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Removing Two Fundamental Assumptions
in Verifying Strong Periodic (D-)Detectability

of Discrete-Event Systems
Kuize Zhang , Senior Member, IEEE

Abstract—In this letter, in discrete-event systems mod-
eled by labeled finite-state automata (LFSAs), we show new
thinking on the tools of detector and concurrent compo-
sition and derive two new algorithms for verifying strong
periodic detectability (SPD) without any assumption that
run in NL; we also reconsider the tool of observer and
derive a new algorithm for verifying strong periodic D-
detectability (SPDD) without any assumption that runs in
PSPACE. These results strengthen the NL upper bound
on verifying SPD and the PSPACE upper bound on verify-
ing SPDD for deadlock-free and divergence-free LFSAs in
the literature. In our algorithms, the two assumptions are
removed by verifying the negations of these properties.

Index Terms—Discrete-event system, detectability, con-
current composition, detector.

I. INTRODUCTION

A. Background

DETECTABILITY is a basic property of partially-
observed dynamical systems: when it holds one can use

an observed output/label sequence produced by a system to
reconstruct its current states [1], [2], [3], [4]. This property
plays a fundamental role in many related control problems
such as observer design and controller synthesis.

For DESs modeled by LFSAs, the verification problems
for different definitions of detectability have been widely
studied [1], [2], [3], [4], [5], [6], [7], [8], in which several
complexity lower bounds and upper bounds for these prob-
lems were obtained, but most of the upper bounds depend
on two fundamental assumptions that a system is deadlock-
free and divergence-free. These requirements are collected in
Assumption 1: when it holds, a system will always run and
generate an infinitely long label/output sequence. The two
assumptions have been used in detectability studies for over
15 years (see [1], [2], [5], [6], [7]). Notice that there are only
a small number of LFSAs that satisfy the two assumptions.
If these two assumptions can be removed, the theory and
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applications of LFSAs will be largely extended. Without the
two assumptions, detectability still makes sense. For exam-
ple, when a DES enters an unobservable cycle, although one
can observe nothing, the DES is still running, and it makes
sense to study its detectability based on the observed label
sequences. Consider the DES S2 in Fig. 1 for example, obvi-
ously S2 does not satisfy Assumption 1, because it does not
generate any infinitely long label sequence. However, one can
observe one label a, and hence can study whether one can use
a to determine the current state. The answer is obviously no.
Unfortunately, the verification methods used in [1], [2] (these
methods were also used in [6], [7]) cannot verify detectability
of S2 correctly. See Example 1 for details.

The first verification algorithm for detectability of DESs that
does not depend on Assumption 1 was given in [3], [4] by
developing a technique called concurrent composition, arising
from verifying the negation of strong detectability. Prior to
that, verification of variant notions of detectability depends on
the two assumptions because these notions themselves were
verified [1], [2], [6], [7]. In the current paper, we further use
the concurrent composition and two other tools of observer
and detector [2] to obtain verification algorithms for strong
periodic detectability and strong periodic D-detectability that
do not depend on any assumption.

B. Literature Review on Verification of
Detectability in LFSAs

Results based on Assumption 1: In [1], by using an observer
method, exponential-time algorithms were given to verify four
notions of detectability: strong (periodic) detectability and
weak (periodic) detectability. Strong detectability means that
there is a delay k, for each infinite-length event sequence s gen-
erated by an LFSA, every prefix of the label/output sequence
of s of length greater than k allows reconstructing the cur-
rent state. Weak detectability relaxes strong detectability by
changing the verbatim from each to some. Weak detectabil-
ity is strictly weaker than strong detectability. Strong periodic
detectability implies that at any time, after some observation
delay no greater than a given value, the system states can
be determined along each infinite-length transition sequence
also by observing the corresponding output sequence. Weak
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periodic detectability relaxes strong periodic detectability by
changing the verbatim from each to some. Later in [2], by
using a detector method, where the detector is obtained from
an observer by splitting all its states into subsets of cardinal-
ity 2, polynomial-time algorithms were designed for verifying
strong (periodic) detectability. The problem of verifying weak
(periodic) detectability of LFSAs was proven to be PSPACE-
complete [5] and verifying strong (periodic) detectability was
proven to be NL-complete [6].

In order to make detectability adapt to more scenarios, one
can weaken detectability to D-detectability in the sense of
not exactly determining the states but making sure that the
states cannot contain both states of any pair of states that are
previously specified [2]. All above notions of detectability,
including strong/weak detectability and strong/weak periodic
detectability, can be extended to their D-versions. For exam-
ple, strong D-detectability can be verified in polynomial
time [2], while verifying strong periodic D-detectability is
PSPACE-complete [7].

Note that all the above complexity upper bounds were
obtained by the verification algorithms designed in [1], [2]
based on Assumption 1. For an LFSA that does not satisfy
Assumption 1, the algorithms may not return a correct answer.
In [4, Remark 2], we gave a counterexample to show that
neither the observer method [1] nor the detector method [2]
correctly verifies its strong detectability. This counterexample
also shows that neither Theorem 1 nor [9, Th. 2] is correct
without Assumption 1. Therefore, the main results obtained
in [9] are correct only under Assumption 1 but are not so
general as claimed therein. Later in Remark 1 and Remark 2,
we will give counterexamples to show that neither of the two
methods correctly verifies their strong periodic detectability
and strong periodic D-detectability.

Results which do not depend on assumptions: The two fun-
damental assumptions shown in Assumption 1 were for the
first time removed in [3], [4] by developing a concurrent-
composition method and verifying the negation of strong
detectability. In [4], weak detectability was also verified
without any assumption. In [10], the concurrent-composition
method was used to verify the negation of strong detectabil-
ity of a networked DES with a first-in, first-out single channel
with a bounded delay and in which communication losses may
occur, in polynomial time. Later in [8], an NL upper bound was
given for the verification problem of strong detectability based
on the concurrent-composition method. In addition, decen-
tralized settings of strong detectability, diagnosability, and
predictability were unified into one mathematical framework
[8]. In [11], strong D-detectability was verified in polynomial
time also by the concurrent-composition method.

C. Contribution of This Letter

1) We use the detector and concurrent composition to
derive two new algorithms for verifying strong periodic
detectability of LFSAs without any assumption, where
both algorithms imply an NL upper bound for strong
periodic detectability, which strengthens the NL upper
bound given in [6] under Assumption 1.

TABLE I
COMPLEXITY RESULTS FOR VERIFYING DIFFERENT DEFINITIONS OF
DETECTABILITY IN LFSAS, WHERE ∗ MEANS THAT THE BOUNDS

ONLY APPLY TO LFSAS SATISFYING ASSUMPTION 1

2) We use the observer to derive a new algorithm for veri-
fying strong periodic D-detectability of LFSAs without
any assumption, where the algorithm implies a PSPACE
upper bound for strong periodic D-detectability, which
strengthens the PSPACE upper bound given in [7] under
Assumption 1. See Tab. I for a collection of related
results.

Compared with giving an NL upper bound for strong
detectability (see [8]), the process of obtaining the NL upper
bound for strong periodic detectability is more difficult.
Differently from verifying strong periodic detectability itself
in [6], we verify its negation. Following such an opposite way,
for an LFSA, we obtain two conditions on its detector such that
at least one of them holds exactly violates its strong periodic
detectability. Hence a polynomial-time verification algorithm
based on the detector is obtained (Theorem 1), and then an
NL algorithm naturally follows (Theorem 2). On the other
hand, by developing more relationships between the notions of
observer, detector, and concurrent composition (Proposition 4),
we construct a variant of the concurrent composition by using
which strong periodic detectability can also be verified in NL
(Theorem 3). Similarly, we also obtain a polynomial-space
verification algorithm for strong periodic D-detectability by
verifying its negation.

The remainder is structured as follows. In Section II,
basic notation and definitions in LFSAs are introduced. In
Section III, the main results are shown. Section IV ends up
with a short conclusion.

II. PRELIMINARIES

Notation: For a finite alphabet �, �∗ and �ω are used
to denote the set of finite sequences (called words) of ele-
ments of � including the empty word ε and the set of
infinite sequences (called configurations) of elements of �,
respectively. �+ := �∗ \ {ε}. For a word s ∈ �∗, |s|
stands for its length. For s ∈ �+ and natural number k, sk

and sω denote the concatenations of k-copies and infinitely
many copies of s, respectively. For a word (configuration)
s ∈ �∗(�ω), a word s′ ∈ �∗ is called a prefix of s,
denoted as s′ � s, if there exists another word (configuration)
s′′ ∈ �∗(�ω) such that s = s′s′′. For two natural numbers
i ≤ j, �i, j� := {k are nonnegative integers|i ≤ k ≤ j}; and for
a set S, |S| denotes its cardinality and 2S its power set.

A DES modeled by an LFSA is a sextuple

S = (X, T, X0, δ,�, �), (1)
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where X is a finite set of states, T a finite set of events,
X0 ⊂ X a set of initial states, δ ⊂ X × T × X the
transition relation, � a finite set of outputs (labels), and
� : T → � ∪ {ε} the labeling function. � can be recursively
extended to � : T∗∪Tω → �∗∪�ω and particularly �(ε) = ε.
The event set T can be rewritten as disjoint union of observ-
able event set To = {t ∈ T|�(t) ∈ �} and unobservable event
set Tuo = {t ∈ T|�(t) = ε}. Transition relation δ is recursively
extended to δ ⊂ X × T∗ × X. We call a transition with an
observable (unobservable) event an observable (unobservable)
transition. We also denote a transition sequence (x, s, x′) ∈ δ

by x
s−→ x′, where x, x′ ∈ X, s ∈ T∗. For x ∈ X and s ∈ T+,

(x, s, x) is called a transition cycle if (x, s, x) ∈ δ. An observ-
able (resp., unobservable) transition cycle is defined by a
transition cycle with at least one (resp., with no) observable
transition. Automaton S is called deterministic if |X0| = 1 and
for all x, x′, x′′ ∈ X and t ∈ T , (x, t, x′), (x, t, x′′) ∈ δ imply
x′ = x′′. For deterministic S , for all x ∈ X and all s ∈ T∗, we
also denote the unique state x′ ∈ X (if any) satisfying x

s−→ x′
by δ(x, s).

For each σ ∈ �∗, we denote by M(S, σ ) the current-state
estimate, i.e., the set of states that the system can be in after σ

has been observed, i.e., M(S, σ ) := {x ∈ X|(∃x0 ∈ X0)(∃s ∈
T∗)[(�(s) = σ) ∧ (x0

s−→ x)]}. We use Lω(S) = {t1t2 . . . ∈
Tω|(∃x0 ∈ X0)(∃x1, x2, . . . ,∈ X)[x0

t1−→ x1
t2−→, . . . ]} to denote

the set of infinite-length event sequences generated by S .
For a state x ∈ X, its unobservable reach is defined by

UR(x) := {x′ ∈ X|(∃s ∈ (Tuo)
∗)[(x, s, x′) ∈ δ]}. For a subset

X′ ⊂ X, UR(X′) = ⋃
x∈X′ UR(x). Hence UR(X0) = M(S, ε).

For a state x ∈ X, its observable reach under σ ∈ � is
defined by Reachσ (x) := {x′ ∈ X|(∃t ∈ T)[((x, t, x′) ∈ δ)

∧ (σ = �(t))]}. Analogously, for a subset X′ ⊂ X,
Reachσ (X′) = ⋃

x∈X′ Reachσ (x).
The following two assumptions are commonly used in

detectability studies (cf. [1], [2], [6], [7]), but are not needed
in the current paper because we verify the negations of the
properties.

Assumption 1: An LFSA S as in (1) satisfies
1) S is deadlock-free, i.e., for each reachable state x ∈ X,

there exist t ∈ T and x′ ∈ X such that (x, t, x′) ∈ δ;
2) S is prompt or divergence-free, i.e., for every reach-

able state x ∈ X and every nonempty unobservable event
sequence s ∈ (Tuo)

+, there exists no transition sequence
x

s−→ x in S .
One sees (1) implies Lω(S) �= ∅ if X0 �= ∅; while (2)

implies for all s ∈ Lω(S), �(s) ∈ �ω. Condition (2) can be
verified in polynomial time using Tarjan algorithm to compute
all strongly connected components of S . In addition, it is easy
to see that there exist strongly periodically detectable LFSAs
that do not satisfy (2).

III. MAIN RESULTS

A. Preliminary Results

The definitions of strong periodic detectability and strong
periodic D-detectability for LFSAs are as follows [2].

Definition 1 (SPD): An LFSA S is called strongly period-
ically detectable if there exists a positive integer k such that

for each s ∈ Lω(S) and each s′ � s, there is s′′ ∈ T∗ such that
|�(s′′)| < k, s′s′′ � s, and |M(S, �(s′s′′))| = 1.

In order to formulate strong periodic D-detectability, we
specify a set Tspec ⊂ X × X of crucial state pairs that should
be separated.

Definition 2 (Tspec-SPDD): An LFSA S is called strongly
periodically D-detectable with respect to Tspec if there exists
a positive integer k such that for each s ∈ Lω(S) and each
s′ � s, there is s′′ ∈ T∗ such that |�(s′′)| < k, s′s′′ � s, and
(M(S, �(s′s′′)) × M(S, �(s′s′′))) ∩ Tspec = ∅.

In order to verify detectability of an LFSA S , an observer

Sobs := (2X \ {∅}, �,M(S, ε), δobs) (2)

as a deterministic LFSA was constructed in [1], where
M(S, ε) is the unique initial state; for all X′ ∈ 2X \ {∅} and
σ ∈ �∗, δobs(M(S, ε), σ ) = X′ if and only if X′ = M(S, σ ).
The size of Sobs is exponential of that of S .

Later in [2], a detector

Sdet := (Q, �,M(S, ε), δdet) (3)

that is a nondeterministic LFSA was used to provide
polynomial-time algorithms for verifying strong detectability
and strong periodic detectability under Assumption 1, where
Q ⊂ 2X \ {∅} consists of M(S, ε) and subsets of X with car-
dinality ≤ 2; for all q, q′ ∈ Q, and σ ∈ �, (q, σ, q′) ∈ δdet

if and only if either (1) |(UR ◦ Reachσ )(q)| > 1, q′ ⊂
(UR◦Reachσ )(q), and |q′| = 2, or (2) |(UR◦Reachσ )(q)| = 1
and q′ = (UR ◦ Reachσ )(q), where ◦ means the composition
of two functions. The size of Sdet is polynomial of that of S .

Proposition 1 [2]: Consider an LFSA S . Under
Assumption 1, S is strongly periodically detectable if
and only if in Sdet, every reachable transition cycle contains
at least one singleton; S is strongly periodically D-detectable
if and only if in Sobs, every reachable transition cycle contains
at least one state q such that (q × q) ∩ Tspec = ∅.

In [3], in order to verify (delayed) strong detectability of S ,
the self-composition

CCA(S) = (X′, T ′, X′
0, δ

′) (4)

of S (i.e., the concurrent composition of S and itself) was
constructed as follows:

• X′ = X × X;
• T ′ = T ′

o ∪ T ′
uo, where T ′

o = {(t̆, t̆′)|t̆, t̆′ ∈ T, �(t̆) =
�(t̆′) ∈ �}, T ′

uo = {(t̆, ε)|t̆ ∈ T, �(t̆) = ε} ∪ {(ε, t̆)|t̆ ∈ T,

�(t̆) = ε};
• X′

0 = X0 × X0;
• for all (x̆1, x̆′

1), (x̆2, x̆′
2) ∈ X′, (t̆, t̆′) ∈ T ′

o, (t̆′′, ε) ∈ T ′
uo,

and (ε, t̆′′′) ∈ T ′
uo,

– ((x̆1, x̆′
1), (t̆, t̆′), (x̆2, x̆′

2)) ∈ δ′ if and only if
(x̆1, t̆, x̆2), (x̆′

1, t̆′, x̆′
2) ∈ δ,

– ((x̆1, x̆′
1), (t̆

′′, ε), (x̆2, x̆′
2)) ∈ δ′ if and only if

(x̆1, t̆′′, x̆2) ∈ δ, x̆′
1 = x̆′

2,
– ((x̆1, x̆′

1), (ε, t̆′′′), (x̆2, x̆′
2)) ∈ δ′ if and only if x̆1 = x̆2,

(x̆′
1, t̆′′′, x̆′

2) ∈ δ.
For an event sequence s′ ∈ (T ′)∗, s′(L) and s′(R) denote its

left and right components, respectively. Similarly for x′ ∈ X′,
denote x′ =: (x′(L), x′(R)). In addition, for every s′ ∈ (T ′)∗,

Authorized licensed use limited to: University of Surrey. Downloaded on May 12,2023 at 08:09:51 UTC from IEEE Xplore.  Restrictions apply. 

8808



ZHANG: REMOVING TWO FUNDAMENTAL ASSUMPTIONS IN VERIFYING SPDD 1521

Fig. 1. FSA S1 (left) and LFSA S2 (right), where a state with an
input arrow from nowhere is initial (e.g., x0), the letters beside arrows
outside () denote events, the letters in () denote the corresponding
labels/outputs.

�(s′) denotes �(s′(L)) or �(s′(R)), since �(s′(L)) = �(s′(R)).
In the above construction, CCA(S) aggregates every pair of
transition sequences of S producing the same label sequence.
The size of CCA(S) is polynomial of that of S .

B. Verifying Strong Periodic Detectability

In order to verify strong periodic detectability without any
assumption, we first characterize its negation. By directly
observing Definition 1, the following result follows.

Proposition 2: An LFSA S is not strongly periodically
detectable if and only if for every positive integer k, there
exists sk ∈ Lω(S) and prefix s′ � sk such that for all s′′ ∈ T∗,
s′s′′ � sk and |�(s′′)| < k imply |M(S, �(s′s′′))| > 1.

Proposition 3 [12]: Consider an LFSA S . For every transi-
tion (q, σ, q′) ∈ δobs, for every ∅ �= q̄′ ⊂ q′ satisfying |q̄′| = 2
if |q′| ≥ 2 and |q̄′| = 1 otherwise, there is q̄ ⊂ q such that
(q̄, σ, q̄′) ∈ δdet, where |q̄| = 2 if |q| ≥ 2.

Theorem 1 [12]: An LFSA S is not strongly periodically
detectable if and only if in its detector Sdet as in (3), at least
one of the two following conditions holds.

(i) There is a reachable state q′ ∈ Q and x ∈ q′ such that
|q′| > 1 and there is a transition sequence x

s1−→ x′ s2−→
x′ in S for some s1 ∈ (Tuo)

∗, s2 ∈ (Tuo)
+, x′ ∈ X.

(ii) There is a reachable transition cycle such that all states
in the cycle have cardinality 2.

In order to check condition (ii), one could firstly use Tarjan
algorithm to compute all reachable strongly connected com-
ponents of Sdet, which takes time linear in the size of Sdet;
secondly at each component, remove all singletons and then
check whether there is a cycle. If and only if in some reachable
component, such a cycle exists, (ii) holds. Hence Theorem 1
provides a polynomial-time algorithm for verifying strong
periodic detectability. Moreover, Theorem 1 also implies an
NL upper bound for strong periodic detectability.

Theorem 2: The problem of verifying strong periodic
detectability of LFSA S belongs to NL.

Example 1: We give two examples to illustrate Theorem 1.
Consider two LFSAs S1 and S2 shown in Fig. 1. One sees
that S1 satisfies Assumption 1. However, S2 does not sat-
isfy Assumption 1, as x1 is a deadlock (violating (1) of
Assumption 1), and there is a reachable unobservable tran-
sition cycle x2

t4−→ x2 (violating (2) of Assumption 1).
Their detectors S1det and S2det are shown in Fig. 2. One sees

S1det satisfies (ii) of Theorem 1 because there is a self-loop on
reachable state {x1, x2}, but does not satisfy (i) because {x1, x2}

Fig. 2. Detectors S1det (left, the same as observer S1obs coinciden-
tally) and S2det (right, the same as observer S2obs coincidentally) of
LFSA S1 and LFSA S2 shown in Fig. 1.

is the unique reachable state of cardinality 2 and in S1 there
is no infinitely long unobservable transition sequence start-
ing at x1, the same for x2. S2det satisfies (i) because {x1, x2}
is reachable in S2det and in S2, starting at x2 there is an
infinite-length unobservable transition sequence, but does not
satisfy (ii) because there is no cycle all of whose states are
of cardinality 2. Hence by Theorem 1, neither S1 nor S2 is
strongly periodically detectable.

Remark 1: By Example 1, one sees that (i) and (ii) do not
imply each other. So they cannot take the place of each other
when verifying strong periodic detectability. Let us compare
Theorem 1 with Proposition 1. One directly sees that the nec-
essary and sufficient condition for strong periodic detectability
under Assumption 1 shown in Proposition 1 is exactly the
negation of (ii). By Proposition 1, S2 is strongly periodically
detectable vacuously. Then Proposition 1 does not always work
correctly if Assumption 1 is not satisfied.

Next we show that a slight variant of the concurrent-
composition structure can also provide an NL upper bound
for strong periodic detectability. The concurrent-composition
structure has essentially different features compared with the
detector structure. On the one hand, a detector tracks output
sequences and collects all states between only unobservable
transitions and divides them into subsets of cardinality 2. So
a detector does not reflect information in unobservable tran-
sitions. However, the concurrent-composition structure can do
that. On the other hand, a concurrent composition collects
all pairs of transition sequences generating the same output
sequence, but sometimes does not collect different transitions
starting at the same state. However, a detector can do that.
For example, consider states x1, x2, x3, x4 such that x1 �= x2

and x3 �= x4, there exist transitions x1
t1−→ x3, x1

t2−→ x4 satisfy-
ing �(t1) = �(t2) �= ε, but there is no transition x2

t3−→ x4
satisfying �(t3) = �(t1). Then in Sdet there is a transition

{x1, x2} �(t1)−−→ {x3, x4}, but in CCA(S) there is no transition

(x1, x2)
t′−→ (x3, x4) for any t′ ∈ T ′ satisfying �(t′) = �(t1).

Next we add additional transitions into CCA(S) to make it
depict both the above advantages of a concurrent composition
and a detector.

Consider an LFSA S as in (1) and its self-composition
CCA(S) as in (4). We construct a variant

CC←ε

A (S) = (X′, T ′ ∪ {ε}, X′
0, δ

′←ε
) (5)

from CCA(S) as follows: For all x1, x2, x3, x4 ∈ X, and
t′ ∈ T ′ such that x1 �= x2, ((x1, x1), t′, (x3, x4)) ∈ δ′ (resp.,
((x2, x2), t′, (x3, x4)) ∈ δ′), but ((x1, x2), t̄′, (x3, x4)) /∈ δ′
for any t̄′ ∈ T ′, add transition ((x1, x2), ε, (x1, x1)) (resp.,
((x1, x2), ε, (x2, x2))), where we let �(ε) = ε. We call
CC←ε

A (S) ε-extended self-composition of S .
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Fig. 3. Case 1 (left). Case 2 (right).

Fig. 4. Case 3 (left). Case 4 (right).

One can see the following proposition.
Proposition 4: Consider an LFSA S as in (1), its observer

Sobs as in (2), its detector Sdet as in (3), and its ε-
extended self-composition CC←ε

A (S) as in (5). Assume states
x1, x2, x3, x4 ∈ X such that x1 �= x2 and x3 �= x4. The following
hold.

(iii) For every transition {x1, x2} σ−→ {x3, x4} in Sdet, there is

an observable transition sequence (x1, x2)
s′−→ (x3, x4)

or (x1, x2)
s′−→ (x4, x3) in CC←ε

A (S) such that �(s′) = σ .
(iv) For every transition {x1, x2} σ−→ {x3} in Sdet, there is

an observable transition sequence (x1, x2)
s′−→ (x3, x3)

in CC←ε

A (S) such that �(s′) = σ .
(v) For every transition {x1} σ−→ {x3, x4} in Sdet, there is

an observable transition sequence (x1, x1)
s′−→ (x3, x4)

in CC←ε

A (S) such that �(s′) = σ .
(vi) For every transition {x1} σ−→ {x3} in Sdet, there is an

observable transition sequence (x1, x1)
s′−→ (x3, x3) in

CC←ε

A (S) such that �(s′) = σ .
(vii) In CC←ε

A (S), consider an arbitrary transition sequence

x′
0

s′0−→ x′
1

t′1−→ x′
2

s′1−→ . . .
t′n−→ x′

2n

s′n−→ x′
2n+1, where

x′
0 ∈ X′

0, x′
1, . . . , x′

2n+1 ∈ X′, s′
0, . . . , s′

n ∈ (T ′
uo ∪ {ε})∗,

t′1, . . . , t′n ∈ T ′
o. For every i ∈ �0, n�, denote the

union of all states of unobservable transition sequence

x2i
s′i−→ x2i+1 by qi, then we obtain a sequence q0

�(t′1)−−→
. . .

�(t′n)−−→ qn. Then for every i ∈ �1, n�, there exists

q̄i ⊃ qi such that M(S, ε)
�(t′1)−−→ q̄1

�(t′2)−−→ . . .
�(t′n)−−→ q̄n

is a transition sequence of Sobs.
Proof: (iii) We need to consider four different cases of tran-

sition sequences in S (shown in Figs. 3, 4) that form the
transition {x1, x2} σ−→ {x3, x4} in Sdet, where in these fig-
ures, t1, t2 ∈ To, �(t1) = �(t2) = σ , s1, s2, s3, s4 ∈ (Tuo)

∗,
x5, x6, x7, x8 ∈ X.

We need to prove for each case, there is an observable tran-

sition sequence (x1, x2)
s′−→ (x3, x4) in CC←ε

A (S) such that
�(s′) = σ . We only need to consider the most complex Case 4,
all the other cases can be dealt with similarly. For Case 4, by
definition, the corresponding observable transition sequence is

(x1, x2)
ε−→ (x1, x1)

(t1,t2)−−−→ (x5, x6)
s′1−→ (x7, x8)

ε−→ (x7, x7)
s′2−→

(x3, x4), where s′
1(L) = s1, s′

1(R) = s2, s′
2(L) = s3, s′

2(R) = s4.
(iv), (v), and (vi) can be proved similarly.
(vii) directly follows from definition.

Fig. 5. LFSA S3 (upper left), its detector S3det (lower left, the same as
observer S3obs), its self-composition CCA(S3) (right, dotted transitions
excluded), and its ε-extended self-composition CC←ε

A (S3) (right).

Example 2: Consider LFSA S3, its detector S3det, and its
(ε-extended) self-composition CCA(S3) (CC←ε

A (S3)) shown

in Fig. 5. There is a transition {x1, x2} b−→ {x1, x2} in S3det,

but there is neither transition sequence (x1, x2)
s′−→ (x1, x2) nor

(x1, x2)
s′−→ (x2, x1) such that �(s′) = b in CCA(S3). However,

in CC←ε

A (S3), there is a transition sequence (x1, x2)
ε−→

(x1, x1)
(t3,t4)−−−→ (x1, x2) such that �(ε(t3, t4)) = b.

With these properties, we are ready to give a new
polynomial-time algorithm for verifying strong periodic
detectability by using CC←ε

A (S).
Theorem 3: An LFSA S is not strongly periodically

detectable if and only if in its ε-extended self-composition
CC←ε

A (S) as in (5), at least one of the two following conditions
holds.
(viii) There is a reachable state (x, x̄) such that x �= x̄ and

there is a transition sequence x
s1−→ x′ s2−→ x′ in S for

some s1 ∈ (Tuo)
∗, s2 ∈ (Tuo)

+, x′ ∈ X.

(ix) There is a reachable transition cycle (x1, x̄1)
s′1−→ . . .

s′n−→
(xn+1, x̄n+1) for some positive integer n such that
(x1, x̄1) = (xn+1, x̄n+1), xi �= x̄i, and �(s′

i) ∈ � for
all i ∈ �1, n�.

Proof: We use Theorem 1 and Propositions 3 and 4 to prove
this result.

We first check (viii) is equivalent to (i) of Theorem 1.
“⇒”: Assume (viii) holds. By (vii) of Proposition 4 and

Proposition 3, for every reachable state (x, x′) of CC←ε

A (S)

such that x �= x′, either {x, x′} ⊂ M(S, ε) or {x, x′} is
reachable in Sdet. Hence (i) holds.

“⇐”: Assume (i) holds. If q′ = M(S, ε), then (viii) holds.
Otherwise (i.e., in case |q′| = 2 and q′ �= M(S, ε)), by (iii),
(iv), (v), (vi) of Proposition 4, one has (viii) holds.

We second check (ix) is equivalent to (ii) of Theorem 1.
“⇒”: Assume (ix) holds. By (vii) of Proposition 4 and

the Pigeonhole Principle, there is a reachable transition
cycle in Sobs none of whose states is a singleton. The by
Proposition 3, (ii) holds.

“⇐”: Assume (ii) holds. By (iii) of Proposition 4, (ix)
holds.

Similar to the case that Theorem 1 implies Theorem 2,
Theorem 3 also implies an NL upper bound for strong periodic
detectability of LFSAs without any assumption.
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Example 3: We next use one example to compare
Theorem 1 with Theorem 3. Reconsider S3 in Example 2
(shown in Fig. 5, upper left). The existence of reachable tran-

sition cycle {x1, x2} b−→ {x1, x2} in S3det implies that S3 is
not strongly periodically detectable by Theorem 1 (satisfy-
ing (ii)). The existence of reachable transition cycle (x1, x2)

ε−→
(x1, x1)

(t3,t4)−−−→ (x1, x2) such that �(ε(t3, t4)) = b ∈ � in
CC←ε

A (S) also implies that S3 is not strongly periodically
detectable, by Theorem 3 (satisfying (ix)).

C. Verifying Strong Periodic D-Detectability

We also first characterize the negation of Tspec-strong peri-
odic D-detectability. The following result directly follows from
Definition 2.

Proposition 5: An LFSA S is not strongly periodically D-
detectable with respect to Tspec if and only if for each positive
integer k, there exist sk ∈ Lω(S) and s′ � sk such that for every
s′′ ∈ T∗, |�(s′′)| < k and s′s′′ � s imply (M(S, �(s′s′′)) ×
M(S, �(s′s′′))) ∩ Tspec �= ∅.

Theorem 4: An LFSA S is not strongly periodically D-
detectable with respect to Tspec if and only if in its observer
Sobs as in (2), at least one of the two following conditions
holds.

(x) There is a reachable state q ∈ 2X in Sobs and x ∈ q
such that (q × q) ∩ Tspec �= ∅ and there is a transition

sequence x
s1−→ x′ s2−→ x′ in S for some s1 ∈ (Tuo)

∗,
s2 ∈ (Tuo)

+, x′ ∈ X.
(xi) There is a reachable transition cycle such that each

state q of the cycle satisfies (q × q) ∩ Tspec �= ∅.
Theorem 5: The problem of verifying strong periodic

D-detectability with respect to Tspec belongs to PSPACE.
Proof: Condition (x) can be checked by guessing q ∈ 2X ,

x ∈ q, and x′ ∈ X and doing the corresponding checks by non-
deterministic research. Since each state q of Sobs is bounded
by the number of states of S , and (q × q) ∩ Tspec �= ∅ can be
checked in time quadratic in the number of states of S , (x)
can be checked in NPSPACE.

Condition (xi) can be checked by nondeterministically
guessing a sequence of label sequence and checking whether
the sequence leads Sobs to such a transition cycle. Hence, (x)
can also be checked in NPSPACE.

Hence by Theorem 4, the problem of verifying strong
periodic D-detectability with respect to Tspec belongs to
coNPSPACE, i.e., PSPACE.

Remark 2: One directly sees that the necessary and suffi-
cient condition for strong periodic D-detectability of LFSAs
under Assumption 1 given in [2, Th. 9] (collected in
Proposition 1) is exactly the negation of (xi) in Theorem 4. So
the algorithm induced from [2, Th. 9] usually does not work
correctly without Assumption 1. See the following example.

Reconsider S2 (shown in Fig. 1, right) and its observer S2obs

(shown in Fig. 2, right). As shown in Example 1, S2 vio-
lates Assumption 1. Now choose Tspec = {(x1, x2)}. For every
positive integer k, choose sk = t2(t4)ω ∈ Lω(S2), then for
all (t4)n, where n ≥ 0, one has t2(t4)n � sk, |�((t4)n)| =
0 < k, �(t2(t4)n) = a, and (M(S2, a) × M(S2, a)) ∩ Tspec
= Tspec �= ∅. That is, S2 is not strongly periodically

D-detectable with respect to Tspec by definition. However,
since there is no cycle in S2obs, the condition “every reach-
able transition cycle contains at least one state q such that
(q × q) ∩ Tspec = ∅” in Proposition 1 is satisfied vacuously.
Thus, S2obs is strongly periodically D-detectable with respect
to Tspec by Proposition 1, which is incorrect.

Example 4: We next illustrate Theorem 4. Reconsider
LFSA S3 in Fig. 5 (upper left) and its observer S3obs in
Fig. 5 (lower left). If we choose T1

spec = {(x1, x2)}, the exis-

tence of self-loop {x1, x2} b−→ {x1, x2} in S3obs satisfies (xi)
of Theorem 4 (i.e., ({x1, x2} × {x1, x2}) ∩ T1

spec = T1
spec �= ∅),

hence S3 is not strongly periodically D-detectable with respect
to T1

spec. If we choose T2
spec = {(x0, x2)}, then by S3obs, one

sees neither (x) nor (xi) is satisfied, hence S3 is strongly
periodically D-detectable with respect to T2

spec.

IV. CONCLUSION

In this letter, we obtained an NL upper bound for ver-
ifying strong periodic detectability of LFSAs without any
assumption, strengthening the related results given in [2], [6]
under two assumptions of deadlock-freeness and divergence-
freeness. We also obtained a PSPACE upper bound for
verifying strong periodic D-detectability of LFSAs without any
assumption, strengthening the related result given in [2], [7]
also under the two assumptions.

As shown in our previous paper [3], the self-composition
method can be used to verify (delayed) strong detectability of
LFSAs without any assumption, but the detector method can-
not. In this letter, we showed that both the detector method and
a variant of the self-composition method can be used to verify
strong periodic detectability of LFSAs without any assump-
tion. It is an interesting future topic to study the intrinsic
relationships between the two methods.
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