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Abstract— How to effectively communicate over wireless net-
works characterized by link failures is central to understanding
the fundamental limits in the performance of a networked
control system. In this paper, we study the online remote control
of linear-quadratic Gaussian systems over unreliable wireless
channels (with random packet drops), where the controller is
a priori oblivious to the cost parameters. We first reformulate
the problem using a semi-definite program and consequently
compute a stabilizing policy from its solution. We then derive a
O(

√
T ) regret bound (against a best offline policy in hindsight)

for a projected online gradient algorithm, where T is the length
of the horizon of interest. In the process, we introduce finite-
time notions of the classical mean-square stability, which may
be of independent interest. Finally, we provide a numerical
example to validate the theoretical results, demonstrating the
limitations induced by lossy communication on the control
performance.

I. INTRODUCTION

With the rapid development of sensing and computing
technologies, networked control systems (NCSs) find appli-
cations in diverse areas such as internet of things, power
grid management, and autonomous vehicles [1]–[3], to name
a few. The unifying theme in all these applications is the
distributed control of spatially located systems over wireless
networks. While networked control allows for information
sharing and control via decentralised task execution, it comes
with challenges of its own such as transmission delays,
bandwidth constraints and link failures in the network which
might cause packet drops. NCSs with packet drops and
known fixed costs have been well studied in the literature
in the context of optimal estimation and control of linear
quadratic Gaussian (LQG) systems with random packet drops
[2], [4], [5], stabilization of deterministic linear systems with
bounded packet losses [6], and H2 optimal control [7] (see
also the references therein), where it is shown that lossy
communication restricts the degree of open-loop instability
that can be stabilized by a feedback controller, which may not
even exist beyond a certain dropout threshold. The complex-
ity of the problem is further elevated when the system under
control has varying unknown costs which change, possibly
adversarially, due to changes in the environment.

Most of aforementioned references either compute an
optimal controller/estimator by using a Riccati-type equation
or otherwise solve a linear matrix inequality to provide
sufficient conditions for stabilization. Solving the same,
however, requires an a priori knowledge of the system as
well as the involved cost parameters. In this paper, we are
concerned with the optimal control of a NCS constituting
an unreliable wireless channel with random packet drops,
and unknown costs, a prototype for which is shown in Fig.
1. Such scenarios occur in many natural settings such as

uplink power control in CDMA networks, control of power
grids with costs depending on market auctions (which in
turn depend on a number of other uncontrollable factors),
manufacturing systems, and automated traffic routing [8], [9],
to name a few. The commonality in all these applications
is that due to congested and uncertain environments, the
cost parameters can only be inferred once a policy has
been implemented. Thus, another concern of this work
is to circumvent the requirement of these parameters and
learn a policy which adapts to the (possibly time-varying)
parameters, since obliviousness to these precludes the offline
computation of an optimal control policy. We utilize tech-
niques from online convex optimisation (OCO) [10], [11] to
address this challenge and design an algorithm that suggests
a control policy which (possibly) depends on the history
of observations. We utilize the standard notion of regret to
measure the performance of our algorithm against a best
policy in hindsight from a suitable policy class. The objective
is to achieve a sublinear (in time horizon) regret bound,
which entails that the controller learns the aforementioned
offline policy in the long run.

Thus, motivated by the challenges of lossy communication
and recent developments in online control, we present the
main contribution of the work as follows: (a) We pose the
problem of optimal control in NCS with packet loss over
controller-to-plant wireless link as a semi-definite program
(SDP) in steady state distribution, (b) utilizing this convex
reformulation, since the costs are unknown, we show that a
simple online gradient descent can achieve a regret of the
order O(

√
T ), and (c) in the process, we extend the notion

of strong stability as in [12] to the mean-square sense, which
is of independent interest while dealing with stochasticity in
control systems. Finally, we also provide discussions on (i)
the case where the plant-to-controller link is also prone to
packet drops, and (ii) the inclusion of unknown dynamics
alongside unknown cost parameters, both of which augment
the presented analysis.

Control of LQG in an online learning framework has
been a topic of recent interest. The adaptive control of LQG
systems with full and partial state feedback has been studied
in [13], [14], and with safety constraints in [15]. The authors
in [12] consider the LQG problem with unknown costs and
known fixed dynamics, and derive sublinear regret bounds
using an SDP formulation [16]. The same has been extended
to unknown dynamics but known costs in [17], and dis-
tributed control in [18]. Finally, although, slightly orthogonal
to, but yet useful in the present context, we mention the
setting of OCO-with-memory [19], which has been applied to
unknown systems with bounded non-stochastic disturbances
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and general convex costs [20]. It is also worth noting
that techniques in this work are similar in spirit to those
developed in [12], but the additional stochasticity introduced
by packet loss requires careful analysis and different tools to
achieve a sublinear regret.

This paper is organized as follows. We first formulate the
problem (Sec. II) and discuss useful policy characterizations
(Sec. III). Then, we present an SDP formulation for the LQ
problem (Sec. IV) and perform a regret analysis (Sec. V).
Finally, we present some numerical results (Sec VI) and
conclude the paper with some useful discussions (Sec. VII),
and two appendices.

Notations: The trace of a matrix is denoted by Tr(·). I
denotes the identity matrix of appropriate dimensions and ∥·∥
denotes the Euclidean norm for vectors and induced 2-norm
for matrices. For two symmetric matrices A and B of the
same dimensions, the notation A ⪰ B (resp. A ≻ B) denotes
that the matrix A−B is positive semi-definite (resp. positive
definite). Diag(A,B) denotes a block diagonal matrix with
block-diagonal entries A and B.

II. PROBLEM FORMULATION

Consider a networked control system as in Fig. 1 con-
stituting a plant (P) and a remotely located controller (C).
Dynamics of the plant P evolve according to a stochastic
linear difference equation:

Xk+1 = AXk + αkBUk +Wk, k ≥ 0, (1)

where Xk ∈ Rn and Uk ∈ Rm are the state and control
input to the plant, respectively, at instant k. The term Wk ∈
Rn denotes independent Gaussian noise with zero mean and
positive definite covariance Ω. The matrices A and B are
time-invariant and have suitable dimensions. The state Xk is

Plant (P)

Controller/learner (C)

Xk

Uk

αkUk

Fig. 1: Closed-loop system with random packet dropouts

sent to the controller over an ideal wireless forward channel
while the actuation command from the controller to the plant
is sent over an unreliable wireless link, which loses these
packets according to a Bernoulli-distributed signal αk, with
probability p, as:

αk =

{
1, w.p. 1− p
0, w.p. p . (2)

We assume that Wk are independent of αk, for all k, and let
the initial state X0 to be 0, without any loss of generality.
We also define p̄ := 1− p for brevity.

Next, the actions U1, U2, · · · , are chosen according to a
policy µ : Rn → P(Rm), which is a mapping from states to
distribution over actions. The cost of following this policy is
then given as

JT (µ) := E

[
T∑

k=1

X⊤
k QkXk + αkU

⊤
k RkUk

]
, (3)

where we assume that Qk ≥ 0, Rk > 0, and for some
ζ > 0, Tr(Qk), T r(Rk) ≤ ζ, for all k. The multiplicative
term αk denotes that the control cost is incurred only when
the control is actually applied to the plant. Finally, the
expectation is taken with respect to the random noise, packet
drop probability, and the (possibly) randomized policy.

Next, we assume that for any T , the matrices {Qk}Tk=1

and {Rk}Tk=1 are adversarially selected a priori and become
known to the controller only after an action has been
chosen using some policy at instant k. In addition to the
applications listed in the introduction, another motivating
perspective for this setting is explained as follows. Consider
cost (3) with Qk, Rk unknown. Then, we can re-express
Diag(Qk, Rk) = (C⊤

k D⊤
k )

⊤(Ck Dk), with Qk = C⊤
k Ck,

Rk = D⊤
k Dk and C⊤

k Dk = 0, without loss of generality.
Consequently, we can augment the state dynamics in (1) with
an auxiliary controlled output Zk = CkXk + DkUk. The
adversarial control of the costs thus can be interpreted as
directly influencing the output coefficients Ck and Dk. The
more general case with A,B also unknown, is discussed in
the conclusion section.

Note that the obliviousness of the controller to the cost
matrices prohibits offline computation using a Riccati-type
equation as in [2], [4]. Hence, the objective here is to design
a control algorithm C (for online policy computation) which
maps state xt and previous cost matrices {Qk}t−1

k=1, {Rk}t−1
k=1

to a control ut at time t such that it minimizes its regret
(RT (C)), against a set of benchmark policies in hindsight.
More formally, the problem is introduced as follows.
Problem 1.

minRT (C)
s.t. (1) holds,

where RT (C) := max{Qk}T
k=1{Rk}T

k=1
[JT (C) −

minµ∈M JT (µ)] and M is the set of benchmark policies,
defined in the next section.

III. THE BENCHMARK POLICY SET M
In this section, we let M be the set of linear stationary

mean-square strongly stable (MSSS) policies, and present the
following two-part definition of mean-square strong stability,
which is the quantitative analogue of the definition of mean-
square stability (MSS) [21].

Definition 1 (Mean-square strong stability). Let κ > 0, 0 <
γ1, γ2 < 1. Then,

1) a stationary policy K is (κ, γ1, γ2)–MSSS, if there exist
matrices Z,L1, L2 such that

(a) ∥Z∥∥Z−1∥ ≤ κ, ∥K∥ ≤ κ,
(b) A+BK = ZL1Z

−1, ∥L1∥ ≤ 1− γ1,
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(c) A = ZL2Z
−1, ∥L2∥ ≤ 1−γ2√

p ,
(d) υ(p, γ1, γ2) := p̄(1− γ1)

2 + (1− γ2)
2 < 1.

2) a non-stationary policy {Kk}Tk=1 is (κ, γ1, γ2)–MSSS,
if there exist sequences of matrices {Zk}Tk=1,{L(1)

k }Tk=1

and {L(2)
k }Tk=1 with A+BKk = ZkL

(1)
k Z−1

k and A =

ZkL
(2)
k Z−1

k satisfying the following:

(a’) ∥Zk∥ ≤ β1, ∥Z−1
k ∥ ≤ 1

β2
, with κ= β1

β2
, & ∥Kk∥ ≤ κ,

(b’) ∥L(1)
k ∥ ≤ 1− γ1, ∥L(2)

k ∥ ≤ 1−γ2√
p

(c’) ∥Z−1
k+1Zk∥2 ≤ 1 + 1−υ(p,γ1,γ2)

2

(d’) υ(p, γ1, γ2) < 1.

With the above definition, the following two lemmas
address convergence of the state covariance under a MSSS
policy.

Lemma 1. Let Σk and Σ be the state covariances at instant
k and at steady state, respectively, and X̄k := E[XkX

⊤
k ]

with E[X0] = 0, and Σ0 ⪰ 0, under a given a stationary
randomized feedback policy µ(X) with E[µ(X)] := KX
and Σc := Cov(µ(X)|X) < ∞, which is (κ, γ1, γ2)-MSSS.
Then, we have that

∥Σk − Σ∥ ≤ κ2 [υ(p, γ1, γ2)]
k ∥Σ0 − Σ∥.

Proof. Consider the following:

X̄k= pAX̄k−1A
⊤+ p̄(A+BK)X̄k−1(A+BK)⊤

+ p̄BΣcB⊤+Ω (4a)

Σ= pAΣA⊤+ p̄(A+BK)Σ(A+BK)⊤+ p̄BΣcB⊤+Ω.
(4b)

Then, subtracting (4b) from (4a), taking norms, and noting
that ∥Σk − Σ∥ ≤ ∥X̄k − Σ∥, we get

∥Σk − Σ∥ ≤ ∥pA(X̄k−1 − Σ)A⊤+

p̄(A+BK)(X̄k−1 − Σ)(A+BK)⊤∥∥Σ0 − Σ∥

≤ κ2
k∑

r=0

(
k

r

){√
p̄(1− γ1)

}2r
(1− γ2)

2(k−r)∥Σ0 − Σ∥

= κ2[υ(p, γ1, γ2)]
k∥Σ0 − Σ∥,

where the last inequality follows from Definition 1 and
the last equality follows using the identity (a + b)n =∑n

r=0

(
n
r

)
arbn−r. Finally, using Definition 1 (d), we get

∥Σk − Σ∥ → 0 geometrically fast as k → ∞.

Next, we state a similar result for geometric convergence
using non-stationary policies, which can be proved along
similar lines as in the proof of Lemma 1 above.

Lemma 2. Let Σ̃k be the state covariance, X̄k := E[XkX
⊤
k ]

at instant k with E[X0] = 0, and Σ̃1 ⪰ 0, under a
non-stationary randomized policy µk(X) with E[µk(X)] :=
KkX and Σc

k := Cov(µk(X)|X) < ∞, which is (κ, γ1, γ2)-
MSSS. Then, for the non-stationary steady-state covariance
Σ′

k, if it holds that ∥Σ′
k −Σ′

k−1∥ ≤ η, ∀k and some η > 0,
we have that

∥Σ̃k − Σ′
k∥ ≤κ2

[
υ(1 +

1− υ

2
)

]k
∥Σ̃1 − Σ′

1∥+
2κ2η

υ2 − 3υ + 2
.

We note that since the cost matrices Qk, Rk are unknown
to the controller in advance, offline minimization of (3) is not
possible. This leads to an online policy computation problem,
for which we first consider an SDP relaxation [12] of (3), and
consequently employ techniques from the OCO literature to
derive regret bounds when compared to the benchmark set
of MSSS policies for Problem 1.

IV. POLICY COMPUTATION USING SDP

In this section, we express the LQ problem (1)-(3) via a
relaxed SDP and consequently generate a linear MSSS policy
from its solution. To this end, let us rewrite the cost (3) as:

JT (Σ
µ) = E

[
T∑

k=1

X⊤
k QkXk + αkU

⊤
k RkUk

]

=

T∑
k=1

p̄T r (Diag(Qk, Rk)Σ
µ)+

T∑
k=1

p Tr (Diag(Qk, 0)Σ
µ),

where Σµ := E
[
XkX

⊤
k XkU

⊤
k

UkX
⊤
k UkU

⊤
k

]
and Uk = µ(Xk).

Further, let ΣK
XX be the steady-state covariance of the state

Xk, under a linear feedback policy µ(X) = KX , such that
K is a MSS policy. Then, analogous to Σµ, we define

ΣK :=

[
ΣK

XX ΣK
XXK⊤

KΣK
XX KΣK

XXK⊤

]
. (5)

where the superscript K denotes the effect of policy K. With
the above definitions, we define the SDP problem as follows.

Problem 2 (Relaxed SDP Problem). Given a tuple
(A,B,Q,R,Ω, p), the relaxed SDP corresponding to (1)-(3)
is given as

min J(Σsdp) := p̄T r
(
Diag(Q,R)Σsdp

)
+pTr

(
QΣsdp

XX

)
(6a)

s.t. Σsdp
XX = pAΣsdp

XXA⊤ + p̄(A B)Σsdp(A B)⊤ +Ω, (6b)

Tr(Σsdp) ≤ σ, Σsdp ⪰ 0, (6c)

where Σsdp :=

[
Σsdp

XX Σsdp
XU

(Σsdp
XU )

⊤ Σsdp
UU

]
∈ Rℓ×ℓ, ℓ = n+m.

To avoid inconsistent solutions, i.e., the case where the
feasible set is empty, we invoke the following condition on
system controllability [12] and cost detectability.

Assumption 1. The pair (A,B) is (k, κ)–strongly controllable
and the pair (A,Q

1/2
k ) is detectable for all k.

We note that while the strong controllability assumption
entails a finite cost with explicit cost bounds, the detectabil-
ity condition is necessary for the existence of an optimal
stabilizing policy. Further, given an MSS policy µ satisfying
E[∥X∥2+∥U∥2] ≤ σ, the solution Σsdp = Σµ is feasible for
Problem 2. Consequently, Problem 2 is indeed a relaxation
of the original LQ problem (1)-(3).

Now, we generate a linear policy from the solution to
Problem 2 (Σsdp), which will be shown in the sequel to be
(a) MSS with bounded cost, and (b) MSSS. The existence
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of Σsdp is guaranteed by the strong controllability of (A,B)
in Assumption 1. Then, we introduce a linear policy as

Ksdp := Ksdp(Σsdp) = (Σsdp
XU )

⊤(Σsdp
XX)−1, (7)

which is well defined since Ω ≻ 0 and (6b). Next, we show
that Ksdp is MSS with bounded cost.

Proposition 1 (Feasibility of ΣK). Suppose that Assumption
1 holds and let K := Ksdp be generated using a solution
Σsdp to Problem 2. Then, the policy µ(X) = KX is MSS
with J(K) = J(ΣK) ≤ J(Σsdp).

Proof. Define Σ′ :=

[
Σsdp

XX Σsdp
XU

(Σsdp
XU )

⊤ Σsdp
UU

]
, and Σ′′ :=

Diag(0,Σsdp
UU −(Σsdp

XU )
⊤(Σsdp

XX)−1Σsdp
XU ). Then, Σsdp = Σ′+

Σ′′ follows by substituting (7) in the definition of Σsdp

in Problem 2. Then, we observe that the (2, 2)th entry in
Σ′′ is positive-definite since it is the Schur complement of
Σsdp, which is positive semi-definite by using (6c). Hence,
Σsdp ⪰ Σ′.

Next, from (6b), we have that

Σsdp
XX ≻ pAΣsdp

XXA⊤ + p̄
(
A B

)
Σsdp

(
A B

)⊤
⪰ pAΣsdp

XXA⊤ + p̄
(
A B

)
Σ′ (A B

)⊤
= pAΣsdp

XXA⊤ + p̄(A+BK)Σsdp
XX(A+BK)⊤,

where the first inequality follows since Ω ≻ 0, and the second
one follows since Σsdp ⪰ Σ′, as proved above. Using [21,
Theorem 3.9] with P = Σsdp

XX , we infer that the policy K is
MSS.

Next, we show that ΣK ⪯ Σ′, for which it suffices to
show that ∆ = Σsdp

XX −ΣK
XX ⪰ 0. To this end, consider the

following from (6b):

ΣK
XX +∆ ⪰ pA(ΣK

XX +∆)A⊤

+ p̄
(
A B

)
(ΣK

XX +∆)
(
A B

)⊤
+Ω,

which yields ∆ ⪰ pA∆A⊤+p̄(A+BK)∆(A+BK)⊤. Since
K is MSS, we obtain ∆ ⪰ 0. Next, since ΣK ⪯ Σ′ ⪯ Σsdp

and Σsdp is feasible, then so is ΣK . Further, we have that

J(ΣK) = p̄T r
(
Diag(Q,R)ΣK

)
+ p Tr

(
QΣK

XX

)
≤ p̄T r

(
Diag(Q,R)Σsdp

)
+pTr

(
QΣsdp

XX

)
=J(Σsdp).

The proof is thus complete.

Next, we state the following lemmas which show that both
the stationary and the non-stationary policies generated using
(7) are MSSS.

Lemma 3. Suppose that Assumption 1 holds, Ω ⪰ ω2I , and
υ(p, 1

2κ2 ,
1

2κ2 ) < 1. Define κ̂ :=
√
σ/ω. Then, the policy in

(7) is (κ̂, 1
2κ̂2 ,

1
2κ̂2 )–MSSS for (1).

Lemma 4. Suppose that the hypotheses of Lemma 3 hold.
Let Σsdp

1 ,Σsdp
2 , · · · , be a feasible sequence for the SDP in

Problem 2. Suppose further that ∥Σsdp
k+1 − Σsdp

k ∥ ≤ η,∀t

and η ≤ ω2(1 − υ)/2. Then, the sequence {Kk}∞k=1 is
(κ̂, 1

2κ̂2 ,
1

2κ̂2 )–MSSS for (1).

We now have all the pieces in place to derive appropriate
regret bounds for Problem 1, as done in the next section.

V. REGRET ANALYSIS

In this section, we first present the online projected gradi-
ent based algorithm (Algorithm 1) motivated from [12] and
consequently present regret guarantees afforded by it. To this
end, we start by defining the projection set S as{
Σsdp∈Rℓ×ℓ

∣∣∣∣∣Σsdp
XX =pAΣsdp

XXA⊤+p̄(A B)Σsdp(A B)⊤+Ω

Σsdp ⪰ 0, T r(Σsdp) ≤ σ.

}
(8)

Algorithm 1 Online Erasure-based LQ Controller

1: Parameters: η, σ > 0, p ≥ 0
2: Initialize Σsdp

1 = I
3: for k=1 to T do
4: Receive state Xk

5: Compute Kk = (Σsdp
k,XU )

⊤(Σsdp
k,XX)−1, Mk =

(Σsdp
k,UU )−Kk(Σ

sdp
k,XX)K⊤

k

6: Predict Uk ∼ N (KkXk,Mk); receive Qk, Rk

7: Update: Σsdp
k+1 = ProjS

[
Σsdp

k − ηDiag(Qk, p̄Rk)
]
,

where ProjS is projection onto the set S defined in (8).
8: end for

We are now ready to state and prove the main result of
the paper in the following Theorem.

Theorem 1. Suppose that Tr(Wp) ≤ λ2 and Ω ⪰ ω2I .
Then, given κ > 0, 0 < γ1 < 1, 0 < p ≤ 1 with
υ(p, 1

2κ̂2 ,
1

2κ̂2 ) < 1, and letting σ = 2κ4Tr(Wp)Γ and
η = ω3

4
√
σT

in Algorithm 1, the expected regret of Algorithm
1 against a (κ, γ1, γ2)–MSSS policy K∗ is given as

JT (C)−JT (K
∗)=O

(
poly(κ, γ1, γ2, λ, ω, ζ)Γ

√
(1 + p̄2)T

)
for T ≥ 8κ4λ2Γ/ω2, and Γ is defined in Lemma 5.

Proof. The proof is provided in Appendix B.

Next, we present a numerical example to demonstrate the
performance of the algorithm and the effect of packet drops
on the system performance.

VI. A NUMERICAL EXAMPLE

We simulate the system (1)-(3) in Matlab, with the follow-
ing parameters: A = [1.1 0.3; 0.5 1.4], B = [1; 2], p = 0.7,
η = 0.01, σ = 100 and Ω = Diag(0.1, 0.1). We plot the
expected average regret versus 1√

T
as shown in Fig. 2. In

the figure, we observe that Algorithm 1 learns the offline
policy in the long run, as proved in Theorem 1, since the red
curve decays to 0 as T grows large. Next, to demonstrate the
effect of packet drops on the regret performance, we provide
the following Table I as below. We simulate Algorithm 1
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Fig. 2: Comparison of expected average regret RT /T (red
solid) versus 1/

√
T (black dotted)

for 4 different values of the packet drop probability (p =
0,0.10,0.25,0.60) and compute the expected average regret
in each case for two different open-loop unstable systems
(A = Diag(1.3, 1), and A = Diag(2, 1)). The green checks
in the table denote that this regret decays down to zero while
the red cross marks denote that Algorithm 1 is unable to
output a stabilizing policy for the system (1). This is because,
in the event that the system state Xk grows unbounded,
the SDP formulation breaks down since it is based on the
assumption of existence of a steady state covariance, which
does not exist in the latter case, as aligned with intuition.

p RT /T (A = Diag(1.3, 1)) RT /T (A = Diag(2, 1))
0 ✔ ✔

0.10 ✔ ✔
0.25 ✔ ✘
0.60 ✘ ✘

TABLE I: The table shows the effect of packet drops on the
regret performance, where we observe that for higher values
of packet drop probabilities and instability in the system
matrix, Algorithm 1 is unable to output a stabilizing policy
due to non-existence of the steady-state covariance.

VII. CONCLUSION & DISCUSSIONS

In this paper, we have studied the effect of packet drops on
the performance of an online controller, when the cost param-
eters are a priori unknown to the controller. By reformulating
the LQ problem as an SDP, we have used the online gradient
descent-based algorithm to derive a sublinear O(

√
T ) regret

bound on the online controller cost against a hindsight
policy, which is chosen from the set of mean-square stable
policies. Finally, we have verified the theoretical results with
simulations. Next, we present some immediate extensions
that follow from the analysis in the paper.

Forward link failures: One can investigate the case where
the forward channel from the plant to the controller is also
prone to packet drops, which leads to a partially observed
setting, as in Fig. 3. Then, in addition to (1), the observation
model is given by Y o

k = βkXk, where βk ∼ Ber(q), i.e.,
{βk} is a Bernoulli distributed random process and q ∈ [0, 1]
denotes the probability of loss of sensor packets. For the
case where the controller has knowledge of the actuation
loss instants {αk}Tk=1 (which corresponds to the TCP-like

protocol [4] with an ACK/NACK signal), the controller can
construct a best estimate of the state Zk,∀k. Consequently,
by repeating the presented analysis with an augmented state
[Z⊤

k e⊤k ]
⊤, where ek := Xk − Zk, we can derive an O(

√
T )

bound on the regret in Problem 1.

Plant (P)

Controller/learner (C)
Y o
k

Xk

Uk

αkUk

Fig. 3: Closed-loop information flow with random packet
drops on forward and backward wireless links, with respec-
tive erasure probabilities p and q.

Unknown system dynamics: Another extension of this
paper would be to study, in addition to unknown cost
parameters Qk, Rk, the effect of unknown system parameters
A,B on the regret performance. In this case, we can use
a system identification algorithm similar to that in [17] to
obtain an estimate of system parameters Â, B̂, determine
the approximation errors between the estimated and actual
parameters, and consequently use the presented analysis to
derive sublinear regret bounds.
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APPENDIX A

Lemma 5. Suppose that K is a randomized (κ, γ1, γ2)-MSSS
policy and Σ and Σu are the steady-state covariances of
the state X and control U , respectively, under policy K.
Define Γ = 1

γ2
+ p̄ 1−γ1

γ1
. Then, we have that 1) Tr(Σ) ≤

κ2Tr(Wp)Γ, and 2) Tr(U) ≤ κ4Tr(Wp)Γ.

Proof. Define Wp := p̄BΣcB⊤+Ω. Then, we have that

Σ = pAΣA⊤+ p̄(A+BK)Σ(A+BK)⊤+Wp

which, using Definition 1, leads to

Σ =

∞∑
k=0

pAk(Wp)A
⊤k

+

∞∑
k=1

p̄(A+BK)kWp(A+BK)⊤
k
.

Taking trace of both sides of the above equation and using
Definition 1, we arrive at 1). Finally, noting that Tr(Σu) =
Tr(KΣK⊤), we arrive at 2) of the statement.

Lemma 6. Suppose η ≤ ω2(1 − υ)/4. Then, the following
holds:
T∑

k=1

Tr
(
Yk(Σ

K
k − Σsdp

k )
)
≤ 2(3ῡ − ῡ2)σκ̂2

ῡ2 − 3ῡ + 2
+

2κ̂2ηζT
√

1 + p̄2

ῡ2 − 3ῡ + 2
.

(9)

Proof. Consider the non-stationary randomized policy
µk(X) = KkX + νk with νk ∼ N (0,Mk). Then, we
have that ΣK

k,UU = KkΣ
K
k,XXK⊤

k + Mk and Σsdp
k,UU =

KkΣ
sdp
k,XXK⊤

k + Mk. Define ϱ := ηζ
√
1 + p̄2. This then

yields
T∑

k=1

Tr
(
Yk(Σ

K
k − Σsdp

k )
)

≤
T∑

k=1

Tr(Qk + p̄KkRkK
⊤
k )∥ΣK

k,XX − Σsdp
k,XX∥

≤ ζ(1 + p̄κ̂2)

T∑
k=1

∥ΣK
k,XX − Σsdp

k,XX∥. (10)

Next, using Lemma 4, we have that

∥ΣK
k,XX − Σsdp

k,XX∥ ≤ κ̂2

[
ῡ(1 +

1− ῡ

2
)

]k
∥ΣK

1,XX − Σsdp
1,XX∥

+
2κ̂2ηζ

√
1 + p̄2

ῡ2 − 3ῡ + 2
, (11)

where ῡ = υ(κ̂, 1
2κ̂2 ,

1
2κ̂2 ), and we used the fact that

∥Σsdp
k+1,XX − Σsdp

k,XX∥ ≤ ∥Σsdp
k+1 − Σsdp

k ∥ ≤ ϱ. Substituting
(11) in (10), we get

LHS ≤ 2σκ̂2
T∑

k=1

[
ῡ(1 +

1− ῡ

2
)

]k
+

2κ̂2ηζT
√

1 + p̄2

ῡ2 − 3ῡ + 2
,

which leads to (9).

Lemma 7. The following inequality holds:
T∑

k=1

Tr
(
Yk(Σ

sdp
k − ΣK∗

)
)
≤ 2σ2

η
+ (1− p/2)2ζ2ηT.

Proof. The proof uses Theorem 1 from [10]. We first note
that Tr(Σsdp) ≤ σ. Next, we have that ∥Q∥ + p̄∥R∥ ≤√
Tr(QQ⊤)+p̄

√
Tr(RR⊤) ≤ (2−p)ζ. Using these bounds

in Theorem 1 of [10], we obtain the result.

Lemma 8. Given a (κ, γ1, γ2)–MSSS policy K∗, we have
T∑

k=1

Tr
(
Yk(Σ

K∗
− ΣK∗

k )
)
≤ 2σζ(1 + p̄κ2)κ2 υ

1− υ
. (12)

Proof. We first note that Tr(ΣK∗
) = κ2Tr(Wp)Γ +

κ4Tr(Wp)Γ ≤ 2κ4Tr(Wp)Γ. Thus, for σ = 2κ4Tr(Wp)Γ
with Tr(Wp) ≤ λ2, we have that ΣK∗

is feasible. Then,
consider the following:

T∑
k=1

Tr
(
Yk(Σ

K∗
− ΣK∗

k )
)

=

T∑
k=1

Tr(Qk + p̄(K∗)⊤RkK
∗(ΣK∗

XX − ΣK∗
k,XX))

≤ ζ(1 + p̄κ2)κ2∥ΣK∗
XX − (ΣK∗

1,XX)∥
T∑

k=1

υk,

which proves the result.

APPENDIX B
Proof of Theorem 1. Define Yk := Diag(Qk, p̄Rk). Given
K∗, let {ΣK∗

k }Tk=1 be the sequence of covariance matrices as
in (5) under K∗. Further, let {ΣK

k }Tk=1 be the analogous se-
quence of covariance matrices when the policy of Algorithm
1 is applied, and {Σsdp

k }Tk=1 be the sequence of covariance
matrices generated by the SDP. Then, we have that

JT (C)− JT (K
∗) =

T∑
k=1

Tr
(
Yk(Σ

K
k − ΣK∗

k )
)

≤
T∑

k=1

Tr
(
Yk(Σ

K
k − Σsdp

k )
)
+

T∑
k=1

Tr
(
Yk(Σ

sdp
k − ΣK∗

)
)

+

T∑
k=1

Tr
(
Yk(Σ

K∗
− ΣK∗

k )
)
. (13)

Next, using the results of Lemmas 5-8 from Appendix A,
κ̂ =

√
σ/ω and γ̂1 = γ̂2 = ω2/2σ, and plugging in the

values of η and σ, we obtain the desired result.
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