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Abstract— An indirect data-driven observer design approach
for nonlinear discrete-time systems based on an input-output
injection with neural canonical observer structures is proposed.
An artificial neural network auto-encoder structure, trained
with recorded state, input, and output data, is used for the
identification of a system in a nonlinear Brunovsky observer
form with output transformation. The neural approximations
of the transformations and the input-output injection can be
used to construct an observer with linear error dynamics
using methods from linear control theory. The approach is
demonstrated on two academic examples and on an industrially-
motivated problem with a sampled continuous-time model.

I. INTRODUCTION

The design of observers for the online estimation of state
variables is a fundamental aspect of control theory. With the
advancement of modern state-space control strategies, see,
e.g. , [1], the interest in novel observer design approaches,
especially for nonlinear systems, has also increased. The
design strategies can be distinguished in terms of their
basic concepts and ideas, including for instance stochas-
tic, optimization-based, system-theoretical, and differential-
geometrical approaches. Among the most popular nonlinear
observers are the extensions of the linear Kalman filter,
such as the extended and unscented Kalman filter. The
Bayesian state observer, as discussed in [2], is a more
general and mathematically rigorous state estimator, but can
often be computationally intractable. Particle filters, see, e.g. ,
[3], can be considered as approximations to the Bayesian
state observer to reduce the computational effort. Moving
horizon estimators are optimization-based approaches that
generate state estimates by incorporating a series of measure-
ments over a finite horizon, see [4], [5]. System-theoretical
approaches, such as energy- and passivity-based observer
designs, have been pursued in, e.g. , [6], [7], [8], [9].

A differential geometrical nonlinear observer design ap-
proach, c.f. , [10], which utilizes a canonical system repre-
sentation with output injection to easily derive a Luenberger-
like observer with linear error dynamics, was first proposed
by [11] and [12]. What was initially limited in [11] to single
output autonomous systems has been extended in [13], [14]
to the multi-input multi-output case for nonlinear continuous
systems. Extensions of this idea to the discrete-time scenario
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were presented in, e.g., [15], [16], [17]. Recently, the ob-
server error linearization problem has also been considered
in terms of a dynamical extension [18], [19]. However, the
necessary and sufficient conditions for the equivalence of a
system to a canonical observer form require knowledge of the
mathematical model, sophisticated mathematical tools, and
often the solution of a set of partial differential equations.

The underlying idea of the data-driven approach proposed
in this paper is to identify a system with recorded sensor
data in a nonlinear canonical Brunovsky observer form. The
necessary state and output transformations are implemented
as neural network auto-encoder structures and the input-
output injection as separate artificial neural network. With the
system represented in this canonical observer form and the
transformations approximated by trained neural networks, a
Luenberger-like state observer with a linear error dynamic
can be designed. It should be noted, that the networks
are trained with recordings from the input and output of
the system as well as full-state measurements. The final
designed observer will rely only on the input and output. The
requirement of full-state measurements is in many cases not
a hard limitation. For instance, many industrial systems need
to be equipped with additional sensors during commissioning
in order to identify required model parameters anyway.
Furthermore, the proposed data-driven approach intends to
overcome the mathematical burden of analytically deriving
the necessary transformations, which makes the approach
also interesting for complex systems with known governing
equations, where full-state recordings can be generated in
simulations. A data-driven controller design approach using
a neural auto-encoder structure to approximate a feedback
linearization for single-input single-output systems has been
proposed by the authors in [20]. The present paper considers
the observer design for multi-input multi-output systems by
approximating a nonlinear Brunovsky observer form with a
neural auto-encoder structure.

The paper is organized as follows: Section II recapitulates
the basic ideas of representing a nonlinear system with state
and output transformations in a nonlinear Brunovsky ob-
server form with input-output injection. Section III addresses
the embedding of the system representation in a data-driven
framework with the transformations approximated by neural
networks. Section IV outlines the subsequent observer design
with neural observer structures, whereas Section V demon-
strates the capabilities of the method on three examples.
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II. NONLINEAR BRUNOVSKY OBSERVER FORM

The addressed data-driven scenario assumes that the gov-
erning equations of the considered system are not known.
The basic idea is to approximate a model of the sys-
tem in Brunovsky observer form from collected data sets
X = {xi}i∈Q, X+ = {x+i }i∈Q, U = {ui}i∈Q, Y =
{yi}i∈Q, of state xk = [x1,k, . . . , xnx,k]

T ∈ Dx ⊂ Rnx ,
successor state x+k = [x+1,k, . . . , x

+
nx,k

]T ∈ Dx ⊂ Rnx ,
input uk = [u1,k, . . . , unu,k]

T ∈ Du ⊂ Rnu and output
yk = [y1,k, . . . , yny,k]

T ∈ Dy ⊂ Rny . Here, k denotes the
time index, i.e. , xk = x(kTs), with sampling time Ts, and
x+k refers to the successor state xk+1. Further, the set of
sampled time indices is denoted by Q ∈ N0, |Q| = ns. The
intention is to represent an unknown multi-input multi-output
nonlinear discrete-time system

xk+1 = f(xk, uk), yk = h(xk), (1)

by means of a smooth state transformation zk = Φ(xk) :
Dx → Φ(Dx) and output transformation ȳk = Ξ(yk) : Dy →
Ξ(Dy) in the nonlinear Brunovsky observer form [17]

zk+1 = Φ ◦ f(Φ−1(zk), uk) = ABzk +Ψ(uk, ȳk),

ȳk = Ξ ◦ h(Φ−1(zk)) = CBzk,
(2)

where Ψ(uk, ȳk) : Du × Ξ(Dy) → Ψ(Du,Ξ(Dy)) ⊂ Rnx

is a smooth input-output injection. The pair (AB , CB)
is assumed to be in canonical Brunovsky observer form
with AB = diag(AB,1, . . . , AB,ny ) ∈ Rnx×nx and CB =
diag(cTB,1, . . . , c

T
B,ny

) ∈ Rny×nx defined by the matrices

AB,i =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 ∈ Rλi×λi , 1 ≤ i ≤ ny

cTB,i =
[
0 0 · · · 0 1

]
∈ R1×λi , 1 ≤ i ≤ ny.

The integers (λ1, . . . , λny ) with
∑ny

i=1 λi = nx corre-
spond to the observability indices, c.f., [15], [17], with
λi defined as the least nonnegative integer such that
the covector d(hi ◦ fλi) is included in the codistribu-
tion span({d(hj ◦ fλs)}1≤j≤ny,0≤s<λi) ⊕ span({d(hl ◦
fλi)}1≤l<i)⊕span({duj,k+s}1≤j≤nu,0≤s<nx). The operator
d denotes the exterior derivative with respect to the coordi-
nates xk, uk, . . . uk+nx−1 and f i the composition defined by

f0(xk, uk) = xk, f1(xk, uk) = f(xk, uk),

f i(xk, uk) = f(f i−1(xk, uk), uk+i), i ≥ 2.

Necessary and sufficient conditions for the existence and
construction of the transformations in nonlinear Brunovsky
observer form for different system classes can be found in
[10], [13], [14], [15], [16], [17]. The benefits of a represen-
tation in Brunovsky observer form for an observer design
will be discussed later in Section IV. However, without any
knowledge of the mathematical model (1), the intention, is
to identify the transformations from data. For this purpose,
the model (1) is considered in a representation composed of

ȳk
Ψ

Φ
xk

uk

zk

CB

xk+1

yk

zk+1
Φ−1

Ξ−1

AB +

Fig. 1. Representation of the nonlinear discrete-time system (1) in terms
of the components of the nonlinear Brunovsky observer form.

the components of the nonlinear Brunovsky observer form
(2). As the state and output transformation Φ and Ξ are
assumed to be diffeomorphisms, the desired representation
in terms of the previously defined Brunovsky structure is
given according to

xk+1 = Φ−1 ◦ (ABΦ(xk) + Ψ(uk, CBΦ(xk))) ,

yk = Ξ−1 ◦ CBΦ(xk).
(3)

This representation is schematically illustrated in Fig. 1.

III. NEURAL OBSERVER STRUCTURE

The basic idea of the approach proposed in this paper
is to circumvent the tedious mathematical derivation of the
transformations Φ, Ξ and Ψ by using historically recorded
state, input and output trajectories to identify the system (3).
The unknown transformations are implemented as artificial
neural networks Φ̂, Ξ̂ and Ψ̂, which are trained on the
collected data sets. Note that the approach is in principle not
limited to an approximation with artificial neural networks
and that other parametric approaches such as radial basis
functions or other network topologies, e.g. residual neural
networks, are also possible. The matrices (AB , CB) can
be uniquely determined based on the observability indices
(λ1, . . . , λny ). Since the system is not known in the con-
sidered data-driven framework, the observability indices can
not be determined analytically. Therefore, the indices are
treated as hyperparameters and are generally determined
by validating all possible combinations in several trainings.
Consequently, the question of whether the necessary trans-
formations exist at all and whether the observer design is
possible can only be answered after the training process.
The transformations for the representation of the system in
nonlinear Brunovsky observer form should be solutions of
the optimization problem

min
Φ,Ξ,Ψ

∥x+ − Φ−1 ◦ (ABΦ(x) + Ψ(u,CBΦ(x)))∥

s.t. y = Ξ−1 ◦ CBΦ(x), x ∈ Dx, u ∈ Du,

where x+ corresponds to successor state and y to the output
according to (1), such that an identification of the system (3)
is obtained. The accuracy of the identified model determines
the validity of the transformations. Consequently, a high
model accuracy is necessary to design an observer and
to achieve high observer performance, since the state Φ̂
and output transformation Ξ̂ as well as the input-output
injection Ψ̂ will be used for the state estimation. Besides the
accuracy of the model, the invertibility of the state and output
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transformation is a crucial factor. The approach followed in
this work is to realize the transformations as artificial feed-
forward neural networks Φ̂, Ξ̂, and Ψ̂, with the necessary
inversions Φ̂−1 and Ξ̂−1 implemented as separate networks.
The employment of analytically invertible neural networks
would restrict the approach to invertible activation functions
and flat network structures with constant number of units
in each layer. Although this is not inconsistent with the
proposed assumptions, a planned extension of the observer
design approach with immersion techniques and dynamic
extension where dim(zk) > dim(xk) would not be feasible.
Therefore, an implementation with separate networks was
preferred. A comparable discussion was presented in [20].
Upon examining the structure of the model shown in Fig.
1, it becomes evident that the identification problem is
comparable to learning an auto-encoder structure. With the
encoders being Φ̂ and Ξ̂ and the decoders being Φ̂−1 and
Ξ̂−1, the encoded Brunovsky states undergo a shift through
the canonical system in nonlinear Brunovsky observer form
(2) and are subsequently decoded back to their original coor-
dinates. In addition to the prediction accuracy of the neural
observer structure, the reconstruction performance of the two
transformations x = Φ−1 ◦ Φ(x) and y = Ξ−1 ◦ Ξ(y) is
crucial. Therefore penalty terms enforcing these invertibility
constraints are included to the cost function, along with
the prediction loss. This approach is often used in auto-
encoders, as demonstrated in, e.g. , [20], [21]. The considered
feed-forward neural networks for the auto-encoder structure
and the approximation of the input-output injection are
implemented with nL layers and nU hidden layer units as

Φ̂(xk;W
i
Φ̂
, bi

Φ̂
) =WnL

Φ̂
(ϕ̄nL−1

Φ̂
◦ · · · ◦ ϕ̄1

Φ̂
(xk)) + bnL

Φ̂
,

Ξ̂(yk;W
i
Ξ̂
, bi

Ξ̂
) =WnL

Ξ̂
(ϕ̄nL−1

Ξ̂
◦ · · · ◦ ϕ̄1

Ξ̂
(yk)) + bnL

Ξ̂
,

Ψ̂(uk, ȳk;W
i
Ψ̂
, bi

Ψ̂
) =WnL

Ψ̂
(ϕ̄nL−1

Ψ̂
◦ · · · ◦ ϕ̄1

Ψ̂
(uk, ȳk)) + bnL

Ψ̂

with ϕ̄i
∆̂
(ak) = ϕ(W i

∆̂
ak + bi

∆̂
), ∆̂ ∈ {Φ̂, Ξ̂, Ψ̂}, where

ϕ corresponds to a nonlinear activation function ϕ(s) =
[ϕ1(s1), . . . , ϕnU

(snU
)]
T ∈ RnU , si ∈ R and W i

∆̂
, bi

∆̂
to

the neural network parameters W i
∆̂

∈ RnU×nU , bi
∆̂

∈ RnU

for 1 < i < nL, W 1
Φ̂

∈ RnU×nx ,WnL

Φ̂
∈ Rnx×nU , b1

Φ̂
∈

RnU , bnL

Φ̂
∈ Rnx , W 1

Ξ̂
∈ RnU×ny ,WnL

Ξ̂
∈ Rny×nU , b1

Ξ̂
∈

RnU , bnL

Ξ̂
∈ Rny and W 1

Ψ̂
∈ RnU×(nu+ny),WnL

Ψ̂
∈

Rnx×nU , b1
Ψ̂
∈ RnU , bnL

Ψ̂
∈ Rnx . The topologies of the single

transformations can of course be defined independently of
each other. The network weights of the neural observer
structure are determined in a training process by means
of a gradient decent algorithm with back propagation. The
utilized cost function

L = α1Lpred,x + α2Lpred,y︸ ︷︷ ︸
Lpred

+α3Lrec,x + α4Lrec,y︸ ︷︷ ︸
Lrec

,

required for the training of the neural auto-encoders and
the input-output injection, is composed of two components
summarizing the prediction error Lpred and the reconstruction
error Lrec. Scaled with the hyperparameters αi ∈ R>0, 1 ≤
i ≤ 4, the individual loss terms can be synthesized as

Lpred,x = ||x+i − Φ−1 ◦ σ(Φ(xi), ui, CBΦ(xi))||MSE, (4)

Lpred,y = ||yi − Ξ−1 ◦ CBΦ(xi)||MSE, (5)

Lrec,x = ||xi − Φ−1 ◦ Φ(xi)||MSE, (6)

Lrec,y = ||yi − Ξ−1 ◦ Ξ(yi))||MSE, (7)

with the state and output prediction error in (4) - (5) and the
reconstruction error (6) - (7), respectively. The abbreviation
in (4) is defined as σ(zk, uk, ȳk) = ABzk + Ψ(uk, ȳk) and
the utilized loss function norm corresponds to

|| · ||MSE =
1

ns

∑
i∈QB

|| · ||22. (8)

with QB ∈ Q denoting a batch of sampling time indices.

IV. OBSERVER AND ERROR DYNAMICS

The system (1) data-driven identified in nonlinear canon-
ical observer form (2) as presented in Section III, allows to
trivially derive an observer as a copy of the system imposed
with an additional output error-term as

ẑk+1 = AB ẑk + Ψ̂(uk, ȳk) +K(ȳk − ˆ̄yk),

x̂k = Φ̂−1(ẑk), ȳk = Ξ̂(yk),
(9)

where ˆ̄yk = CB ẑk corresponds to the estimated output of
the observer and x̂k to the state estimation of xk. In original
coordinates the approach results in the nonlinear observer
with dynamic x̂k+1 = Φ̂−1 ◦ (ABΦ̂(x̂k) + Ψ̂(uk, Ξ̂(yk)) +
KΞ̂(yk−Ξ̂−1(CBΦ̂(x̂k)). The input-output injection and the
state and output transformation are mapped by the previously
trained neural auto-encoder structures Φ̂, Ξ̂, and the feed-
forward neural network Ψ̂. The dynamics of the linear
observer error ek = zk − ẑk results in the error system
ek+1 = (AB +KCB) ek. Since the pair (AB , CB) is fully
observable and therefore detectable, an asymptotically stable
error dynamics can be obtained with a properly determined
observer gain K = diag(K1, . . . ,Kny ) ∈ Rnx×ny consisting
of the coefficients of the desired characteristic polynomials
Ki = [ai,1, . . . , ai,λi

]T ∈ Rλi , ai,j ∈ R of each chain λi.

V. EXAMPLES

The proposed indirect observer design approach is now
demonstrated in two academic examples and in an indus-
trially motivated application. The neural network structures
were implemented using the PyTorch framework in Python,
and the training process utilized the Adam optimizer. The
learning rate of the Adam optimizer is increased linearly
during an initial warm-up phase until a specified rate was
reached, after which a learning rate scheduler is applied for
annealing. It should be noted, that no comprehensive tuning
of the hyperparameters, except for the observability indices,
has been pursued. The main focus is to demonstrate the
principle capabilities of the proposed approach.
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A. Academic Examples
1) Example I: The following example with additional

additive control input is adapted from [17]. As discussed in
the reference, the system is not transformable to nonlinear
Brunovsky observer form without output transformation. The
two-dimensional nonlinear system with two outputs

f =

 x2,k
x1,k + x1,kx3,k + u1,k

x2,k + x3,k

 , h =

[
x1,k
x3,k

]
, (10)

is considered with the observability indices (λ1, λ2) = (2, 1).
The training set for the data-driven approach originates from
ns = 5000 uniform randomly drawn samples in the state
space Dx = [−1, 1]3 ⊂ R3 and input space Du = [−1, 1] ⊂
R. The successor states and outputs have been computed
according to (10). In addition, separate initial value simu-
lations with random input signals serve as trajectories for
the validation process. The neural approximations Φ̂, Ξ̂, Ψ̂
were implemented as standard feed-forward neural networks
with one nL = 1 hidden layer, nU = 100 hidden units and
ReLU activation layer. The neural auto-encoder architecture
underwent 1000 epochs of training. After the warm-up phase,
the model was validated in every epoch by comparing the
validation trajectory with the simulated state trajectory of
the model. To conduct the simulation and to solve the
initial value problem, the initial state and the input signal
were inherited from the validation trajectory. The model
with the lowest mean-square error (8) between validation
and simulation trajectory was chosen as final model. The
illustrations of this example in Fig. 2 are focused on the
prediction performance of the neural observer structure and
the reconstruction performance of the state transformation
evaluated on the validation trajectory. As the figure reveals, it
is possible to achieve very high prediction and reconstruction
accuracy with the neural structure. Although an observer was
successfully developed for this example as well, due to space
limitations, only the later examples specifically address the
observer and its estimation performance.

2) Example II: The second example considers a six
dimensional system (nx = 6) with two inputs and outputs
(nu = ny = 2). The nonlinear discrete-time system equation
xk+1 = f(xk, uk) and output equation yk = h(xk) are
defined according to

f =



10 γ1(xk) + u1k

10 γ2(xk) + x1,k + 2 γ1(xk)ψ4(xk)
a1b4

γ3(xk) +
x2,k
10

+ (γ1(xk) +
u1,k

10
)(10 γ3(xk) + x2,k)

γ2(xk) + ψ4(xk) + u2,k +
x1,k
10

+ 1
5
γ2(xk)ψ5(xk)

a2b5

ψ5(xk)−
x2,k
10

+ x4,k +
1
5

√
x6,k −

x1,k
10

+ 1

γ1(xk) + ψ6(xk) +
u1,k

10
+ x5,k


,

h =

[
2

x3,k
x1,k+1

−x1,k
100

+ 1
5

x3,k
x1,k+1

+
x6,k
10

]
,

with abbreviations γi(xk) = ai
x3,k

x1,k+1 and ψi(xk) =

bi(x6,k − x1,k

10 ) and coefficients a1 = a2 = 0.2 , a3 =
0.3 , b4 = b5 = b6 = 0.05 . The training set consists
of ns = 20000 uniform randomly drawn samples in the
state space Dx = [0, 1]6 ⊂ R6 and input space Du =
[0, 1]2 ⊂ R2. The auto-encoder structures Φ̂, Ξ̂ as well
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Fig. 2. a) Initial-value simulation of the model with adopted input signal
from the validation trajectory. Comparison between the trajectory simulated
with the trained model ( ) and the validation trajectory ( ) . b)
Reconstruction error erec,x,i = xk,i − Φ−1 ◦ Φ(xk,i) ( ) of the state
transformation evaluated on the validation state trajectory.

TABLE I
VALIDATION OF THE MODEL WITH DIFFERENT OBSERVABILITY INDICES

with y-transformation without y-transformation

(λ1, λ2) (5, 1) (4, 2) (3, 3) (5, 1) (4, 2) (3, 3)

MSE/10−3 88.32 83.77 1.321 88.48 87.11 34.26

as the input-output injection Ψ̂ were implemented as feed-
forward neural networks with two hidden layers nL = 2,
constant number of hidden units nU = 75, and ReLU
activation function. The observability indices (λ1, λ2) were
assumed not to be known a priori and therefore considered
as hyperparameters. The neural canonical observer structure
was trained with all possible combinations of observability
indices in two scenarios, i.e., once with and once without
output transformation. The best pair and final model was
determined according to the lowest mean-square error be-
tween the predictions of the trained model and a validation
trajectory, as in Example I. The final results are visualized
in Table 1. It can be observed that the model with index
pair (3,3) and trained output transformation yielded the best
performance, which is in accordance with the analytical
result. All other models failed to achieve a reasonable
accuracy, and the observer designs were also unsuccessful.
Consequently, the model with indices (3,3) and considered
output transformation has been successfully used for the
observer design discussed in Section IV. The observer gain
coefficients in K1 and K2 have been determined by pole
placement with the polynomial roots resulting from the poles
[0.14, 0.32, 0.43] and [0.40, 0.30, 0.20], respectively. The
performance of the resulting state estimator on a validation
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Fig. 3. Observer error ek = xk−x̂k ( ) between a validation trajectory
xk and the state estimation x̂k of the designed observer with trained neural
observer structure and indices (3,3) .

mh

mc
F (t)

X

Y

xh(t)

w(Y, t)

xc(t)

Fig. 4. Schematic of the single-mast stacker crane without lifting unit.

trajectory is shown in Fig. 3. In particular, the figure shows
the evolution of the estimation error resulting from an initial
observer error e0 = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1]T . After a
short settling time, the error converges to almost zero, but
due to the numerical approximation with the neural networks,
slight fluctuations around zero remain.

B. Industrially Motivated Application

The indirect data-driven observer design process is now
exemplified using a model of a single-mast stacker crane
without lifting unit, which has also been discussed in [20],
[6], [22]. The model, as schematically depicted in Fig. 4,
is described by the position xc of the rigid driving cart
with mass mc, the horizontal deflection xh of the tip mass
mh, and the spatial-dependent deflection w(Y, t) of the
Euler-Bernoulli beam with length L, mass density ρA, and
bending stiffness EI . The purpose of this example is to
demonstrate the data-driven observer design process in a
sampled-data scenario, where the information of the full

state, the input of the system, and the signals of the desired
output, originate from recorded trajectory data sets. Note
that a discrete-time observer is designed with data sampled
from the continuous-time system. The position of the driving
unit and an acceleration measurement at the head mass are
considered as output signals. The mathematical model of
this problem without lifting unit corresponds to a linear
system of ordinary and partial differential equations, which
have been finite-dimensionally approximated by a first-order
Ritz ansatz for the simulation and generation of trajecto-
ries. For a comprehensive derivation of the mathematical
model using a variational approach, the reader is referred
to [6], [22]. The governing equations consist of the partial
differential equation describing the Euler-Bernoulli beam,
the momentum equations governing the driving unit and tip
mass, and the boundary constraints. To approximate the beam
deformation w(Y, t), the first-order Rayleigh-Ritz ansatz
w(Y, t) = xc(t) + Υ(Y )q̄(t) with appropriate spatial ansatz
function Υ(Y ) is utilized, see [6]. Subsequently, the Euler-
Lagrange equations are solved to obtain a finite-dimensional
mechanical system of the form Mq̈ + Cq = Gu where the
generalized coordinates are q = [xc, q̄]

T , and the input force
is u = F . The matrices involved are given by

M =

[
m11 m12

m12 m22

]
, C =

[
0
c2

]
, and G =

[
1
0

]
,

where m11, m12,m22 and c2 are defined as m11 =
ρAL + mc + mh, m12 = mhΥ(L) + ρA

∫ L

0
Υ(Y )dY ,

and m22 = mcΥ(L)2 + ρA
∫ L

0
Υ(Y )2dY and c2 =

EI
∫ L

0

(
∂2Υ(Y )/∂Y 2

)2
dY . The model of the single-mast

stacker crane has been simulated with the parameters
L = 0.53m,mc = 13.10 kg,mh = 0.32 kg, ρA =
2.10 kg/m and EI = 14.97Nm2. For the identification
of the system in Brunovsky observer form, the state x =
[xc, xh,rel, ẋc, ẋh,rel]

T with the relative deflection of the
beam xh,rel = Υ(L)q̄ will be considered. The data set for the
training of the neural observer structure includes the desired
output signals Y = {(y1,i, y2,i)}i∈Q with y1,k = xc,k and

y2,k = EI
mh

∂3Υ(Y )
∂Y 3

∣∣∣
L

xh,rel,k

Υ(L) . The training data originates
from 200 recorded trajectories with different excitation input
signals and initial values. A total of roughly ns = 20000
samples were recorded with a sampling time of Ts = 50ms.
The observability indices of the final model (2, 2) have
been determined by testing all possible combinations, as in
the previous example. Based on the trained neural observer
structures, the observer has been designed according to
Section IV. The coefficients of the characteristic polynomials
required for the observer gain were determined with the
desired pole positions [0.2, 0.3] and [0.5, 0.2]. The perfor-
mance of the observer is presented in Fig. 5. Note, that
for the validation of the observer in Fig. 5, the system has
been excited with a primitive input trajectory in order to
stimulate beam oscillation. As expected, the initial observer
error decreased rapidly and converged to almost zero after a
very short settling time.
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Fig. 5. Demonstration of the observer performance by comparing the state
estimation x̂k ( ) with a validation trajectory xk ( ) of the single-
mast stacker crane model.

VI. CONCLUSION AND FUTURE WORKS

A. Conclusions

In this paper, a data-driven observer design approach has
been proposed and demonstrated on two academic exam-
ples and one industrially motivated example. The presented
methodology is based on the idea of training an neural auto-
encoder structure and a neural network approximation of an
input-output injection from historical full-state sensor data
in order to represent the original system in a Brunovsky
observer form. This observer form allows to design an
observer as a copy of the plant with an additional output
error term. The nonlinearities in the identified input-output
injection cancel to a linear error dynamics, which can be
adjusted by the output term according to linear system theory.

B. Future Works

Several directions are in the focus of upcoming investiga-
tions, such as the extension of the neural observer structures
to handle an observer design approach based on immersion
techniques and dynamic extension, c.f. , [10], [18]. For this
purpose, the neural observer structure has to be embedded
in an higher-dimensional state-space dim(zk) > dim(xk).
However, this also increases the number of possible chain
length constellations, which can be very unfavorable since
it also means that the computational effort of the training
process increases. Thus, the intention is to derive the ob-

server indices from historical sensor data to avoid them as
additional hyperparameters.
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