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Abstract— We consider the problem of designing a state-
feedback controller for a linear system, based only on noisy
input-state data. We focus on input-state data corrupted by
measurement errors, which, albeit less investigated, are as
relevant as process disturbances in applications. For energy and
instantaneous bounds on these measurement errors, we derive
linear matrix inequalities for controller design where the one
for the energy bound is equivalent to robust stabilization of
all systems consistent with the noisy data points via a common
Lyapunov function.

I. INTRODUCTION

We would like to design a state feedback controller for
a discrete-time linear time-invariant (LTI) system without
knowing the parameter matrices (A,B) of its state equation,
but with only input-state measurements. When such mea-
surements are noise-free and enjoy persistence of excitation,
using them for this goal is not so interesting since these
measurements identify (A,B) exactly and the data-based
design boils down to a model-based one. We thus focus on
noisy measurements. In practical settings, it is reasonable
and desirable that the noise in the measurements is bounded
in some sense. The data generation mechanism and the noise
bound yield a set of parameter matrices consistent with data,
as in set membership identification [1]. Since the actual
system is indistinguishable from all others in the set, our goal
is to asymptotically stabilize all systems consistent with data.
We share this approach with many recent works on (direct)
data driven control [2], [3], [4], [5], [6].

Within this framework, however, the noise can enter
the system in different ways when data are generated and
different bounds on the noise can be postulated. As for the
first aspect, a large part of the recent literature on data-
driven control has considered a process disturbance, which
captures unmodeled dynamics in the state equation [3], [5],
[7]. Still, less attention has been devoted to disturbances
corrupting the input, which capture actuator inaccuracies,
or corrupting the state or the output, which capture sensor
inaccuracies. The close link with actuator/sensor inaccuracies
makes it relevant to consider disturbances corrupting input,
state or output, which are known as errors-in-variables in
system identification [8], [9], [10]. In a static setting, they
correspond to distinguishing between manifest and latent
variables. We refer to [10, §1.1] for further motivation of
errors-in-variables, which we term measurement errors here.
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Measurement errors are commonly postulated to have an
energy bound or an instantaneous bound [11, §I]: the former
considers the whole sequence of the errors acting during data
collection, see (16) below, whereas the latter considers each
of such error instances, see (18) below. The treatment of
instantaneous bounds is relevant for analogous advantages
to those evidenced in [12] for process disturbances.

Based on this discussion, the case of measurement errors
with instantaneous bounds is particularly relevant for control
applications, since such bounds on input or state errors can be
inferred based on actuator or sensor characteristics, pointwise
in time, whereas it is less trivial to infer tight energy bounds
on process disturbances. We provide linear matrix inequal-
ities (LMIs) to design a state-feedback controller for the
setting of measurement errors with energy and instantaneous
bounds.

Related literature. In [12] and [7], data is generated by
an LTI system affected by a process disturbance. Here,
we depart from that setting and consider instead input-
state data affected by measurement errors, in an error-in-
variables setting. In [2], sufficient conditions for controller
design are given when the measurement error on the state
satisfies an energy bound, whereas we provide necessary
and sufficient conditions here. Measurement errors and a
process disturbance, which satisfy an instantaneous bound
(in ∞-norm), are considered in [13]. To handle bilinearity
in the set of system parameters, [13] formulates the controller
design as a polynomial optimization problem, which is
approximated by a converging sequence of sum-of-squares
programs. Here, Proposition 1 enables controller design by
solving a single LMI. In [14], a controller design for multi-
input-multi-output linear systems from input-output data is
proposed; this design imposes matching a reference model
via a nonconvex program [14, §III.D] and stability of the so-
designed controller is checked a posteriori [14, §V]. Finally,
the results in this paper complement those in [15]. While [15]
addresses the case of output feedback, with input and output
data corrupted by measurement errors, we consider state
feedback here. Focusing on the special case of state feedback,
we give stronger conditions than those in [15], namely a
necessary and sufficient condition in Theorem 1 instead of
the sufficient conditions in [15, Thm. 1]. Besides, [15] treats
only energy bounds whereas we treat also instantaneous ones
here.

Contribution. For measurement errors with energy and
instantaneous bounds, we obtain two corresponding LMIs in
Theorems 1 and 2. These LMIs depend only on the collected
data and the postulated bounds, and enable the design of a
state-feedback controller. Such controller is guaranteed to
asymptotically stabilize all systems consistent with data, and
the actual one in particular. Importantly, Theorem 1 takes
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the form of a necessary and sufficient condition. We also
provide the independently relevant Proposition 1, which can
be interpreted as a matrix elimination result.

II. PRELIMINARIES

A. Notation

The identity matrix of size n and the zero matrix of size
m × n are In and 0m×n: the indices are dropped when
no confusion arises. The largest eigenvalue of a symmetric
matrix M is λmax(M). The largest and smallest singular
values of a matrix M are σmax(M) and σmin(M). The 2-
norm of a vector v is |v|. The induced 2-norm of a matrix
M is ∥M∥ and is equivalent to σmax(M). For matrices
M , N and O of compatible dimensions, we abbreviate
MNO(MN)⊤ to MN ·O[⋆]⊤, where the dot in the second
expression clarifies unambiguously that MN is the term to
be transposed. For a symmetric matrix

[
M N
N⊤ O

]
, we may

use the shorthand writing [M N
⋆ O ]. For a positive semidefinite

matrix M , M1/2 is its unique positive semidefinite square
root [16, p. 440].

B. Matrix elimination result

The next result is key for the sequel.
Proposition 1: Consider matrices E ∈ Rn1×n2 , F ∈

Rn1×n3 , G ∈ Rn3×n3 with G = G⊤ ⪰ 0. Then,

EE⊤ ⪯ FGF⊤ (1a)

if and only if there exists D ∈ Rn3×n2 such that

E = FD, DD⊤ ⪯ G. (1b)
Proof: (⇐=) From (1b), EE⊤ = FDD⊤F⊤ ⪯

FGF⊤.
(=⇒) We need to show that if (1a) holds, then there exists
D such that (1b) holds. If G = 0, it must be E = 0 and
D = 0 yields (1b). We then consider G ̸= 0 in the rest of
the proof. For G ̸= 0, there exist a real orthogonal matrix
U (i.e., UU⊤ = U⊤U = I) and a diagonal positive definite
Λ1 such that an eigendecomposition of G is

G = U
[
Λ1 0
0 0

]
U⊤ =

[
U1 U2

] [
Λ1 0
0 0

] [ U⊤
1

U⊤
2

]
= U1Λ1U

⊤
1 ,

(2)

which becomes G = UΛ1U
⊤ for G ≻ 0. By the eigende-

composition of G, (1a) is equivalent to

EE⊤ ⪯ FU1Λ1U
⊤
1 F⊤. (3)

If FU1 = 0, it must be from (3) that E = 0; any D = U1D1

with D1D
⊤
1 ⪯ Λ1 satisfies E = 0 = FU1D1 = FD and

DD⊤ = U1D1D
⊤
1 U

⊤
1 ⪯ U1Λ1U

⊤
1 = G, which amounts

to (1b). Otherwise, if FU1 ̸= 0, we can define the next
quantities:
• a nonsingular matrix V such that

V FU1 =
[
F̂1
0

]
(4)

with F̂1 full row rank; V can be obtained as the reduced
row echelon form [16, p. 11-12];

•
[
Ê1

Ê2

]
:= V E where Ê1 has as many rows as F̂1;

• F̂R
1 := Λ1F̂

⊤
1 (F̂1Λ1F̂

⊤
1 )−1 where F̂1Λ1F̂

⊤
1 ≻ 0 (it is thus

invertible) since F̂1 has full row rank and Λ1 ≻ 0;
• D1 := F̂R

1 Ê1.
We now show that D = U1D1 satisfies (1b). Since V is
nonsingular, (3) holds if and only if

V EE⊤V ⊤ ⪯ V FU1Λ1U
⊤
1 F⊤V ⊤

(4)⇐⇒
[
Ê1

Ê2

] [
Ê1

Ê2

]⊤
⪯
[
F̂1
0

]
Λ1

[
F̂1
0

]⊤
⇐⇒

[
Ê1Ê

⊤
1 Ê1Ê

⊤
2

Ê2Ê
⊤
1 Ê2Ê

⊤
2

]
⪯
[
F̂1Λ1F̂

⊤
1 0

0 0

]
⇐⇒ Ê1Ê

⊤
1 ⪯ F̂1Λ1F̂

⊤
1 and Ê2 = 0. (5)

Note that F̂R
1 is a right inverse of F̂1 because F̂1 · F̂R

1 =
F̂1 · Λ1F̂

⊤
1 (F̂1Λ1F̂

⊤
1 )−1 = I . Hence, D1 satisfies

Ê1 = F̂1F̂
R
1 Ê1 = F̂1D1 (6)

D1D
⊤
1 = F̂R

1 Ê1Ê
⊤
1 (F̂R

1 )
⊤ (5)
⪯ F̂R

1 F̂1Λ1F̂
⊤
1 (F̂R

1 )
⊤

= Λ
1/2
1

(
Λ
−1/2
1 F̂R

1 F̂1Λ
1/2
1

)(
Λ
1/2
1 F̂⊤

1 (F̂R
1 )

⊤Λ
−1/2
1

)
Λ
1/2
1

=: Λ
1/2
1 WW⊤Λ

1/2
1 . (7)

The so-defined W is symmetric (i.e., W = W⊤ by the
definition of F̂R

1 ), is a projection (i.e., W 2 = W [16, p. 38]),
and thus each of its eigenvalues is 0 or 1 [16, 1.1.P5] so that

σmax(W )=
√
λmax(WW⊤)=

√
λmax(WW )=λmax(W )=1

and then WW⊤ ⪯ I . We can then conclude from (7) that

D1D
⊤
1 ⪯ Λ

1/2
1 WW⊤Λ

1/2
1 ⪯ Λ1. (8)

Therefore,

V FD = V FU1D1
(4)
=
[
F̂1
0

]
D1 =

[
F̂1D1

0

]
(6)
=
[
Ê1
0

]
(5)
=
[
Ê1

Ê2

]
= V E ⇐⇒ FD = E, (9)

by V nonsingular, and

DD⊤ = U1D1D
⊤
1 U

⊤
1

(8)
⪯ U1Λ1U

⊤
1

(2)
= G. (10)

(9) and (10) correspond to (1b).
Because going from (1b) to (1a) dispenses with matrix

D, Proposition 1 can be interpreted as a matrix elimination
result.

III. PROBLEM FORMULATION

Consider the discrete-time linear time-invariant system

x+ = A⋆x+B⋆u (11)

with state x ∈ Rn and input u ∈ Rm. The matrices A⋆ and
B⋆ are unknown to us and, instead of their knowledge, we
rely on collecting input-state data with measurement errors
to design a controller for (11), as we explain below.

Input-state data are collected by performing an experiment
on (11). Consider

um := u+ eu and xm := x+ ex (12)

where the measured input um differs from the actual input u
of (11) by an unknown error eu and the measured state xm



um
eu ex

x xmu
x+ = A⋆x+B⋆u

Fig. 1. Scheme of data collection experiment for input-state measurements.

differs from the actual state x of (11) by an unknown error
ex. The data collection experiment is depicted in Figure 1
and is then as follows: for k = 0, . . . , T −1, apply the signal
um(k); along with error eu(k), this results in (unknown)
input u(k) = um(k) − eu(k) and (unknown) state x(k) for
some initial condition x(0); measure the signal xm(k) =
x(k) + ex(k). The available data, on which our control
design is based, are then {um(k)}T−1

k=0 , {xm(k)}Tk=0. Note
that we consider a measurement error on state x, unlike [12],
[7] where a process disturbance d on the dynamics was
considered and the data generation mechanism was x+ =
A⋆x+B⋆u+ d.

The collected data satisfy, for k = 0, . . . , T − 1,

xm(k + 1) = A⋆xm(k) +B⋆um(k)

+ ex(k + 1)−A⋆ex(k)−B⋆eu(k) (13a)

= [A⋆ B⋆]
[
xm(k)
um(k)

]
+ [I −A⋆ −B⋆]ϵ(k) (13b)

with

ϵ(k) :=

[
ex(k+1)
ex(k)
eu(k)

]
.

For the sequel, the T equalities in (13) are equivalent to

Xm
1 = [A⋆ B⋆]

[
Xm

0

Um
0

]
+ [I −A⋆ −B⋆]E10 (14)

with definitions

Xm
1 :=

[
xm(1) xm(2) . . . xm(T )

]
(15a)

Xm
0 :=

[
xm(0) xm(1) . . . xm(T − 1)

]
(15b)

Um
0 :=

[
um(0) um(1) . . . um(T − 1)

]
(15c)

E10 :=
[
ϵ(0) ϵ(1) . . . ϵ(T − 1)

]
. (15d)

The quantities Xm
1 , Xm

0 and Um
0 are obtained from available

data {um(k)}T−1
k=0 , {xm(k)}Tk=0 whereas E10 is unknown.

As prior information, in addition to (14), we consider, in
parallel, two types of bounds that the error ϵ in (13) can
satisfy. The first bound is an energy bound: this assumes
that the “energy” of the whole sequence of vectors ϵ(0), . . . ,
ϵ(T − 1) is bounded by some matrix Θ = Θ⊤ ⪰ 0 as

E10E
⊤
10 =

T−1∑
k=0

ϵ(k)ϵ(k)⊤ ⪯ Θ. (16)

In other words, the prior information is that any error
sequence acting during data collection, in particular the
actual E10 = [ϵ(0) ϵ(1) . . . ϵ(T − 1)], belongs to the set

Ee := {E ∈ R(2n+m)×T : EE⊤ ⪯ Θ}. (17)

The second, alternative, bound is an instantaneous bound:
this assumes that each vector ϵ(0), . . . , ϵ(T − 1) is bounded
in norm by some scalar θ ≥ 0 as

|ϵ(k)|2 ≤ θ, k = 0, . . . , T − 1. (18)

In other words, the prior information is that any error vector,
in particular the actual ϵ(0), . . . , ϵ(T −1), belongs to the set

Ei := {ε ∈ R2n+m : |ε|2 ≤ θ}. (19)

We note that imposing Θ = 0 or θ = 0 yields the setting of
noise-free data as an immediate special case.

Although the actual parameters [A⋆ B⋆] from (11) are
unknown, each of the previous two bounds allows us to
characterize the set of parameters [A B] consistent with (17)
and data in (14) or with (19) and data in (13). For the energy
bound in (17), the set is

Ce := {[A B] ∈ Rn×(n+m) : (20)

Xm
1 = [A B]

[
Xm

0

Um
0

]
+ [I −A −B]E, E ∈ Ee},

cf. (14). For the instantaneous bound in (19), the set is

Ci :=

T−1⋂
k=0

Ck
i (21a)

where the set Ck
i of parameters consistent with the data point

at k = 0, . . . , T − 1 is defined as

Ck
i := {[A B] ∈ Rn×(n+m) : (21b)

xm(k + 1) = [A B]
[
xm(k)
um(k)

]
+ [I −A −B] ε, ε ∈ Ei},

cf. (13). We emphasize that [A⋆ B⋆] ∈ Ce since E10 ∈ Ee;
[A⋆ B⋆] ∈ Ci since ϵ(0) ∈ Ei, . . . , ϵ(T − 1) ∈ Ei. We make
the next remark on the sets Ce and Ci.

Remark 1: In Ce or Ci, we do not rely on the additional
structure data in (13) possess (for any k, the first component
of ϵ(k) is equal to the second component of ϵ(k + 1))
because the same treatment could be given for data points
from multiple experiments and, in that case, such additional
structure may not be present. ◁

Our goal is to control (11) and make the origin asymptot-
ically stable by using the feedback law

u = Kx (22)

for some matrix K to be designed. In principle, if [A⋆ B⋆]
were known in (11), we would like to render A⋆ + B⋆K
Schur. In lieu of the knowledge of [A⋆ B⋆], we need to
exploit the information available from data and embedded in
the sets Ce or Ci. Thus, we set out to design K such that
A+BK is certified to be Schur for all [A B] ∈ Ce or for all
[A B] ∈ Ci by a common Lyapunov function, as in quadratic
stabilization [17]. This is respectively equivalent to the robust
control problems

find K,P = P⊤ ≻ 0 (23a)

s.t. (A+BK)P (A+BK)⊤−P ≺ 0 ∀[A B] ∈ Ce
(23b)

or

find K,P = P⊤ ≻ 0 (24a)

s.t. (A+BK)P (A+BK)⊤−P ≺ 0 ∀[A B] ∈ Ci.
(24b)

To summarize, next are our problem statements.



Problem 1: With collected data {um(k)}T−1
k=0 ,

{xm(k)}Tk=0 and with the error sequence satisfying
the energy bound Ee, design a matrix K to solve (23) and
so ensure that the origin of the feedback interconnection
of (11) and (22) is globally asymptotically stable.

Problem 2: With collected data {um(k)}T−1
k=0 ,

{xm(k)}Tk=0 and with the error sequence satisfying
the instantaneous bound Ei, design a matrix K to solve (24)
and so ensure that the origin of the feedback interconnection
of (11) and (22) is globally asymptotically stable.

In the next remark, we provide a typical yet conservative
way to obtain an energy bound from an instantaneous one.
Still, instantaneous bounds on measurement errors capture
actuator or sensor characteristics and are thus more relevant
in practice, as discussed in Section I.

Remark 2: Suppose we know that for some ēx ≥ 0 and
ēu ≥ 0, any errors ex and eu satisfy |ex|2 ≤ ēx and |eu|2 ≤
ēu. Then, for each k = 0, . . . , T − 1,∣∣∣∣[ ex(k+1)

ex(k)
eu(k)

]∣∣∣∣2= |ex(k + 1)|2+ |ex(k)|2+ |eu(k)|2≤ 2ēx + ēu

and, from (15d),

E10E
⊤
10 ⪯

T−1∑
k=0

∣∣∣∣[ ex(k+1)
ex(k)
eu(k)

]∣∣∣∣2 I ⪯ T (2ēx + ēu)I.

In this way, we can take Θ as T (2ēx + ēu)I . ◁

IV. CONTROLLER DESIGN FOR ENERGY BOUND

In this section we solve Problem 1. To this end, consider
the set Ce in (20), i.e.,

Ce = {[A B] : (25)

Xm
1 − [A B]

[
Xm

0

Um
0

]
= [I −A −B]E, EE⊤ ⪯ Θ}.

Importantly, Proposition 1 allows rewriting Ce equivalently
as

Ce =
{
[A B] :

(Xm
1 − [A B]

[
Xm

0

Um
0

]
) · [⋆]⊤ ⪯ [I −A −B] ·Θ[⋆]⊤

}
.

Partition Θ = Θ⊤ ⪰ 0 as

Θ =:

[
Θ11 Θ12

Θ⊤
12 Θ22

]
(26)

with Θ11 = Θ⊤
11 ∈ Rn×n and Θ22 = Θ⊤

22 ∈ R(n+m)×(n+m).
With (26), algebraic computations rewrite the set Ce as

Ce = {Z=[A B] : ZAZ⊤+ZB⊤+BZ⊤+C ⪯ 0} (27a)

A :=
[
Xm

0

Um
0

] [
Xm

0

Um
0

]⊤
−Θ22, (27b)

B := −Xm
1

[
Xm

0

Um
0

]⊤
+Θ12, (27c)

C := Xm
1 X

m
1
⊤ −Θ11. (27d)

To effectively work with Ce, we make the next assumption
on the collected data.

Assumption 1:
[
Xm

0

Um
0

] [
Xm

0

Um
0

]⊤
≻ Θ22.

This assumption is of signal-to-noise-ratio type. Indeed,
for

S0 :=
[
X0

U0

]
:=
[
x(0) x(1) ... x(T−1)
u(0) u(1) ... u(T−1)

]
,

by [15, Lemma 10], if σmin(S0S
⊤
0 )/σmax(Θ22) > 4, As-

sumption 1 holds, see [15] for more details.
Assumption 1 amounts to requiring A ≻ 0. Hence, A−1

exists and we can define

Z := −BA−1, Q := BA−1B⊤ − C. (28)

Thanks to Assumption 1 and [A⋆ B⋆] ∈ Ce, the set Ce has
the properties summarized in the next result.

Lemma 1: Under Assumption 1, we have that:

Ce =
{
Z : (Z − Z)A(Z − Z)⊤ ⪯ Q

}
, (29)

Q ⪰ 0, (30)

Ce =
{
Z+ Q1/2ΥA−1/2 : Υ ∈ Rn×(n+m),ΥΥ⊤ ⪯ In

}
,

(31)

and Ce is bounded with respect to any matrix norm.
Proof: If A ≻ 0, Z and Q in (28) are well-defined and

algebraic computations yield (29) from (27a). By [A⋆ B⋆] ∈
Ce, we have from (29) that Q ⪰ ([A⋆ B⋆]−Z)A([A⋆ B⋆]−
Z)⊤ ⪰ 0 by A ≻ 0. A ≻ 0 and Q ⪰ 0 allow applying
[7, Proposition 1] to obtain (31) from (29) and applying
[7, Lemma 2] to show with analogous arguments that the
nonempty Ce is bounded with respect to any matrix norm.

With Lemma 1, we can design a controller solving Prob-
lem 1 next.

Theorem 1: For data {um(k)}T−1
k=0 , {xm(k)}Tk=0, suppose

Assumption 1 holds. Feasibility of

find Y, P = P⊤ ≻ 0 (32a)

s. t.

−P − C 0 B
0 −P [ P Y ⊤ ]
B⊤ [ PY ] −A

 ≺ 0 (32b)

is equivalent to feasibility of (23). If (32) is feasible, a
controller gain K satisfying (23) is K = Y P−1. Moreover,
x = 0 is globally asymptotically stable for the feedback
interconnection of unknown plant x+ = A⋆x + B⋆u and
controller u = Kx.

Proof: By P ≻ 0 and Schur complement, (23b) is
equivalently[

−P −[A B] [ I
K ]P

⋆ −P

]
≺ 0 ∀[A B] ∈ Ce. (33)

There exist K and P = P⊤ ≻ 0 satisfying this condition if
and only if there exist Y and P = P⊤ ≻ 0 satisfying[

−P −Z [ PY ]
⋆ −P

]
≺ 0 ∀Z ∈ Ce,

with Y = KP . By Ce in (31), obtained under Assumption 1,
this condition holds if and only if

0 ≻
[
−P −Z [ PY ]
⋆ −P

]
+

[
Q1/2

0

]
Υ
[
0 −A−1/2 [ PY ]

]
+

[
0

− [ PY ]
⊤
A−1/2

]
Υ⊤ [Q1/2 0

]
∀Υ with ∥Υ∥ ≤ 1.



By Petersen’s lemma reported in [7, Fact 1], this condition
holds if and only if there exists λ > 0 such that

0 ≻
[
−P −Z [ PY ]
⋆ −P

]
+

1

λ

[
Q1/2

0

] [
Q1/2

0

]⊤
+ λ

[
0

− [ PY ]
⊤
A−1/2

] [
0

− [ PY ]
⊤
A−1/2

]⊤
=

[
−P + 1

λQ −Z [ PY ]

⋆ −P + λ [ PY ]
⊤
A−1 [ PY ]

]
.

The existence of Y , P = P⊤ ≻ 0, λ > 0 such that this
inequality holds is equivalent to the existence of Y , P =
P⊤ ≻ 0 such that

0 ≻
[
−P + Q −Z [ PY ]

⋆ −P + [ PY ]
⊤
A−1 [ PY ]

]
. (34)

By the definitions of Q and Z in (28), this inequality is
equivalent to

0 ≻
[
−P − C 0

⋆ −P

]
+

[
B

[ PY ]
⊤

]
A−1

[
B

[ PY ]
⊤

]⊤
and, by Schur complement, to (32b). Since (32) ensures that
A+BK is Schur for all [A B] ∈ Ce and [A⋆ B⋆] ∈ Ce, x = 0
is globally asymptotically stable for x+ = (A⋆+B⋆K)x.

Theorem 1 shows that, since the set Ce of parameters
consistent with data can be characterized without conser-
vatism, robust stabilization of all matrices in the set Ce
(with a common Lyapunov function) is equivalent to the
linear matrix inequality in (32). We also note that (32b) is
equivalent, by (34), Assumption 1 and Schur complement,
to

0 ≻

−P + Q −Z [ PY ] 0
⋆ −P [ P Y ⊤ ]
⋆ ⋆ −A

 .

V. CONTROLLER DESIGN FOR INSTANTANEOUS BOUND

In this section we solve Problem 2. To this end, consider
the set Ck

i in (21b) for k = 0, . . . , T − 1, i.e.,

Ck
i =

{
[A B] : xm(k + 1)− [A B]

[
xm(k)
um(k)

]
= [I −A −B] ε, εε⊤ ⪯ θI

}
.

Importantly, Proposition 1 allows rewriting Ck
i at k = 0, . . . ,

T − 1 equivalently as

Ck
i =

{
[A B] :

(
xm(k + 1)− [A B]

[
xm(k)
um(k)

] )
· [⋆]⊤

⪯ [I −A −B] · (θI)[⋆]⊤ = [I A B] · (θI)[⋆]⊤
}
.

Hence, [A B] ∈ Ci in (21a) if and only if

for k = 0, . . . , T − 1,[
I

A⊤

B⊤

]⊤{[ xm(k+1)
−xm(k)
−um(k)

]
· [⋆]⊤−

[
θIn 0 0
0 θIn 0
0 0 θIm

]}[
I

A⊤

B⊤

]
⪯ 0.

(35)

We can design a controller solving Problem 2 next.
Theorem 2: For data {um(k)}T−1

k=0 , {xm(k)}Tk=0, feasibil-
ity of

find Y, P = P⊤ ≻ 0, τ0 ≥ 0, . . . , τT−1 ≥ 0 (36a)

s. t. 0 ≻

[
−P 0 0 0

0 P Y ⊤ 0
0 Y 0 Y
0 0 Y ⊤ −P

]
(36b)

−
T−1∑
k=0

τk

([
xm(k+1)
−xm(k)
−um(k)

0

][
xm(k+1)
−xm(k)
−um(k)

0

]⊤
−
[ θIn 0 0 0

0 θIn 0 0
0 0 θIm 0
0 0 0 0

])
implies feasibility of (24). If (36) is feasible, a controller gain
satisfying (24) is K = Y P−1. Moreover, x = 0 is globally
asymptotically stable for the feedback interconnection of
unknown plant x+ = A⋆x+B⋆u and controller u = Kx.

Proof: By Schur complement, (36b) is equivalent to

0 ≻
[
−P 0 0

0 P Y ⊤

0 Y Y P−1Y ⊤

]
−

T−1∑
k=0

τk

([
xm(k+1)
−xm(k)
−um(k)

] [
xm(k+1)
−xm(k)
−um(k)

]⊤
−
[
θIn 0 0
0 θIn 0
0 0 θIm

])
.

By the change of variables Y = KP between Y and K, the
previous inequality is equivalent to

0≻M := (37)[
−P 0 0

0 P PK⊤

0 KP KPK⊤

]
−

T−1∑
k=0

τk

([
xm(k+1)
−xm(k)
−um(k)

]
·[⋆]⊤−

[
θIn 0 0
0 θIn 0
0 0 θIm

])
.

Since [I A B] has full row rank for each [A B], the previous
inequality implies [16, Obs. 7.1.8] that

0 ≻
[
I A B

]
M
[
I A B

]⊤ ∀[A B].

By τ0 ≥ 0, . . . , τT−1 ≥ 0, the previous condition implies
that

0 ≻
[

I
A⊤

B⊤

]⊤[−P 0 0

0 P PK⊤

0 KP KPK⊤

][
I

A⊤

B⊤

]
∀[A B] s. t. (35) holds.

This is equivalent to: 0 ≻ (A+BK)P (A+BK)⊤ − P for
all [A B] ∈ Ci, which is (24b).

Theorem 2 shows that a sufficient condition for robust
stabilization of all matrices in the set Ci (with a common
Lyapunov function) is feasibility of the linear matrix inequal-
ity in (36). Moreover, if (36b) is feasible, we have that for
some τ0 ≥ 0, . . . , τT−1 ≥ 0,

T−1∑
k=0

τk

( [
xm(k)
um(k)

] [
xm(k)
um(k)

]⊤
− θIn+m

)
≻ 0. (38)

This is true since (36b) is equivalent to (37), and (37) implies
negative definiteness of the principal submatrix of M with
elements (2, 2), (2, 3), (3, 2), (3, 3). (38) can be interpreted
as a signal-to-noise ratio.

VI. NUMERICAL RESULTS

Data are generated by a system corresponding to the
discretization of a simple distillation column borrowed
from [18]. Specifically, the unknown matrices A⋆ and B⋆

are selected equal to [18, A and B on p. 95]. Such system
has n = 7, m = 3 and the eigenvalues of the unknown A⋆

are 0, 0, 0.8607, 0.8607, 0.9024, 0.9024, 0.9217.
We assume to know that each errors ex and eu satisfy

|ex|2 ≤ ēx and |eu|2 ≤ ēu for some ēx ≥ 0 and ēu ≥ 0. We



Fig. 2. Closed loop of (11) and u = Kx, where K is designed by (36).

consider an experiment with ēx = 5 · 10−5, ēu = 5 · 10−5,
T = 200. By converting the instantaneous bounds into an
energy bound as in Remark 2, we obtain Θ = T (2ēx +
ēu)I17; we also obtain θ = 2ēx + ēu, see Remark 2 and
(19). For this Θ and θ, (32) was not feasible whereas (36)
was. The controller designed with (36) is

K=
[−0.2759 0.1518 1.2911 −0.7883 −0.0065 −2.8121 0.8276

0.1886 −1.1926 −19.8129 2.7679 0.4695 30.2622 −9.6385
0.4625 −0.0028 −1.3624 0.4232 −2.4954 1.0034 −0.4562

]
and the resulting closed-loop solutions are in Figure 2.

We now evaluate the performance of the two
previous approaches quantitatively, given the same ēx
and ēu. To do so, we follow the type of analysis
in [12], to which we refer the reader for more
details. Consider different numbers of data points
T ∈ {20, 40, 60, 80, 100, 120, 140, 160, 180, 200} and
different bounds θ ∈ {10−6,

√
10 · 10−6, 10−5,

√
10 · 10−5,

10−4,
√
10 · 10−4, 10−3}. Based on these values of θ, we

set ēx = ēu = θ/3 so that for each ex, |ex| ≤
√
ēx ∈

{0.0006, 0.0010, 0.0018, 0.0032, 0.0058, 0.0103, 0.0183},
and Θ = TθI . For each of these pairs (T, θ), we randomly
generate 20 data sequences; for each data sequence, apply
(32) in Theorem 1 and (36) in Theorem 2; then count the
number nfeas of instances when (32) and (36) are feasible.
For both cases, we plot the ratio nfeas/20 ∈ [0, 1] in Figure 3
as a function of (T, θ), with a logarithmic scale for θ. In
line with [12], Figure 3 shows that it is more convenient
to employ the instantaneous bound directly together with
the sufficient condition in Theorem 2, rather than convert
it into an energy bound to use the necessary and sufficient
condition in Theorem 1. The downside of Theorem 2 over
Theorem 1 is that the former involves T more decision
variables, but this is hardly an issue unless T is quite large.

VII. CONCLUSIONS

We have addressed the problem of designing a state-
feedback controller based only on noisy data. Specific to
this work is that we have considered the setting where input
and state are affected by measurements errors with both
energy and instantaneous bounds. We have provided two
linear matrix inequalities for the design of a controller that
asymptotically stabilizes all systems consistent with the data
points and the respective energy or instantaneous bounds.
For the energy bound, the linear matrix inequality is actually
equivalent to robust stabilization with a common Lyapunov
function. Numerical examples have validated these results
and provided a caveat for when energy bounds are derived
by converting instantaneous ones. Interesting directions for
future work are extensions to nonlinear systems and control
problems beyond stabilization.
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Fig. 3. Ratio of nfeas/20 ∈ [0, 1] as a function of (T, log10(θ)) for (32)
(top) and (36) (bottom), with “good” regions in yellow.
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