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Abstract— The outer Löwner-John method is widely used
in sensor fusion applications to find the smallest ellipsoid
that can approximate the intersection of a set of ellipsoids,
described by positive definite covariance matrices modeling the
quality of each sensor. We propose a distributed algorithm
to solve this problem when these matrices are defined over
the network’s nodes. This is of particular significance as it
is the first decentralized algorithm capable of computing the
covariance intersection ellipsoid by combining information from
the entire network using only local interactions. The solution
is based on a reformulation of the centralized problem, leading
to a local protocol based on exact dynamic consensus tools.
After reaching consensus, the protocol converges to an outer
Löwner-John ellipsoid in finite time, and to the global optimum
asymptotically. Formal convergence analysis and numerical
experiments are provided to validate the proposal’s advantages.

I. INTRODUCTION

The Löwner-John (L-J) methods [15] are a series of
ellipsoidal approximations for convex sets. Of particular
interest are the convex sets generated by the intersection of n-
dimensional ellipsoids, described by symmetric and positive
semidefinite n-dimensional matrices. L-J methods have a sig-
nificant presence in a wide variety of applications [18], such
as robust control [14] or statistical analysis [20]. Specially
important is in the field of data fusion and state estima-
tion [17], where the ellipsoids represent the measurements
or estimates’ uncertainty. However, there are no distributed
algorithms to compute L-J ellipsoids, despite their potential
application in sensor networks where the measurements are
scattered over a communication network [29].

In sensor fusion, both the inner and outer L-J ellipsoidal
approximations are widely explored under the name of
Covariance Intersection Method (CIM) [17]. The CIM is
posed as a convex optimization program yielding the largest
outer approximation of the intersection of two ellipsoids
described by two covariance matrices. Since then, different
works have applied variants of the CIM. For example, a
sequential procedure of fusion of two ellipsoids [8] can
be used to extend the CIM to N ellipsoids [24]. On the
other hand, recent distributed Kalman filters [13], [16], [30]
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propose CIM variants which directly consider N ellipsoids
via approximations. More recently, the outer L-J method [29]
has been explored for the fusion of the estimates and to
certify the estimation with optimality guarantees. All these
works are particular instances of L-J methods. However,
rather than finding the global L-J ellipsoids in a distributed
manner, they use the CIM to approximate the fusion of
neighboring estimates.

The computation of L-J ellipsoids can be posed as an
optimization program [15]. In this sense, distributed opti-
mization methods [22] have been intensively researched in
recent years, where a general assumption [4], [9], [21], [25]
is that the global cost function is the sum of local objectives.
In the case of L-J methods, the cost function is not separable.
This separability issue extends to the constraints of the outer
L-J methods, where a coupled equality constraint holds. To
address coupled equality constraints in sensor fusion, the
Inverse CIM [26] computes local bounds to ensure consis-
tency, whereas other methods rely on fusion centers [6] to
gather the distributively pre-processed covariance matrices.
Instead, we propose a distributed projected gradient flow [12]
protocol that converges to the coupled equality constraint in
a prescribed time. In more general settings, the literature
proposes distributed dual sub-gradient algorithms [5], [28],
primal relaxations [27], the so-called “subgradient push” [23]
or neural-network-based approaches [19]. In contrast, our
method is suitable for non-separable optimization objectives.

Motivated by this discussion, we develop, for the first time,
a distributed protocol that computes the outer approximation
of the intersection of ellipsoids when only local information
and distributed communications are available. The proposal
is based on a continuous-time Exact Dynamic Consensus
protocol (EDC), which extends previous protocols [1], [2],
[11] to converge before a prescribed time. Consequently,
we can certify the moment in which an outer L-J ellipsoid
is already available. The quality of the outer L-J ellipsoid
is further improved through a distributed optimization step
based on the projected gradient flow [12], such that the
global optimum is asymptotically found. We discuss how
our proposal can be used for CIM in sensor fusion.

Notation: tr(•), det(•) denote the trace and determinant.
R,R≥0,R>0 denote the real, non-negative and positive reals
respectively. 0 ⪯ P denotes when a matrix P ∈ Rn×n

is positive semi-definite. 0, I denote the zero and identity
matrices. For an undirected graph G, denote with λG its
standard algebraic connectivity (see [2]).

II. PROBLEM STATEMENT

Consider a set of N agents which communicate through a
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µ f(Q(x)) gi(xi,Q(x))

0 −tr(Q(x)) −2xitr(P−1
i )

1 log(det(Q(x)−1)) −2xitr(Q(x)−1P−1
i )

2 tr(Q(x)−1) −2xitr(Q(x)−1P−1
i Q(x)−1)

TABLE I: Different ellipsoidal size measure functions
f(•) with Q(x) = (1/N)

∑N
i=1 x

2
iP

−1
i as well

as the components of the gradient ∇f(Q(x)) =
[g1(x1,Q(x)), . . . , gN(xN,Q(x))]⊤/N. We label each
choice by µ for its reference in Theorem 1.

communication network modeled by an undirected connected
graph G = (I,F), where I and F are the sets of nodes
and edges respectively. We denote by Ni ⊆ I the index
set of neighbors for agent i ∈ I. Each agent i is described
by a n−dimensional ellipsoidal set E(Pi) = {y ∈ Rn :
y⊤P−1

i y ≤ 1}, given 0 ≺ Pi ∈ Rn×n.
The goal for the agents is to cooperate to find an ellipsoidal

set E(P) covering Ě :=
⋂N

i=1 E(Pi), characterized by some
P ≻ 0. A wide family of ellipsoidal sets covering Ě is
the one parameterized by P(λ)−1 :=

∑N
i=1 λiP

−1
i with∑N

i=1 λi = 1 and λ = [λ1, . . . , λN]
⊤ ∈ RN

≥0. It can be veri-
fied that E(P(λ)) ⊃ Ě [15]. Therefore, designing P(λ)−1

as a convex combination of {P−1
i }N

i=1 defines a family of
L-J outer ellipsoids for the intersection of {E(Pi)}N

i=1. The
weights λ can then be optimized by solving the following
optimization program:

min
λ∈RN

≥0

f(P(λ)−1), such that
∑N

i=1 λi = 1, (1)

where f(•) is a function that measures the size of E(P(λ)).
For instance, f(•) = log(det(•)) can be used to minimize
the volume of E(P(λ)). Other popular choices of f(•) are
in Table I. The purpose of this work is to design a distributed
protocol that finds the optimum of (1). Due to the numerical
difficulties found when dealing with equality constraints in
practice, we recast (1) into

min
x∈C

f(Q(x)), Q(x) := 1/N
∑N

i=1 x
2
iP

−1
i , (2)

where instead of an equality constraint, the solution is
restricted to a wider feasible manifold C = {x ∈ RN : 1−ε ≤
s(x) ≤ 1} of x = [x1, . . . , xN]

⊤, s(x) := ∥x∥2/N and
ε ∈ (0, 1). By using the change of coordinates λi = x2

i /N,
we ensure λi ∈ R≥0 and that the unique minimizer of (1)
follows from the minimizer of (2) when ε = 0. For any
other ε > 0, we use (2) to approximate solutions of (1) with
arbitrary accuracy dictated by the size of ε. In the following
section, we provide a distributed algorithm to solve (2).

III. DISTRIBUTED OUTER ELLIPSE COMPUTATION

To solve problem (2) in a distributed fashion, we propose a
novel distributed protocol based on Projected Gradient Flow
(PGF) [12] methods. The idea is to drive the trajectories
of x(t) towards the feasible manifold where the equality
constraint in (1) holds. Once there, the trajectories of x(t)

flow towards the optimum while fulfilling the equality con-
straint. To do so, we set a suitable virtual control action
ẋi(t) = ui(t) using only local information.

To design a PGF-based protocol, we first need agreement
on some global quantities across the nodes of the network.
Therefore, the first stage of our algorithm computes local
estimates {ŝi(t), Q̂i(t)}N

i=1 for s(x(t)),Q(x(t)) using the
following EDC protocols:

ŝi(t) = xi(t)
2 − vi(t)

v̇i(t) = κs

∑
j∈Ni

ϕ (ŝj(t)− ŝi(t); ζs; q)

Q̂i(t) = xi(t)
2P−1

i −Vi(t)

V̇i(t) = κQ

∑
j∈Ni

ϕ
(
Q̂j(t)− Q̂i(t); ζQ; q

) (3)

with auxiliary variables Vi(t), vi(t) initialized as Vi(0) =
0, vi(0) = 0. Moreover, κQ, κs, ζQ, ζs > 0, q ∈ (0, 1) are
design parameters. We use ϕ(•; ζ; q) = (| • |1−q + | • |1+q +
ζ)sign(•) for a scalar parameter •, and component-wise for
• of any other dimension. As will be proven in Section IV,
after a transient of prescribed duration Tc, these estimates
will comply Q̂i(t) ≡ Q(x(t)), ŝi(t) ≡ s(x(t)),∀t ≥ Tc

for suitable κQ, κs. This is possible since ζQ, ζs introduce
a discontinuous sliding mode term in ϕ allowing (3) to
achieve EDC even with time-varying consensus inputs. Then,
all agents estimate its local component of the gradient
gi(xi(t),Q(x(t))) ≡ gi(xi(t), Q̂i(t)),∀t ≥ Tc, as in Table I.

During the first consensus stage defined in (3), we set
a control action ui(t) = 0,∀t ∈ [0, Tc]. The second stage
of our algorithm consists of taking the arbitrary initial
conditions xi(0) = xi(Tc) and update xi(t) towards C. Then,
nodes do PGF to find the global optimum of (2). This is
achieved by a discontinuous controller. For all t ≥ Tc:

ui(t)=

{
κCxi(t)sign

((
1−ε

2

)
−ŝi(t)

)
, ŝi(t)/∈[1− ε, 1]

−κCgi(xi(t), Q̂i(t)), ŝi(t)∈[1− ε, 1]
(4)

with design parameter κC > 0, which leads to:

ẋ(t) =

{
κCx(t)sign

((
1− ε

2

)
− s(x(t))

)
, x(t) /∈ C

−κCN∇f(Q(x(t))), x(t) ∈ C
(5)

under the synchronization conditions Q̂i(t) ≡ Q(x(t)),
ŝi(t) ≡ s(x(t)). Using the idea of PGF, when x(t) /∈ C, x(t)
flows towards C, in order to fulfill the equality constraint of
the outer L-J method in (1). On the other hand, for x(t) ∈ C,
x(t) flows in the direction opposite to the gradient, towards
the optimum of the outer L-J method in (1). As we discuss
in Section IV, this results in x(t) flowing in the direction of
the projected gradient of f(Q(x(t))) with respect to C in any
case, allowing to maintain feasible trajectories and converge
to the optimum. In the following, we state our main result
as well as a practical assumption under which it holds.

Assumption 1. Let 0 < b < b, b > 1 and σ, σ > 0. Then,
xi(0) ∈ [b, b] and σI ⪯ P−1

i ⪯ σI,∀i ∈ I, and with p the
maximum scalar component among all {Pi}N

i=1.

Theorem 1. Let G be a connected undirected graph with
N nodes, ℓ edges, algebraic connectivity λG , and consider
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protocols (3). Let κC > 0, ε ∈ (0, 1), and Assumption 1 hold.
Let f(•) in Table I be labeled by µ ∈ {0, 1, 2} and

h(N) = κC max{
√

Nb, 2bσNµ+1(σmin{b2, 1− ε})−µ}.

Let ẋi(t) = ui(t) with ui(t) = 0,∀t ∈ [0, Tc] and ui(t)
defined as in (4) for t ≥ Tc. For any κC > 0, if

κs, κQ >
ℓπ

qλGTc
, ζs >

4bh(N)

κs

√
λG

, ζQ >
4pbh(N)

κQ

√
λG

, (6)

then, there exists Tε > 0 such that x(t) ∈ C, ∀t ≥ Tc+Tε. In
addition, E(Q(x(t))−1) ⊃ Ě ,∀t ≥ Tc + Tε and f(Q(x(t)))
converges asymptotically towards the optimum of (2).

Remark 1. After consensus has been reached for t ≥ Tc,
each agent can check the condition ŝi(t) = s(x(t)) ∈
[1 − ε, 1] to verify if x(t) ∈ C and compute Tε. Hence,
the proposed algorithm obtains an outer L-J ellipsoid from
t = Tc+Tε, since x(t) ∈ C ∀t ≥ Tc+Tε. Thus, the ellipsoid
E(Q̂i(t)

−1) = E(Q(x(t))−1) is already valid to use. Note
that the greater t, the tighter E(Q(x(t))−1), so the user can
design the algorithm depending on the computing resources
available and the desired accuracy for the L-J ellipsoid.

Remark 2. The powers 1 − q, 1 + q with q ∈ (0, 1)
in ϕ are known to induce a fixed settling time bound,
regardless of the initial conditions. This allows all agents
to make sure consensus has been reached before t = Tc

without having to individually check this condition, avoiding
additional synchronization issues. The function ϕ along with
q and κs, ζs (similarly κQ, ζQ) were introduced for static
consensus with disturbances in [2].

A. Application to sensor fusion

In this section, we describe how our proposal is applied
to sensor fusion, and how it relates to other methods in
this context. A standard sensor fusion problem consists of
estimating a quantity of interest p ∈ Rn where each agent
has access to an estimate p̂i ∈ Rn of p under Gaussian
uncertainty with covariance Pi. For example, such estimates
can be obtained at discrete-time instants, by sampling from
a noisy sensor and estimating p with a Kalman filter. In
this case, estimates {p̂i}N

i=1 are correlated such that a sub-
optimal information fusion strategy might be adopted. A
popular choice is the CIM [24], yielding an optimization
program within the class of problems described by (1). Our
method is used to compute the global CIM estimate across
the network by the sensor fusion rule

p̂=P(λ)
∑N

i=1 λiP
−1
i p̂i = P(λ)/N

∑N
i=1(Nλi)P

−1
i p̂i (7)

Note that Nλi and P(λ) can be estimated at agent i using
xi(t)

2 and Q̂i(t)
−1 respectively for t ≥ Tε. Hence, the aver-

age in (7) for {NλiP
−1
i p̂i}N

i=1, equivalently {x2
i P−1

i p̂i}N
i=1

can be computed by average consensus techniques [1], [2].
The sensor fusion rule in (7) has shown to be effective

in many applications as described in [17], [24], where a
sequential solution method is used in [8] to reduce the
computational burden of using all sensors at once at the

expense of reduced estimation quality. However, these so-
lutions mostly rely on a centralized node which gathers
the information across the network and computes (7). Our
proposal is used to compute (7) as well, inheriting the same
accuracy as [8], [17], [24] for this task. Nonetheless, we
are able to obtain p̂,P(λ) in a distributed fashion. Other
distributed approaches such as [13], [16], [29], [30] use local
versions of the CIM rule in (7) where only neighboring
sensors are used at each node. In contrast, we are able to
include the information of all sensors across the network,
which always increases the accuracy when compared to the
case in which a subset of the sensors are used [17].

IV. CONVERGENCE ANALYSIS

In this section, we provide a proof for Theorem 1. Before
that, we prove some auxiliary results. Systems (3) and
ẋi(t) = ui(t) are discontinuous due to the use of the sign(•)
function and the discontinuous nature of (5) at the boundary
of C. Hence, these systems are better understood in the sense
of Filippov [10], devised to study discontinuous dynamics.

We start by analyzing the consensus protocols in (3). Note
that all these protocols have the structure:

υ̇i(t)=κz

∑
j∈Ni

ϕ (ẑj(t)− ẑi(t); ζ, q) , ẑi(t)=zi(t)−υi(t) (8)

for suitable input zi(t), either xi(t)
2 or the elements of

xi(t)
2P−1

i . Now, we show convergence of (8) before t = Tc.

Proposition 1. [2, Special case of Theorem 6] Let G be a
connected undirected graph with N nodes, ℓ edges, algebraic
connectivity λG , and consider

ėi(t) = di(t)− κz

∑
j∈Ni

ϕ(ej(t)− ei(t); ζ, q) (9)

where |di(t)| ≤ L′,∀t ≥ 0. Moreover, given Tc > 0
let κz ≥ ℓπ/(qλGTc), ζ ≥ L′/(κz

√
λG). Then, ei(t) ≡

(1/N)
∑N

i=1 ei(0),∀t ≥ Tc.

Lemma 1. Let G be a connected undirected graph with N
nodes, ℓ edges, algebraic connectivity λG and

∑N
i=1 υi(0) =

0. Moreover, let z̄(t) = (1/N)
∑N

i=1 zi(t) and |żi(t)| ≤
L,∀t ≥ 0. Then, (8) satisfies that ẑi(t) ≡ z̄(t),∀t ≥ Tc

and ∀i, provided that κz ≥ ℓπ/(qλGTc), ζ ≥ 2L/(κz

√
λG).

Proof. Let ei(t) = υi(t)− (zi(t)− z̄(t)) such that: ėi(t) =
( ˙̄z(t)−żi(t))−κz

∑
j∈Ni

ϕ (ej(t)− ei(t); ζ, q) equivalent to
(9) with di(t) = ˙̄z(t) − żi(t). By assumption, |di(t)| ≤ 2L.
Thus, Proposition 1 is used with L′ = 2L to conclude that
ei(t) ≡ (1/N)

∑N
i=1 ei(0) = 0,∀t ≥ Tc. Hence, υi(t) =

zi(t)− z̄(t) and ẑi(t) = z̄(t) for t ≥ Tc.

Now, we study the ideal PGF trajectories for x(t), dictated
by (5). The following result shows that x(t) converge to the
feasible region C, a requirement for a solution of (2).

Lemma 2. Let (5) and b > 0. Then, ∀x(T0) /∈ C, xi(T0) ≥ b
there exist Tε > 0 such that x(t) ∈ C,∀t ≥ T0 + Tε.

Proof. We split the proof in two cases: (a) (1 − ε/2) −
s(x(T0)) > 0: in this case, note that ẋi(t) = κCxi(t)
for t ∈ [T0, T0 + T ′) with T ′ = inf{t > T0 :

5303



x(t) ∈ C}. Thus, xi(t) is increasing in such interval and
∥x(t)∥ ≥

√
Nmini∈I xi(t)2 ≥

√
Nb, ∀t ∈ [T0, T0 + T ′).

Now, consider a Lyapunov function candidate V1(x(t)) =
(1 − ε) − s(x(t)), whose time derivative is V̇1(x(t)) =
−(2/N)x(t)⊤ẋ(t)=−(2/N)κC∥x(t)∥2≤−2κCb

2. Thus, in-
tegrating from T0 to t, V1(x(t)) ≤ V1(x(T0))−2κCb

2(t−T0)
which satisfies V1(x(T0 + Tε)) = 0 with T ′ ≤ Tε :=
V1(x(T0))/(2κCb

2). Hence, s(x(T0 + Tε)) = 1 − ε and
thus x(T0 + Tε) ∈ C. (b) (1 − ε/2) − s(x(T0)) < 0:
note that ẋi(t) = −κCxi(t) implies xi(t) is decreasing for
t ∈ [T0, T0+Tε) and thus, ∥x(t)∥ =

√
Ns(x(t)) ≥

√
N since

s(x(t)) ≥ 1. The rest of the argument for this case follows
as before using V2(x) = s(x) − 1. Thus, x(t) reaches C in
finite time. In addition, x(t) remain inside C for t ≥ T0+Tε

since V1(x(t)) (resp. V2(x(t))) cannot increase at the inner
(resp. outer) boundary of C.

Now, we recall the definition of the projected gradient
with respect to a manifold and then apply the definition to
the problem of interest in (2).

Definition 1. [12] Let F : Rn → R be differentiable and
C = {x ∈ Rn : γi(x) ≤ 0, i ∈ {1, . . . ,m}} for m
differentiable constraint functions γi : Rn → R. Then, the
projected gradient of F (x) with respect to C is given by:

projC(x,−∇F (x)) = argmin
w∈Rn

∥w − (−∇F (x))∥2

such that w⊤∇γi(x) ≤ 0,∀i ∈ J (x)
(10)

where J (x) = {i ∈ {1, . . . ,m} : γi(x) = 0}.

Lemma 3. Let C with γ1(x) = ∥x∥2/N − 1, γ2(x) = (1−
ε) − ∥x∥2/N in Definition 1 with m = 2. Then, for any
differentiable F (•) and any x ∈ C,

projC(x,−∇F (x)) =
−∇F (x) +

(
x⊤∇F (x)

N2

)
x γ1(x) = 0,x⊤∇F (x) ≤ 0

−∇F (x)−
(

x⊤∇F (x)
(N(1−ε))2

)
x γ2(x) = 0,x⊤∇F (x) ≥ 0

−∇F (x) otherwise (11)

Proof. First, ∇γ1(x) = 2x/N,∇γ2(x) = −2x/N. Consider
the following cases: (a) γ1(x) < 0, γ2(x) < 0: since
(10) is unconstrained, w = −∇F (x). (b) for γ1(x) =
0,x⊤∇F (x) ≥ 0 or γ2(x) = 0,x⊤∇F (x) ≤ 0:
w = −∇F (x) satisfies the constraint w⊤∇γ1(x) ≤ 0
and w⊤∇γ2(x) ≤ 0 in (10) respectively. (c) γ1(x) =
0,x⊤∇F (x) ≤ 0: let h(w) = ∥w + ∇F (x)∥2 and w∗ =

−∇F (x) +
(

x⊤∇F (x)
N2

)
x. Note that (w∗)⊤∇γ1(x) = 0

making w∗ is feasible for (10) and ∇wh(w) = 2(∇F (x) +
w) = λx/N = (λ/2)∇w(w⊤∇γ1(x)) is satisfied with w =
w∗ and Lagrange multiplier λ = 2x⊤∇F (x)/N where ∇w

denotes gradient with respect to w. Hence, w = w∗ satisfies
the optimality conditions for (10) and is the unique minimizer
[3, Proposition 3.1.1]. (d) γ2(x) = 0,x⊤∇F (x) ≥ 0: the
same reasoning of (c) applies.

In the following, we show that the ideal system (5) flows
in the direction of the previously obtained projected gradient.

Lemma 4. Let (5) with x(T0) ∈ C. Then, under Definition
1, ẋ(t) = α(x(t)) projC(x(t),−∇f(Q(x(t))) for some
positive scalar function α : Rn → R>0.

Proof. In this proof, we omit time dependence for concise-
ness. We compare the right hand side of (5) with (11) in
Lemma 3 under F (x) = f(Q(x)): (a) γ1(x) < 0, γ2(x) <
0: ẋ = −α(x)∇F (x) = α(x) projC(x,−∇F (x)) due to
(11) with α(x) = κCN. (b) γ1(x) = 0: we invoke the
Filippov interpretation of solutions to write ẋ. Call w1 =
κCxsign((1 − ε

2 ) − s(x)) and w2 = −κCN∇f(Q(x)).
Filippov solutions in this manifold have ẋ in the convex
hull of {w1,w2}. Concretely, if γ1(x) = 0,x⊤∇F (x) ≥ 0,
then w1,w2 point inside C, and s(x(t)) = 0 is satisfied
for an isolated instant t, hence ignored by the trajectory [7].
In the case of γ1(x) = 0,x⊤∇F (x) ≤ 0, w1,w2 point in
different directions with respect to the inner boundary of C,
inducing sliding motion along γ1(x) = 0. Therefore, ẋ is the
convex combination of w1,w2, lying in the tangent plane of
γ1(x) = 0 [7]. Note that w = −∇F (x) +

(
x⊤∇F (x)

N2

)
x =(

x⊤∇F (x)
κCN2sign((1− ε

2 )−s(x))

)
w1 +

(
1

κCN

)
w2 with w⊤x = 0,

lying in such tangent plane. Hence, ẋ is proportional to
w and ẋ = α(x)w = α(x) projC(x,−∇F (x)) for some
α(x) > 0. (c) γ2(x) = 0: the proof follows from (b).

Lemma 5. Consider (5) under Assumption 1 and f(•) in
Table I labeled by µ ∈ {0, 1, 2}. For any x(T0) /∈ C it follows
that ∥ẋ(t)∥ ≤ h(N),∀t ≥ T0 with h(•) as in Theorem 1.

First, we show that |xi(t)| ≤ b,∀t ≥ T0 by contradiction.
Assume there exists T2 ≥ T0 such that |xi(T2)| > b. By
continuity of the solution, there must have existed T1 =
sup{t ∈ [T0, T2] : |xi(t)| = b} such that ai(t) = |xi(t)| is
increasing for t ∈ [T1, T2]. However, in this interval, x(t) /∈
C since s(x(t)) = ∥x(t)∥2/N ≥ mini∈I |xi(t)|2/N ≥ b

2
>

1. Therefore, due to (5), ȧi(t) = −κCai(t) which means that
ai(t) is decreasing in t ∈ [T1, T2] leading to a contradiction.

Now, we show tr(Q(x(t))−1) ≤ N(σmin{b2, 1 −
ε})−1,∀t ≥ T0. From the proof of Lemma 2 it follows
that s(x(t)) = ∥xi(t)∥2/N ≥ b2,∀t ∈ [T0, T0 + Tε] and
s(x(t)) ≥ 1 − ε, ∀t ≥ T0 + Tε. Henceforth, Q(x(t)) ⪰
(1/N)

∑N
i=1 xi(t)

2σI ⪰ σmin{b2, 1 − ε}I for t ≥ T0.
Then, Q(x(t))−1 ⪯ (σmin{b2, 1 − ε})−1I from which
tr(Q(x(t))−1) ≤ N(σmin{b2, 1 − ε})−1 is obtained. From
the previous bounds, and the gradient in Table I:

∥∇f(Q(x(t)))∥ ≤ max
i∈I

2|xi|tr(P−1
i )tr(Q(x(t))−1)µ

≤ 2bσNµ(σmin{b2, 1− ε})−µ,

and

∥ẋ(t)∥ ≤ κC max{∥x(t)∥,N∥∇f(Q(x(t)))∥}
≤ κC max{

√
Nb, 2bσNµ+1(σmin{b2, 1− ε})−µ}

Recalling from Lemma 2 that (5) flows in the direction
of the projected gradient, the following result characterizes
convergence of such flow towards the optimum of (2).
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Proposition 2. Let F (•), γi(•), C defined as in Definition 1
and α : Rn → R>0 be a positive scalar function such that
ẋ(t) = α(x(t)) projC(x(t),−∇f(x(t))) has unique forward
solution for t ≥ T0 and any x(T0) ∈ C. Then, x(t) converges
asymptotically towards argminx∈C F (x).

Proof. The result follows using the same reasoning in [12,
Theorem 3], where a proof was provided for α(x) = 1.

Proof of Theorem 1: We start by analyzing (3) for t ∈
[0, Tc], in which xi(t)

2P−1
i and xi(t)

2 remain constant
because ui(t) = 0. The result from Lemma 1 is valid
obtaining ŝi(t) ≡ s(x(t)), Q̂i(t) ≡ Q(x(t)) at t = Tc.
Assume that the condition ŝi(t) ≡ s(x(t)) is maintained
for some open interval T ⊂ [Tc,∞). Then, x(t) is dictated
by (5) for any t ∈ T and thus zi(t) = xi(t)

2 comply
|żi(t)| ≤ 2|xi(t)|∥ẋ(t)∥ ≤ 2bh(N) due to Lemma 5. Hence,
the conditions of Lemma 1 are fulfilled with L = 2bh(N)
due to the choice of κs in Theorem 1 for such interval T .

Now, we show that ŝi(t) ≡ s(x(t)) is maintained ∀t ∈
[Tc,∞). We verify this by contradiction. Assume that there
exists T2 = inf{t ≥ Tc : ∥ẋ(t)∥ > 2bh(N)}. Then, there
must have existed some T1 = sup{t < T2 : ŝi(t) ̸=
s(x(t)) or Q̂i(t) ̸= Q(x(t))} since the system could not
have been the ideal one in (5). Hence, the system is
not synchronized for some time t ∈ [T1, T2] for which
∥x(t)∥ ≤ 2bh(N), which is impossible since this means
that the inputs for the consensus protocols have bounded
derivative, and Lemma 1 ensure synchronization. Hence,
ŝi(t) ≡ s(x(t)),∀t ≥ Tc. The same reasoning applies to
the synchronization condition Q̂i(t) ≡ Q(x(t)).

Now, use Lemma 2 with T0 = Tc to obtain x(t) ∈
C,∀t ≥ Tc + Tε. We can verify E(Q(x(t))−1) ⊃
Ě ,∀t ≥ Tc + Tε by taking any y ∈ Ě which
satisfy y⊤Q(x(t))y =

∑N
i=1(xi(t)

2/N)y⊤P−1
i y ≤∑N

i=1(xi(t)
2/N) = s(x(t)) ≤ 1. Hence, y ∈ E(Q(x(t))−1).

Use Lemma 4 with T0 = Tc + Tε to write (5) as ẋ(t) =
α(x(t)) projC(x(t),−∇f(Q(x(t))), implying convergence
towards the optimal weights due to Proposition 2.

V. NUMERICAL EXPERIMENTS

In this section, we simulate the proposal to illustrate its
properties in the context of a sensor fusion problem. We
assume that each agent reads a noisy measurement from
a sensor with covariance matrix {Pi}N

i=1. For the sake of
generality, we set Pi = M⊤

i Mi where Mi was drawn with
uniformly distributed components. The purpose of each agent
i is to compute Nλi,P(λ) from xi(t)

2, Q̂i(t)
−1 so that they

can be used in the sensor fusion rule in (7). We choose
f(Q(x)) = tr(Q(x)−1) as a performance index.

All the differential equations, namely, (3) and ẋi(t) =
ui(t) under (4), where simulated using the forward Euler
method with time step ∆t = 10−4. In the sake of inter-
pretability, we set n = 2 and a graph G of N = 6 agents
with edges F = {(1, 4), (1, 5), (2, 4), (2, 6), (3, 6), (5, 6)}.
In addition, we set ε = 0.05 as well as parameters Tc =
1, q = 1/2, b = 0.1, b = 1.1, κC = 0.1, κs = κQ =
10, ζQ = ζs = 1, ζg = 4. Figure 1 shows the local estimates

0 0.5 Tc = 1 2 2.5
0

0.2

0.4

0.6

0.8

1

1

0
0 0.06

ŝi(t)
s(x(t))

1-ε

Tc + Tε ≈ 1.57
t

t

Fig. 1: Convergence of the estimates ŝi(t) which reach
consensus towards s(x(t)) at t ≈ 0.05, with zoom in
t ∈ [0, 0.06]. Moreover, the evolution of the surface s(x(t))
towards achieving x(t) ∈ C is shown.
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t

λi(t)
λ∗i

Fig. 2: Evolution of the trajectories λi(t) = xi(t)
2/N

which converge towards the global optimal values of (1)
asymptotically, up to error less than ε = 0.05.

ŝi(t) which reach consensus towards the global value of
s(x(t)) at t ≈ 0.05, occurring before t = Tc = 1, which
is a conservative prescribed convergence time bound. After
t = Tc, s(x(t)) increases until it reaches s(x(t)) = 1 − ε,
which means that x(t) ∈ C from t ≥ Tc+Tε with Tε ≈ 0.57.
Figure 2 shows that, once x(t) ∈ C, then, the trajectories of
λi(t) = xi(t)

2/N converge towards the global minimizer
of (2) which corresponds to λ∗

1 = λ∗
2 = λ∗

3 = λ∗
4 =

0, λ∗
5 = 0.6582, λ∗

6 = 0.3418 in this example, up to some
error less than ε = 0.05. Finally, Figure 3 show the ellipses
{E(Pi)}N

i=1 as well as E(Q(x(t))−1) with t = Tc + Tε and
t = 30, which shows that E(Q(x(t))−1) ⊃ Ě in both cases,
but the latter case leads to a tighter outer L-J ellipse.

Moreover, we evaluate the time it takes for the agents
to reach consensus Tcons and Tε by repeating the same
experiment as before with a circular graph G of N = 10
and 20 agents and with n = 2 and 4. We set κs, κQ, ζs, κQ
the same in all cases, adjusted accordingly to account for
ℓ, λG in both networks as required in Theorem 1. The results
are summarized in Table II where it is observed that Tcons
increases with N as expected from [2]. On the other hand,
Tcons is similar as before when n is increased. The reason
is that (3) is executed in parallel for each component of
Q̂i(t) such that there is no influence of n in the protocol
convergence itself. Note that Tε is similar in all cases since
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Fig. 3: Ellipses {E(Pi)}N
i=1 (shown in grey) as well as

E(Q(x(t))−1) with t = Tc + Tε (blue) and t = 30 (red).

once consensus has been reached, the system is equivalent
to (5) which does not depend on N, n for x(t) /∈ C.

N ℓ λG n Tcons [s] Tε [s]

10 9 0.3819
2 0.0371 0.169

4 0.0368 0.172

20 19 0.0978
2 0.085 0.170

4 0.088 0.181

TABLE II: Values for the consensus and feasible region
reaching times Tcons, Tε, for a circular graph with N nodes.

VI. CONCLUSIONS

This work has developed a distributed method to compute
a class of outer L-J ellipsoids. This is particularly useful for
sensor fusion applications, as it allows the computation of the
covariance intersection ellipsoid by combining information
from the entire network using only local interactions. The
algorithm reformulates the centralized problem and utilizes
EDC tools to reach consensus and converge to an outer
L-J ellipsoid in finite time, and to the global optimum
asymptotically. The proposal’s advantages are supported by
formal convergence analysis and numerical experiments.
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