modified Penalty Term Homotopy

1: Set j← 0, γ j ← 0, and β j ← 0
2: while

(
uk|t > ε† or 1−uk|t > ε†) ∀k ∈ {0, . . . ,N−1} . . .

and j < jmax
† do:

3: Solve the relaxed optimization problem (7)
4: Set j← j+1
5: Set β j ← βinitβ

j−1
inc , γ j ← γinitγ

j−1
inc

‡

6: end while
†ε , a user-defined tolerance, is sufficiently small such that the rounding
error on uk|t will not result in violation of state constraints and
jmax guarantees that the algorithm is finite. If j = jmax, Algorithm 1
terminates and sets uk|t ← 0. Sager provides additional stopping criteria
to ensure sufficiently refined control discretization [19], which we omit
here (see Section III-C).
‡Setting γinit = 0 results in the unmodified PTH algorithm.

1 solves (7), resulting in a series of QPs. Consequently, the
computation time scales O(2N) rather than O(2N) (note that
the value 2 here indicates a binary decision variable).

At discrete-time step t, qpOASES [29] solves the warm-
started QP for each iteration j of Algorithm 1,

min
uk|t
‖(xN|t − xr(t))‖2

P − γ j ln
(
h−GxN|t

)
+

+
N−1

∑
k=0

[
‖(xk|t − xr(t))‖2

Q + ‖uk|t‖2
R +

+ uk|tβ j(1−uk|t)
>− γ j ln

(
h−Gxk|t

)]
,

(7a)

s.t.
xk+1|t = Āx(t)+ B̄u(t), k ∈ {0,1, . . . ,N−1} (7b)

Gxk|t −h≤ 0, k ∈ {0,1, . . . ,N} (7c)

uk|t ∈ [0,1], k ∈ {0,1, . . . ,N−1} (7d)

x0|t = x(t), (7e)

in which β j = βinitβ
j−1

inc and increases for each j until
uk|t ∈ {0,1} for all k ∈ {0,1, . . . ,N−1} (or another stopping
criterion is met) [19]. We tune βinit and βinc for performance,
starting with the initial values that [19] proposes of βinit =
1× 10−4 and βinc = 2 for systems with variables scaled to
1. Increasing βinit and βinc reduces the average algorithm
iterations at each time step at the cost of reference-tracking
performance. Note that in the original PTH algorithm, γ j = 0.
The logarithmic barrier term −γ j ln(h−Gxk|t) is a novel
addition to the PTH algorithm and will be addressed in
Section III-C.

C. Penalty Term Homotopy MPC with Constraints

In its original form [19], the PTH algorithm is not guar-
anteed to produce feasible solutions for systems with path
constraints. By relaxing the integer requirement, the optimal
solution u∗k|t , obtained by minimizing (7a) in the presence of
path constraints (7c), may not converge to the same solution
as the antecedent MIQP (6). When the descent direction
of (7a) with the concave uk|tβ j(1− uk|t) is towards path
constraints, (7) may get ”stuck” on an active path constraint
with u∗k|t /∈ {0,1}, even as β j→∞. Table I demonstrates this
behavior for the control trajectory in Fig. 3.

To resolve this issue, we add the logarithmic barrier
term −γ j ln(h−Gxk|t) to (7a) (with γ j = γinitγ

j−1
inc defined

in Algorithm 1). As γ j increases, the logarithmic barrier

TABLE I
PTH-MPC STICKING BEHAVIOR

j β j u∗0|0 u∗1|0 u∗2|0 u∗3|0 u∗4|0

0 0 0.9364 0.5382 0 0.2498 0.3086
1 0.1 0.9364 0.9239 0 0 0
...

...
...

...
...

...
...

jmax β jmax 0.9364 0.9239 0 0 0
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Fig. 3. (a) The line-averaged density n̄e(t)[m−3] (calculated from x(t) using (5)) for N = 5. The grey dashed line indicates xr(t) = n̄r
e(t). (b) The edge

density ne(t,r = 1.8 m)[m−3] with the density limit (4) indicated as a black dashed line. Each pellet actuation is visible as a jump in density. (c) The
reference tracking error of n̄e(t) relative to n̄r

e(t). (d) The value of the objective function of each MPC strategy.

term drives the QP solver solution for u∗k|t away from the
path constraints and towards the MIQP solution. To the best
of our knowledge, this modification of the PTH algorithm,
which makes it broadly viable for path-constrained MI-MPC
problems, is novel. For the various N values in Section IV,
we tune γ j relative to β j as βinit = 0.5/N, βinc = 3, and
γ j = β j+1 such that j < jmax∀t.

IV. RESULTS

The MPC strategies are evaluated for real-time perfor-
mance with two metrics: the reference tracking error and
the computation time. The controllers, tested with prediction
horizons N ∈ {2,5,10,20} in a feedback loop, are also
compared to a relay-like control law: {u(t)← 1 if n̄e(t) <
n̄r

e(t), else u(t)← 0}. The RK4 discretization of (1) simu-
lates the nonlinear system dynamics over a period tsim =
[0,10] s.

A. Reference Tracking

The state reference xr(t) is initially set at n̄e(t) = 1020

m−3, corresponding to the “flat-top” of a D-T H-mode 15
MA ITER plasma [20]. At tsim = 2 s, xr(t) steps up to n̄e(t)=
2×1020m−3. This reference is unreachable due to the edge
density limit, forcing the MPC strategies to demonstrate their

TABLE II
MEAN REFERENCE TRACKING ERROR

N Reachable State % Error Unreachable State % Error

MI-MPC PTH-MPC MI-MPC PTH-MPC

2 2.34 2.13 29.4 30.2
5 2.34 2.09 29.4 29.7
10 2.34 2.12 29.4 30.3
20 2.34 2.11 29.4 29.8

The arithmetic mean error between n̄e(t) relative to n̄r
e(t) is calculated

over tsim = 0, ...,2,6, ...,10 s and tsim = 2, ...,6 s for the reachable n̄r
e(t)

and unreachable n̄r
e(t), respectively.

ability to drive the state towards an optimal trajectory without
violating safety-critical path constraints, which is desirable
for exploring maximum achievable plasma density [13].

Fig. 3 compares the state trajectories for a prediction
horizon of N = 5. Both the MPC strategies show good refer-
ence tracking when the state reference is reachable (cf. Fig.
3a) and, unlike the relay-like controller, do not violate path
constraints (cf. Fig. 3b). The two MPC strategies compute
slightly different control policies for the same prediction
horizon (cf. Fig. 3a). This is a consequence of the differing
objective costs (cf. Fig. 3d) that arise from the addition of the
penalty terms in the PTH-MPC formulation. The controller
performance in Fig. 3 is consistent across all tested values
of N. Mean tracking error in Table II is nearly equal for
both control approaches. Furthermore, increasing N has little
impact on mean tracking error as the plasma transport is so
rapid that the density profile settles within ≈ 200 ms of pellet
injection (cf. Fig. 2b). Consequently, a prediction horizon as
short as N = 2 can largely capture predicted plasma response
to the next control decision.

B. Computation Time
For the purposes of real-time feedback control, we require

the computation time of the controllers to not exceed 100
ms [5]. Table III lists the maximum computation times
during the simulation in Fig. 3. For all N tested, the PTH-
MPC control approach outperformed the MI-MPC method.
The exponential growth of the MI-MPC computation time
for increasing N is evident for N = 20, jumping an order
of magnitude over the computation time of the PTH-MPC
solution for the same N. For short N, the PTH-MPC method
is sufficiently fast to not only accommodate the ITER pellet
injection system, but also the up to 80 Hz repetition rates of
the faster centrifugal pellet launching systems [30].

Across tsim, the MI-MPC computation time remains rel-
atively constant for all xr(t). However, when tracking an
unreachable state reference, the PTH-MPC algorithm com-
putation times fluctuate widely. This is due to Algorithm 1
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Fig. 4. Computation (CPU) time for the trajectory in Fig. 3a). The
solid and dashed lines indicate the MI-MPC and the PTH-MPC controllers,
respectively. The N labels identify the two lines directly above them.
Simulations were performed on an Intel(R) CoreTM i5 processor running
at 2.40 GHz with 15.7 GB of useable RAM.

TABLE III
MAXIMUM COMPUTATION TIME

N 2 5 10 20

CPU time [s] MI-MPC 0.051 0.057 0.114 6.171
PTH-MPC 0.015 0.028 0.071 0.351

requiring several iterations for the logarithmic barrier term
to drive the calculated u∗k|t towards binary values. Increasing
γ and β reduces computation time, but assessing the impact
this has on controller performance requires further study.

V. CONCLUSION

In this investigation, we demonstrated that MI-MPC and
PTH-MPC are promising candidates for core fueling and
density control in fusion tokamaks. Future work will evaluate
and improve MPC prediction model accuracy against an
experimentally validated transport model [7], [14]. For pellet
injection control in ITER, the control decision set will need
to be extended to include multiple launchers, variable fuel
composition, and actuation uncertainty. We will also investi-
gate further methods to increase controller efficiency to cope
with the extended combinatorial optimization problem.
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