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Abstract— We consider the problem of finding a d-
dimensional spectral density through a moment problem which
is characterized by an integer parameter ν. Previous results
showed that there exists an approximate solution under the
regularity condition ν ≥ d/2 + 1. To realize the process
corresponding to such a spectral density, one would take ν
as small as possible. In this paper we show that this condition
can be weakened as ν ≥ d/2.

I. INTRODUCTION

Multidimensional stationary processes (or stationary ran-
dom fields) represent a fundamental tool in many applica-
tions of signal and image processing. In those applications
we have to estimate the multidimensional spectral density
of the process. This task can be addressed by means of
a moment problem, more precisely, a convex optimization
problem subject to moment constraints.

In the unidimensional case (d = 1) a wide range of
spectral estimation paradigms based on moment problems
have been proposed, see for instance [1], [2]: in this case the
moments correspond to some covariance lags of the process
and in the simplest setup the optimal spectrum maximizes
the entropy rate. The appealing property of these paradigms
is that the optimal spectrum is rational and thus leading to a
finite-dimensional linear stochastic system (called “shaping
filter” in the literature of signal processing) after spectral
factorization.

In the case where the moments include both covariance
lags and cepstral coefficients (i.e., logarithmic moments),
then it is possible to characterize only an approximate solu-
tion to the moment problem: the spectrum maximizing the
entropy rate matches the covariance lags and approximately
the cepstral coefficients [3]. Such a solution is obtained by
considering a regularized version of the dual optimization
problem.

These paradigms have been extended also to the mul-
tidimensional case, see e.g., [4], [5]. Although spectral
factorization is not always possible in the multidimensional
setting, rationality still seems to be a key ingredient toward
a finite-dimensional realization theory [6], [7]. The main
issue is, however, that the solution of the moment problem
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is not necessarily a spectral density, but rather a spectral
measure that may contain a singular part [8]. In particular,
if the moments are both the covariance lags and the cepstral
coefficients, the existence of an approximate rational solution
is only guaranteed when the dimension is d ≤ 2 [8].

In order to overcome this limitation on the dimension
d, we have proposed a new moment problem, hereafter
called ν-moment problem, in which the entropy rate has been
replaced by a more general definition of entropy, called ν-
entropy, whose derivation comes from the α-divergence [9].
The definition of cepstral coefficients has been generalized
accordingly. The ν-moment problem is characterized by the
integer parameter ν. In [10], [11] we have shown that for
any d > 2 there exists an approximate rational solution to
the ν-moment problem under the regularity condition ν ≥
d/2 + 1. On the other hand, if the solution admits a spectral
factorization, then the estimated process can be realized
through a cascade of ν identical linear filters. Therefore, the
larger ν is, the larger the complexity is in order to realize
such a process. Accordingly, from a practical perspective
there are situations in which one would take ν as small as
possible.

The aim of the present paper is to show that the regularity
condition can be weakened as ν ≥ d/2 and thus we have
more freedom in choosing the rational structure than the
one characterized in our previous work [10]. Moreover, it
is possible to estimate a d-dimensional process with ν =
dd/2e whose realization, if admissible, is simpler than the
one obtained using the theory in [10]. Such a result is
achieved through a new regularization technique. Moreover,
the technical proof of the existence of an approximate
rational solution to the ν-moment problem takes a rather
different route from the one in [10].

II. PROBLEM FORMULATION

Consider a d-dimensional real1 stationary random field
{y(t) : t ∈ Zd} with zero mean and a spectral density Φ(θ).
The latter is a nonnegative function on the d-dimensional
frequency domain Td := (0, 2π]d and θ = (θ1, . . . , θd) ∈ Td
is a frequency vector. In the sequel, we shall use the notation
Φ(eiθ) which is common in Complex Analysis. Here eiθ is a
shorthand for the vector (eiθ1 , . . . , eiθd) representing a point
on the d-torus which is isomorphic to Td.

The ν-entropy of the random field y with the integer

1We choose to present the theory for real random fields for simplicity.
After suitable adaptation, complex random fields can be handled as well.
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parameter ν > 1 is defined as

Hν(Φ) :=
ν2

ν − 1

(∫
Td

Φ
ν−1
ν dµ− 1

)
(1)

where dµ = 1
(2π)d

∏d
j=1 dθj is the normalized Lebesgue

measure on Td. It is worth noting that Hν is a more
general definition of entropy. Indeed, for the case ν = 1
(which is understood in a suitable limit sense), we obtain
the usual entropy rate H1(Φ) =

∫
Td log Φdµ [10]. It is worth

noting that Hν measures the discrepancy between Φ and the
constant function 1. In this paper, we suppose that a finite
index set Λ ⊂ Zd is given and contains 0 and is symmetric
with respect to the origin, i.e., k ∈ Λ implies −k ∈ Λ. Let
Λ0 := Λ\{0} be another index set. Then suppose further
that the following data are given:
• c = {ck : k ∈ Λ} which is a covariance multisequence
of the random field y, namely ck := E[y(t + k)y(t)] where
E denotes the expectation operator. It is well known that
the covariances are the Fourier coefficients of the spectral
density Φ, i.e.,

ck =

∫
Td
ei〈k, θ〉Φdµ ∀k ∈ Λ, (2)

where 〈k, θ〉 =
∑d
j=1 kjθj is the standard inner product

in Rd and the multidimensional exponential function is
understood as ei〈k, θ〉 =

∏d
j=1 e

ikjθj .
• m = {mk : k ∈ Λ0} which is a multisequence
of generalized cepstral coefficients, called ν-cepstral coef-
ficients, associated to the same random field y, see [10]. A
mathematical definition similar to (2) is given as

mk :=
ν

ν − 1

∫
Td
ei〈k, θ〉Φ

ν−1
ν dµ ∀k ∈ Λ0. (3)

It is a generalization of the classic logarithmic moments used
in [3], [4]. Here m0 is excluded for technical reasons.

Now we can formulate the multidimensional ν-moment
problem:

max
Φ≥0

Hν(Φ) s.t. (2) and (3), (4)

where the data c and m enter as measurements on the
spectrum Φ. Notice that, the notion of ν-cepstral coefficients
(3) is consistent with the objective functional (1) employed in
(4). Moreover, Problem (4) aims to select the power spectral
density having the most regular shape while matching the
given moments.

The ν-moment problem (4), which is also referred to as
the primal optimization problem, can be used to perform
spectral estimation. Assume that a dataset generated by y has
been collected. Then, it is possible to compute the sample
estimates ĉk and m̂k of ck and mk, respectively. Then, the
estimate of Φ is the solution of (4) in which ck and mk are
substituted by ĉk and m̂k.

In [10], we derived the dual optimization problem and
showed that, if the dual problem admits an interior-point
solution, the optimal spectral density (primal variable) is a
rational function of the form

Φν = (P/Q)ν (5)

T

R

α

r

Fig. 1. Target parameters estimation problem: T is source generating the
pulse train signals, R is the receiver, α is the azimuth angle and r is the
range.

where P and Q are positive2 trigonometric polynomials
associated with the Lagrange multipliers. However, it is
highly nontrivial to prove that the optimal dual variable lies
in the interior of the feasible set. In order to overcome this
difficulty, we introduced a regularization term in the dual
objective function which depends solely on P :

λ

ν − 1

∫
Td

1

P ν−1
dµ (6)

where λ > 0 is a regularization parameter. Such a regularizer
can of course be interpreted as a barrier function (for P )
since under the regularity condition

ν ≥ d/2 + 1, (7)

the regularizer takes an infinite value if P has a zero on
the d-torus. Hence, the optimal P is forced to be an interior
point, i.e., a positive polynomial. Obviously, one can always
choose ν such that the condition (7) is met, and indeed in
this case, we showed that the optimal Q is also positive so
that the optimal form (5) is true for the primal problem (4).
The price to pay for the regularization is that the ν-cepstral
constraints (3) are only approximately satisfied with an error
that decreases as λ → 0+, i.e., the rational function (5)
represents an approximate solution to (4). It is worth noting
that a process with the spectrum (5) can be generated by a
cascade of ν identical multidimensional filters if P/Q admits
a spectral factor corresponding to a state space realization.
Clearly, the larger ν is, the larger the complexity of the
realization is. Accordingly, the key point from a practical
perspective is to have the possibility to take ν as small as
possible.

Having in mind this important requirement, in this paper
we want to face the following problem in which we consider
a new regularization term.

Problem 1. Take the barrier function in the dual problem as

λ

ν − 1

∫
Td

1

P ν
dµ (8)

and show that the corresponding approximate solution of the
primal problem (4) exists under the weaker condition ν ≥
d/2.

2By positive we mean that P > 0 for any point on the d-torus. In contrast,
if P ≥ 0 and P = 0 for certain points, we say that P is nonnegative.
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Example 1. Consider an automotive radar system installed in
the red car of Fig. 1 that employs coherent linear frequency-
modulated pulse trains signals (T) and uses a uniform linear
array of receive antennas for the measurement (R). The
target (green car in Fig. 1) is identified by the range r, the
azimuth angle α and the relative velocity v. The problem
of estimating the target parameters can be formulated as a
multidimensional spectral estimation problem with d = 3
[12], [13], [14]. Under the aforementioned hypothesis on
the existence of a “realizable” spectral factor, the estimated
model can be realized by a cascade of at least 3 identical
filters using the theory developed in [10], while only 2
using the theory that we will develop in this paper which
makes more efficient the implementation of the model for
simulation purposes. Indeed, the computational cost of data
generation via white noise filtering is proportional to ν. In
addition, it is important to point out that the computational
burden of multidimensional filtering is remarkable because
it grows exponentially with respect to d.

III. DUAL PROBLEM

Let us recall the innocuous condition ν ≥ 2 which is
assumed throughout this paper. In [10, Sec. 4], it has been
shown that the dual function of the primal problem (4) is

Jν(P,Q) :=
1

ν − 1

∫
Td

P ν

Qν−1
dµ+ 〈q, c〉 − 〈p, m〉, (9)

where:
• q = {qk : k ∈ Λ} contains the real coefficients
of the nonnegative trigonometric polynomial Q(eiθ) :=∑

k∈Λ qke
−i〈k, θ〉 such that q−k = qk;

• similarly, p = {pk : k ∈ Λ0} contains the real coefficients
of the nonnegative polynomial P (eiθ) =

∑
k∈Λ pke

−i〈k, θ〉

with p−k = pk and p0 = 1 fixed;
• 〈q, c〉 :=

∑
k∈Λ qkck inner product of two multisequences

indexed in Λ, and 〈p, m〉 is understood similarly with the
index set replaced by Λ0.

Since it is rather difficult to prove that the dual problem
admits an interior-point solution, see [10], we consider the
regularized dual function

Jν,λ(P,Q) := Jν(P,Q) +
λ

ν − 1

∫
Td

1

P ν
dµ (10a)

=
1

ν − 1

∫
Td
g(P (eiθ), Q(eiθ))dµ+ 〈q, c〉 − 〈p, m〉

(10b)

where the bivariate function is defined as

g(x, y) := xν/yν−1 + λ/xν (11)

with x > 0, y > 0 and the regularization parame-
ter λ > 0 is fixed. Now let us introduce the feasible
sets P+ :=

{
Q(eiθ) =

∑
k∈Λ qke

−i〈k, θ〉 : Q > 0 on Td
}

,
P+,o :=

{
P (eiθ) =

∑
k∈Λ pke

−i〈k, θ〉 ∈ P+ : p0 = 1
}

so
that Q ∈ P+ and P ∈ P+,o. The domain of definition of
Jν,λ can be extended to the boundary of the feasible set
P+,o×P+ by excluding the zero sets of P and Q from the
domain of integration, which does not change the values of

the integrals since the zero sets have zero Lebesgue measure.
Moreover, Jν,λ may take a value of ∞ at some boundary
points, and hence it is understood as an extended real-valued
function.

Lemma 1. The function g in (11) is strictly convex in the
domain x > 0, y > 0 (the first quadrant).

Proof. We shall prove the claim via the derivative test. After
some straightforward computations, we arrive at

∇g(x, y) =xν−1y−ν
[

νy
(1− ν)x

]
+

[
−λνx−ν−1

0

]
, (12a)

∇2g(x, y) =ν(ν − 1)xν−2y−ν−1

[
y2 −xy
−xy x2

]
+

[
λν(ν + 1)x−ν−2 0

0 0

]
, (12b)

where ν(ν−1) > 0 is a positive integer. It is readily observed
that every diagonal element in the Hessian of g is positive,
and the first matrix in (12b) is positive semidefinite. After
checking the determinant of the Hessian, we conclude that
∇2g(x, y) is positive definite in the first quadrant and the
strict convexity follows.

The next proposition is a direct consequence of Lemma 1.

Proposition 1. The regularized dual function Jν,λ is strictly
convex in the closed set P+,o ×P+.

Proof. We only need to show the strict convexity of the
integral term in (10b) since the inner products are linear in
(P,Q). In the interior of the feasible set, namely P ∈ P+,o

and Q ∈ P+, the strict convexity of the integral term
follows from that of g (see Lemma 1), and this can be
seen by a pointwise argument on the integrand (see e.g.,
Proposition 5.3 in [12]). The same reasoning works if P or
Q is on the boundary of the respective feasible set because,
once the zero sets of P and Q are excluded from the domain
of integration, the function g(P (eiθ), Q(eiθ)) is well defined
and the proof holds verbatim.

We conclude that the regularized dual optimization prob-
lem can be formulated as

min Jν,λ(P,Q) s.t. P ∈ P+,o, Q ∈ P+. (13)

It is worth noting that the regularizer (6) in [10] is designed
so that the regularized dual function always diverges on the
boundary of the feasible set. Hence any boundary point is
not a minimizer. The main result in [12] also exploits a
similar property. In the present setting, however, the route
to establish the existence of an interior-point minimizer will
be completely different, and this is done in the next section.

IV. UNIQUE SOLUTION UNDER THE CONDITION ν ≥ d/2
In this section we shall see how the condition ν ≥ d/2

guarantees that the regularized dual problem (13) has an
interior-point solution. By Proposition 1, we know that a
minimizer of Jν,λ in P+,o ×P+ is unique provided that it
exists. We shall first establish such existence. Then, under
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the regularity condition ν ≥ d/2 which is weaker than
(7), we aim to exclude the possibility that a minimum of
Jν,λ may fall on the boundary of the feasible set, which
is a weaker version of Lemma 5.8 in [10], using a Byrnes–
Gusev–Lindquist-type argument that first appeared in [1] and
subsequently in e.g., [4].

A. Existence of a minimizer in P+,o ×P+

The existence of a solution to (13) can be shown via
arguments similar to the ones in [10]: such existence depends
on the following feasibility assumption which holds for
instance, when the covariance lags are estimated from data
using the so called standard biased covariance estimates
[15].

Assumption 1 (Feasibility). The given covariances {ck}k∈Λ

admit an integral representation

ck =

∫
Td
ei〈k, θ〉Φ0dµ ∀ k ∈ Λ, (14)

where Φ0 is a nonnegative function on Td and is positive on
some open ball B1 ⊂ Td.

In order to prove our existence result, we need the follow-
ing lemmas.

Lemma 2. The unregularized dual function Jν in (9) and the
regularized version Jν,λ in (10) are lower-semicontinuous
on P+,o × P+. In particular, they are both continuous on
P+,o ×P+.

Proof. The proof is similar to that of Lemma 5.5 in [10]. The
only difference here is that the power of P in the regularizer
in (10a) is ν instead of ν − 1 in [10].

Lemma 3. Suppose that Assumption 1 holds. If a sequence
{(Pj , Qj)}j≥1 ⊂ P+,o ×P+ is such that ‖(Pj , Qj)‖ → ∞
as j →∞, then Jν,λ(Pj , Qj)→∞.

Proof. See the proof of Lemma 5.6 in [10] which uses
Assumption 1.

Proposition 2. Under Assumption 1, the regularized dual
optimization problem (13) admits a solution.

Proof. Take a sufficiently large real number β, so that the
sublevel set of the regularized dual function J−1

ν,λ(−∞, β] :=

{(P,Q) ∈ P+,o×P+ : Jν,λ(P,Q) ≤ β} is not empty. Then
Lemma 2 implies that the sublevel set is closed; Lemma 3
implies that the sublevel set is bounded. Obviously the
polynomial pair (P,Q), parametrized by their coefficients,
belongs to a finite-dimensional vector space. It follows that
the sublevel set is compact. Given the lower-semicontinuity
of the objective function Jν,λ (see Lemma 2), a minimizer
exists in J−1

ν,λ(−∞, β] by the extreme value theorem of
Weierstrass.

B. Non-optimality of boundary points given ν ≥ d/2
In this subsection we prove that the optimal solution of

(13) cannot belong to the boundary of P+,o × P+ using
arguments which conceptually differ from the ones used for

the case ν ≥ d/2 + 1 in [10]. Notice first that if P ∈ ∂P+,o

where ∂ denotes the boundary of a set, then the regularization
term (8) employed in (10a) takes a value of ∞ under the
condition ν ≥ d/2, see Proposition A.4 in [12]. The other
term, namely the unregularized function Jν(P,Q) whose
expression is given in (9), is bounded from below under
Assumption 1, see the proof of [10, Lemma 5.6]. Therefore,
in this case we have Jν,λ(P,Q) = ∞ which is certainly
not a minimum. Consequently, an optimal (P,Q) must have
P ∈ P+,o.

Next, we work on the case of (P,Q) ∈ P+,o × ∂P+. It
is still possible that the integral term in (9) diverges so that
Jν,λ(P,Q) = ∞, and such a point is obviously not a mini-
mizer. Therefore, we only need to consider points (P,Q) ∈
P+,o×∂P+ such that the function value Jν,λ(P,Q) is finite.
Construct the real-valued function

f(t) := Jν,λ(P,Q+ t1) (15)

defined for t ≥ 0 where 1 denotes the constant polynomial
taking value one. One can show without difficulty that f
“inherits” the strict convexity from Jν,λ (see Proposition 1).
It is worth noting that the continuity of f(t) can be extended
to t = 0+ which corresponds to the boundary point (P,Q),
in contrast with the general result that Jν,λ is only lower-
semicontinuous on the boundary of the feasible set (see
Lemma 2). These properties are established in the next
statement.

Lemma 4. The function f(t) in (15), where (P,Q) is an
arbitrarily fixed point in P+,o×∂P+ such that Jν,λ(P,Q) <
∞, is strictly convex and continuous in [0,∞).

Proof. The strict convexity of f follows directly from Propo-
sition 1, and it remains to show the continuity. For t > 0,
the argument (P,Q+ t1) belongs to the interior P+,o×P+,
and the continuity of f follows from that of Jν,λ (see
Lemma 2). Hence, we are only concerned with the right
continuity of f at t = 0. By the lower-semicontinuity of
Jν,λ at (P,Q) (Lemma 2 again), for any ε > 0, there
exists δ > 0 such that whenever (P1, Q1) ∈ P+,o × P+

satisfies ‖(P1, Q1)− (P,Q)‖ < δ, we have Jν,λ(P1, Q1) >
Jν,λ(P,Q)−ε. We can always choose t sufficiently small to
make the argument on the right-hand side of (15) sufficiently
close to (P,Q), which leads to the inequality f(t) > f(0)−ε.
At the same time, by strict convexity we have f(t) <
tf(1) + (1 − t)f(0) = f(0) + t[f(1) − f(0)]. The last
term, namely t[f(1)− f(0)] can be made smaller than ε (in
absolute value) for t sufficiently small. Therefore, we reach
the inequality |f(t)− f(0)| < ε which proves the continuity
at t = 0+ since ε > 0 is arbitrarily chosen.

Proposition 3. Fix any point (P,Q) ∈ P+,o × ∂P+ such
that Jν,λ(P,Q) < ∞. Then the function f(t) in (15) has a
derivative f ′(t)→ −∞ as t→ 0+. Therefore, (P,Q) cannot
be a minimizer of Jν,λ.

Proof. After some computations, we have for t > 0 that

f ′(t) = c0 −
∫
Td

[
P

Q+ t1

]ν
dµ. (16)
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Since P ∈ P+,o, we know Pmin := minθ∈Td P (eiθ) > 0.
Then the following relation∫

Td

[
P

Q+ t1

]ν
dµ ≥ P νmin

∫
Td

1

(Q+ t1)ν
dµ→∞ (17)

holds as t → 0+ by Lebesgue’s monotone convergence
theorem [16, p. 21] and Proposition A.4 in [12]. This shows
that f ′(t) in (16) tends to −∞ as t goes to zero from the
right. Taking Lemma 4 into account, we conclude that 0 is
not a local minimizer of f(t). Consequently, any boundary
point (P,Q) ∈ P+,o × ∂P+ is not a minimizer of Jν,λ,
because taking an arbitrarily small step along the direction
(0,1), which points towards the interior P+,o × P+, will
result in a decrease of the objective function value.

We summarize what we have got so far in the next
theorem.

Theorem 1. Under Assumption 1 and the condition ν > d/2,
the optimization problem (13) admits a unique interior-point
solution (P̂ , Q̂) ∈ P+,o ×P+ such that

ck =

∫
Td
ei〈k, θ〉(P̂ /Q̂)νdµ ∀k ∈ Λ, (18a)

mk =

∫
Td
ei〈k, θ〉

ν

ν − 1

[
(P̂ /Q̂)ν−1 − λ/P̂ ν+1

]
dµ ∀k ∈ Λ0.

(18b)

In plain words, the spectral density Φ̂ν = (P̂ /Q̂)ν achieves
covariance matching and approximate ν-cepstral matching
with errors

εk =
λν

ν − 1

∫
Td
ei〈k, θ〉

1

P̂ ν+1
dµ, k ∈ Λ0.

Proof. The existence of a solution is guaranteed by Propo-
sition 2 and the uniqueness by Proposition 1. Moreover,
given the reasoning at the beginning of this subsection and
Proposition 3, the optimal (P̂ , Q̂) must be an interior point,
i.e., both polynomials are positive. As a consequence, it
must satisfy the stationary-point equation ∇Jν,λ(P,Q) = 0,
which is equivalent to the conditions in (18). Indeed, this
point can be seen by setting the first differential of the
regularized dual function

δJν,λ(P,Q; δP, δQ) = 〈c, δq〉 −
∫
Td
δQ(P/Q)νdµ

− 〈m, δp〉+
ν

ν − 1

∫
Td
δP
[
(P/Q)ν−1 − λ/P ν+1

]
dµ

(19)
equal to zero for any direction (δP, δQ).

Remark 1. It is important to observe that the continuous
dependence of the solution (P̂ , Q̂) to (13) on the covariance
and ν-cepstral data (c,m) can be established similarly to
[10, Sec. 6], so that the optimization problem (13) is in fact
well-posed in the sense of Hadamard.

V. NUMERICAL SIMULATIONS

In this section we present some numerical experiments in
which the problem (4) is used to reconstruct the spectrum
of a 3-d stationary random field y(t1, t2, t3) starting from
a finite set of its covariance lags and ν-cepstral coefficients.
The aim is to show that it is possible to compute numerically
an approximate solution to (4) for a setup in which the
theory developed in [10] does not guarantee the existence
of a solution, while the theory developed here does.

We assume that the underlying process y can be de-
scribed as the output of a cascade linear shaping filter
W̃ (z1, z2, z3) = W ν(z1, z2, z3) with a white noise input
e(t1, t2, t3), ν = 2, and d = 3. We shall also assume that
the transfer function W has the structure consistent with
our optimal form (5) for the spectrum. More precisely, we
consider the class of rational models such that the numerator
and denominator polynomials both have degree one:

W̃ (z) =

[
b(z)

a(z)

]ν
=

[
b0 − b1z−1

1 − b2z−1
2 − b3z−1

3

a0 − a1z
−1
1 − a2z

−1
2 − a3z

−1
3

]ν
(20)

where z represents (z1, z2, z3) for short. Obviously, the
polynomials a(z) and b(z) are described by the respective
vectors a = [a0, . . . , a3] and b = [b0, . . . , b3] of coefficients.
If the white noise input e has unit variance, then the spectral
density of the output process y is (P/Q)ν where P (eiθ) =
|b(eiθ)|2 and Q(eiθ) = |a(eiθ)|2 are two nonnegative poly-
nomials in P+. Throughout this section, we set the parameter
ν = 2 to meet the condition ν ≥ d/2 = 3/2. In such scenario
it is worth stressing that the theory developed in [10] does
not work. Indeed that theory requires ν ≥ 3 to guarantee the
existence of an approximate solution to the primal problem
(4).

In what follows we consider two models of the form
(20). We take two sets of real parameters (aj ,bj) with
j = 1, 2 such that a1 = a2 = a = [1, 0.3, 0.3, 0.3],
b̃1 = [1,−0.2,−0.3,−0.4], b̃2 = [1,−0.2,−0.3,−0.5],
and bj = b̃j/‖b̃j‖. The last operation of normalization
gives ‖b‖2 = 1 which is equivalent to p0 = 1 for the
numerator polynomial P . The first model, hereafter called
“zeroless model”, corresponds to the process with spectrum
Φ1 = (P1/Q)2 where the polynomials Q = |a|2 and
P1 = |b1|2 are positive on T3; the second model, hereafter
called “model with a spectral zero”, corresponds to the
process with spectrum Φ2 = (P2/Q)2 where P2 = |b2|2
(and also the spectrum) has a zero at the frequency vector
(π, π, π). The index set Λ is identified as Λ = Λ+−Λ+ with
Λ+ := { (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) }. Here the set
difference is understood as A − B := {x − y : x ∈ A, y ∈
B}. Since q−k = qk and p−k = pk, the total number of
variables is 13.

By means of the discrete formulation described in Sec-
tion 7 of [10], we consider the following procedure to test
the ability to reconstruct the spectra through the solution of
(4) for the previous two models:

1) Fix N = 20 and discretize T3 into N3 regular grid
points by gridding the interval [0, 2π] into N equidistant
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points in each dimension.
2) Compute the “true” covariances {ck : k ∈ Λ} and the

ν-cepstral coefficients {mk : k ∈ Λ0} of Φ = |W̃ |2 via
(2) and (3) where dµ is replaced by a discrete measure
with equal mass 1/N3 on the grid points.

3) Solve the discrete version of the regularized dual prob-
lem (13) using (c,m) computed above and λ > 0
chosen sufficiently small.

4) Let (p̂, q̂) be the optimal solution to (13) and (p,q)
be the polynomial coefficients corresponding to the true
spectrum Φ = |W̃ |2. Finally, evaluate the reconstruction
error ‖(p̂, q̂)− (p,q)‖.

In Step 3, the optimization problem is solved using New-
ton’s method. Some computational details can be found in
[10], and suitable modifications on the gradient and Hessian
of the objective function are needed for the current problem
(13).

The left panel of Fig. 2 shows the reconstruction errors for
the two models with different values of the regularization
parameter λ = 10−n, n = 0, 2, 4, 6, 8, 10. It is readily
observed in both cases that the errors decrease monotonically
as λ → 0. In view of Remark 1, therefore, if we have a
dataset generated by a d-dimensional process and consider
the approximate solution to the problem (4) with ν = dd/2e
where c and m are replaced by their sample estimators (com-
puted from the data), then the resulting spectral estimator is
characterized by a small estimation error provided that λ is
chosen sufficiently small and the underlying process has a
spectrum of the form (5) with ν = dd/2e which agrees with
our parameter specification.

In the right panel of Fig. 2, we compare the spectral
density of the model with a spectral zero and the recon-
structed spectra for values of λ = 10−10, 10−8, 10−6, 10−4

(corresponding to the orange line in the left panel) along a
cross section [ · , 11, 11] of the regular grid for T3, where the
true spectral zero is located at the index3 [11, 11, 11]. Notice
that the other two cross sections [11, · , 11] and [11, 11, · ] of
the spectral densities are not shown because they are visually
similar to this figure. We conclude that as λ goes to zero, the
true nonnegative spectrum is well approximated by a positive
spectral density with smaller and smaller errors, which is
consistent with the left panel.

VI. CONCLUSIONS

We have shown the existence of a rational approximate
solution to the ν-moment problem under the condition ν ≥
d/2 which is weaker than the one in [10]. Future research
should regard the spectral factorization theory in the multidi-
mensional case. It is well known that a positive trigonometric
polynomial of several variables in general can only be
factored into a sum of squares [17] which creates difficulty
in the multidimensional stochastic realization theory. Hence
it will be interesting to investigate when a usual factorization
(into one square) will hold in the multidimensional setting.

3In Matlab, the array indices start with 1. The notation [ · , 11, 11] means
the collection of indices [j, 11, 11] with j = 1, . . . , 20. The other two
similar symbols are understood accordingly.
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Fig. 2. Left: Error of spectrum reconstruction versus the regularization
parameter λ = 10−n, n = 0, 2, 4, 6, 8, 10, where both axes are in the
logarithmic scale. Right: The true spectrum with a zero and the reconstructed
spectra with choices of λ = 10−10, 10−8, 10−6, 10−4 at the cross section
[ · , 11, 11], i.e., Φ̂ν,λ(eiθ) with θ = 2π × [(k − 1)/20, 11/20, 11/20]
for grid indices k = 1, . . . , 20. Note that the reconstructed spectra with
λ = 10−10 and 10−8 (red and yellow lines) and the true spectrum (blue
line) almost overlap each other.
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