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Abstract— Reachability analysis is a powerful tool to analyze
the behavior of dynamical systems. Typically, these tools are
used to evaluate whether the dynamics of a system beginning
from some initial set reaches some unsafe region of state space
in a finite amount of time. To answer this question, these
tools often construct over-approximations to the reachable sets
of the dynamical systems, which can be overly conservative
when applied to arbitrary systems. To address this challenge,
this article develops a novel technique for reachability analysis
of Homogeneous Polynomial Dynamical Systems (HPDSs) by
computing their exact solutions using tensor theory. In addition,
this article illustrates how to build tight over-approximations
of the reachable set for HPDSs with constant control inputs.
Simulation results highlight a significant improvement in the
accuracy of reachable set estimates compared to established
methods for HPDSs.

Reachability analysis, outer approximation, HPDSs, exact
solutions, tensor algebra.

I. INTRODUCTION

Homogeneous polynomial dynamical systems (HPDSs)
represent a special class of mathematical models that find
widespread applications in scientific and engineering do-
mains [14]. These systems are characterized by polynomial
functions where all monomials have the same degree. HPDSs
describe complex phenomena in systems biology, chemical
reactions, and epidemiological models [8], [9]. For instance,
gene regulatory networks can be modeled by a system of ho-
mogeneous polynomial equations, capturing the interactions
among genes [11].

This article is interested in determining whether a dy-
namical model reaches an unsafe state in a finite time
when starting from a user-specified set of initial states. To
assess the safety of such systems, one can apply reachability
analysis, which involves determining the reachable set of a
system from its initial set. Safety is guaranteed for a given
initial set if no unsafe state belongs to the corresponding
reachable set.

Although general methods exist for performing reacha-
bility analysis of dynamical systems [3], [4], [10], [13],
they can be overly conservative. To address this issue, this
article proposes a novel method for computing a tight over-
approximative reachable set for a class of Homogeneous
Polynomial Dynamical Systems (HPDSs) that can be rep-
resented as orthogonally decomposable tensors. We refer to
this class of systems as odeco HPDSs. We exploit properties
of the exact solutions of odeco HPDSs that enable us to
determine the reachable sets effectively. We demonstrate
that the result can be generalized to general (non-odeco)
HPDSs that can be linearly transformed to odeco HPDSs
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under certain conditions. We further illustrate the utility
of our method by taking an example of an autocatalytic
reaction, in which products of a chemical reaction catalyze
the reaction. Through all our simulations, the reachable sets
constructed by our method are shown to be less conservative
than the results of existing tools for reachability analysis
when applied to odeco HPDSs. The key contributions of this
article are listed as follows.

1) A pair of algorithms for determining the reachable sets
of odeco HPDSs and odeco HPDSs with constant con-
trol, considering both axis-aligned and general initial
sets.

2) An algorithm for determining the reachable sets of
certain general (non-odeco) HPDSs, considering both
axis-aligned and general initial sets.

3) A comparison of our algorithms with Continuous
Reachability Analyzer (CORA) [3], an established tool
for reachability analysis of dynamical systems.

The article is organized as follows: Section II introduces
necessary mathematical concepts and previous results. In
Section III, we present the algorithms for determining the
reachable sets of odeco HPDSs, odeco HPDSs with constant
control, and certain general (non-odeco) HPDSs. The results
of the proposed algorithms are shown in Section IV. We
conclude with future directions in Section V.

II. PRELIMINARIES

This section provides a concise overview of solutions for
odeco HPDSs (without/with constant control), outer approx-
imation techniques, and zonotope representations. Through-
out this article, scalars are represented by regular lowercase
characters, vectors by bold lowercase characters, matrices by
bold uppercase characters, and tensors by script uppercase
characters.

A. Solutions of odeco HPDSs

Here, we first introduce the idea of an odeco HPDS and
its explicit solution. The properties of this solution will be
exploited later in the article to obtain reachable sets.

Every n-dimensional HPDS of degree £ —1 can be written
as tensor-vector multiplications along the first £ — 1 modes
[61, [7], i.e.,

).(:AX1XX2"'Xk_1X:AXk717 (1)

where A € R™*™* X" ig the dynamic tensor of order £,
symmetric along the first £ — 1 modes, and x € R" is the



state. Here, the tensor-vector multiplication along mode r is
defined as

n
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The dynamic tensor A is said to be orthogonally decom-
posable (odeco) if it is supersymmetric (invariant under any
permutation of the indices) and can be written as a sum of
the outer products of orthonormal vectors, i.e.,

A=Y Avioveo-ovy, (3)
r=1

where )\, are the Z-eigenvalues of A in a descending order,
and v, are the corresponding Z-eigenvectors [12].

If A is odeco, we refer to (1) to as odeco HPDSs. In [6,
Proposition 1], it was shown that given the initial condition
Xg = Zle a,Vv,, the system has an explicit solution, which
can be computed as

n

x(t) = > (1—(k—2Aak )" =a,v,. (@)

r=1
B. Solutions of odeco HPDSs with Constant Control

We introduce the implicit solution of an odeco HPDS
with constant control. Later, we show that the properties
of this solution can be used to obtain reachable sets of
these systems. The odeco HPDS with constant control can
be written in the form of

X = Ax""!' +b, (5)

where b € R™ is a constant vector. In [6, Proposition 4], it
was shown that given the initial condition x¢ = Z:f:l vy,
the system has a solution x(t) = >.""_; ¢,(¢)v,, which can
be obtained by solving the following implicit equations:

g(%,—/\wr?;)kﬂ) 9(%7_,\Tarb(rt)kfl)
(k — 2)Apen(t)—1 (k — 2)\pa.(t)k=1

t=— (6)
Here, BT are the rth entries of Vb (V contains all the
vectors v,.) and g(-, -) is the specified Gauss hypergeometric
function defined as
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C. Outer Box Approximation of Polytopes

We discuss the idea of overapproximating a polytope using
axis-aligned hyperboxes here. Later, we demonstrate the
existence of an elegant method for determining reachable sets
of axis-aligned initial sets that can be extended to general
initial sets by conducting over-approximative axis-aligned
decompositions of general initial sets.

We utilize the recursive algorithm [5, Algorithm 6] for
computing the outer approximation of polytopes. This algo-
rithm decomposes a polytope into axis-aligned sets with vol-
umes below a specified threshold £. An illustrative example
is highlighted in Fig. 1.
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Fig. 1: Outer approximation of a polytope using axis-aligned sets. The blue
region is the projection of the polytope on the X-Y plane, and the squares
represent the projections of the axis-aligned boxes that over-approximate
the polytope.

D. Zonotope Representation of Sets

We represent all initial as well as reachable sets in this arti-
cle as zonotopes. Zonotopes provide a convenient approach
for representing sets, which facilitates ease in performing
operations on them [2]. A zonotope is defined as

P
Z:{XER":x:c+z:%g,ﬂ7 —-1<~ <1}
r=1
with ¢,8;,8,...,8, € R", where ¢ is known as the center
of the zonotope and g, are called the generators.

III. METHODS

In this section, we perform the reachability analysis of
HPDSs and HPDSs with constant control by leveraging their
exact solutions. The code repository for the implementation
of our methods can be found at [1].

A. Reachable Sets of odeco HPDSs

We first consider an initial set that is axis-aligned with the
orthonormal Z-eigenvectors v,. of A. If this set is represented
as a zonotope, its generators would also align with these
Z-eigenvectors. Let g, denote a generator along the Z-
eigenvector v,.. Suppose that all points in the zonotope can be
expressed as xg = Z:zl a,v,. Since the set is axis-aligned,
the maximum and minimum values of a,. over all the points
in the zonotope can be computed as the rth components of
¢+ g, and ¢ — g,, respectively, where c is the center of the
initial set.

Lemma 1. Assume that A is odeco. Let x1(t) =
Sor_, ar(t)v, be the solution of (1) for the initial condition
X0 = Yoy vy and x2(t) = >, by (t)v, be the solution
with the initial condition xg = _, BV, . If . > B, for
some r € [1,n], then b,.(t) > a,(t) for all t.

Proof: According to (4):
ar(t) = (1= (k= 2)\af %) F2q,, (8)



Algorithm 1 Reachable sets of odeco HPDSs for axis-
aligned initial sets

for each generator g, do
a+Viie+g,)
/6 — VT (C - gr)
rsboundl « (1 — (k — 2)Aafr]F~2t) 7= afr]
rsbound2 « (1 — (k — 2)A,.B[r]*=2t) 72 8[r]
rs_center[r] <+ 0.5x(rsboundl + rsbound2)
rs_gen[r] < 0.5x(rsboundl — rsbound2)V g,
end for
RS + Zonotope{V xrs_center, V xrs_gen}

which can be simplified to
ar(t) = (ay — (k — 2)A ) 72, 9)
One can apply a similar argument for b,(¢). If . > 3,., then

(ar — (k= 2)A) 772 < (B, — (k= 2)A) 2. (10)
Therefore, b,.(t) > a,(t) for all .

According to Proposition 1, the system’s state at time ¢ is
ordered based on the values of the initial state. Therefore, to
compute the reachable set of an initial set with axes aligned
to the Z-eigenvectors, it suffices to determine the values of
the state for initial points Xo = ¢+ g, as these values bound
all other points. Given that the generators are finite, we can
determine the reachable set.

We demonstrate the computation of the reachable set for
an initial set represented as a zonotope and axis-aligned with
the Z-eigenvectors of A in Algorithm 1. We assume that our
reference frame is initially aligned with the axes defined by
the Z-eigenvectors of A and subsequently reorient this frame
back to the standard coordinate axes by multiplying V to the
center and generators of the calculated reachable set. In the
algorithm, ¢ and g. represent the center and generators of
the initial zonotope, respectively. a[r] and B[r] denote the
rth component of vectors a and 3, respectively. rs_center[r]
and rs_gen[r] represent the rth component of the center and
generator of the reachable set at time ¢, respectively. V is
the matrix containing the Z-eigenvectors of A.

By employing Algorithm 1, one can compute the reachable
set for an axis-aligned initial set. One can extend this
algorithm to a general initial set by performing an axis-
aligned set decomposition of the initial set mentioned earlier
and treating each hyperbox obtained from this decomposition
as an independent axis-aligned initial set, see Algorithm 2.
Here, £ represents the volume threshold for the decomposi-
tion and M represents the total number of boxes obtained in
the decomposition of the general initial set. When £ — 0, the
union of the generated axis-aligned sets tends to the original
set. For our methods, choosing £ four orders of magnitude
smaller than the initial set is sufficient, as will be demon-
strated in Section IV. box_RS[r] represents the reachable set
of the rth hyperbox in the decomposition of the initial set.
By calculating the outer-bound box approximations of sets,

Algorithm 2 Reachable sets of odeco HPDSs for general
initial sets

boxes < decomposition(initial set, &)
for each b, in boxes do
box_RS[r] < reachable_set_axis-aligned(b,)
end for
RS + UM box RS[r]

the union operation provides the outer approximations of the
reachable sets, ensuring safety.

B. Reachable Sets of odeco HPDSs with Constant Controls

We demonstrate that the ordering properties, similar to
the zero control case, persist for the solution of the constant
control case. This is utilized to determine the reachable sets
using a finite number of points.

Lemma 2. The following function

g(%27 a_kb—Z)
J@) = G = gnak2 (11

is monotonic for constant k > 3, l~), A

Proof: Consider zg(a, z) with 0 < a <1

o0 Zm
= 12
29(a, 2) az%HW (12)
and
0 (m+1)z
3 (zgaz)—az T (13)

When z > 0, the partial derivative is greater than O since all
terms in the summation are positive. When z < 0, consider
two successive terms in the summation

2k +1 L2k 2k+2 54 (14)
a+2k a+2k+1
We know that since 0 < a < 1,
2k+1> 2k+1> 2k +2 . (15)
a+ 2k a+2k a+2k+1

Further, g(a, z) is defined for |2| < 1, hence, [2%F| > |22kF1].
Hence,

2k + 2
a+2k+1

2k +1 L2k
a+2k

2k+1 (16)

This implies that every pair of terms adds to a positive
number in the summation. Thus, zg(a, z) increases in z.

Notice that f(«) is cazig(a,z1) where ¢ is a constant
and z; = —%. Further, o and z1¢(a, z1) are monotonic in
a when the other variables are constant. The product of two
monotonic functions is monotonic if and only if they have
the same sign. Because both « and z; g(az,) are positive and
negative in the left and right half-planes respectively, their
product is monotonic.

Lemma 3. Let x1(t) = >._; ar(t)v, be the solution of
(5) for the initial condition xq = Z:’Zl v, and x5(t) =



Algorithm 3 Reachable sets of odeco HPDSs with constant
input for axis-aligned initial sets

Algorithm 4 Reachable sets of odeco HPDSs with constant
input for general initial sets

for each generator g, do
a+Viie+g,)
/8 «— VT (C - gr)
rsboundl < solve for z in ¢t = f.(a[r]) — fr(2)
rsbound2 « solve for z in t = f.(B[r]) — f-(z)
rs_center[r] <— 0.5x(rsbound1 + rsbound2)
rs_gen[r] < 0.5x(rsboundl - rsboundZ)VTgT
end for
RS «+ Zonotope{V xrs_center, V xrs_gen}

Son_ be(t)v, be the solution with xo = Y ._, B,v, as
the initial condition. If o, B, # 0, ap > By and f(a,) —
t, f(B,) —t have the same sign for t € [0,T] some r € [1,n],
then a,(t) > b.(t) for all t € [0,T].

Proof: In Lemma 2, we proved that the function f(«) is
monotonic. We can also see that f(«) is undefined at o = 0.
The solution to (5) can be found by solving for ¢ for each
component of the vector, the implicit equation f(«a;) —t =
f(c;). If the function is monotonically decreasing, then

ap > B, = f(ar)_t<f(6r)_t - f(ar) <f(br)

(17)
Hence, a,(t) > b,(t) since f is decreasing. If the function
is monotonically increasing, then

ar > By = flay)—t> f(B) —t = fla,) > f(b)
(18)

Hence, a,(t) > b, (t) using the fact that f is monotonically

increasing. In both cases, a,(t) > b,.(t) for all .

As outlined in Lemma 1, we establish an order among
the solution values based on the initial condition values.
Additionally, we introduce a criterion on f(a,) — ¢t and
f(B:) — t having the same sign to ensure that no point in
the reachable set is undefined. We can once again leverage
the concept of using a rotated frame aligned with the Z-
eigenvectors of A to evaluate the reachable set of the system,
followed by a rotation of the reachable set to obtain results in
our standard coordinate frame. This leads us to the following
algorithm (Algorithm 3).

As before, define ¢ and g, as the center and generators of
the initial zonotope, respectively. a[r] and 3[r] denotes the
rth component of vectors ¢ and 3 respectively. rs_center[r]
and rs_gen[r] represent the rth component of the center and
generator of the reachable set at time ¢, respectively. V is
the matrix containing the Z-eigenvectors of .A. Furthermore,
we define the following function:

@) = AT (19)

Note that we use b, instead of ZN)T since ET becomes b, in
the frame with the Z-eigenvectors as the axes. Similar to the
approach adopted for odeco HPDSs, we suggest employing
axis-aligned box decomposition to determine the reachable

boxes < decomposition(initial set, &)
for each b; in boxes do
box_RS[r] + rs_axis-aligned_with_control(b,.)
end for
RS + UM, box RS[r]

Algorithm 5 Reachable sets of general HPDSs

IS.y + P~I(IS)
RS_y ¢+ reachable_set_non_axis-aligned(IS_y)
RS <+ PRS.y

sets of general initial sets and propose the following algo-
rithm (Algorithm 4).

C. Reachable Sets of non-odeco HPDSs

As mentioned earlier, every HPDS can be represented by
a tensor A of order k that is symmetric along its first k — 1
modes. These tensors are called almost symmetric and can
be decomposed as

n
A=Y veve oo o
r=1

It was shown in [6, Proposition 6] that if there exists an
invertible linear transform P and diagonal matrix A such
that PTV is orthogonal and PTV = P~'V() A~ where
V and V) contain v, and vfnf ) respectively, then the non-
odeco HPDS % = Ax*~! can be transformed to y = Ay*~!
where A is an odeco-tensor and x(t) = Py(t).

This result is used to determine the reachable sets for gen-
eral HPDSs that satisfy the above conditions. We transform
the state tensor A to its transformed odeco HPDS A by
finding the matrices P, V, V) and A. We use Algorithm
5 to find the reachable sets of these systems. IS represents
the initial set defined for the original system.

The linear transformation P does not always exist. Nev-
ertheless, we can find an approximated tensor close to the
target tensor for which P exists [6, Algorithm 6]. Addition-
ally, P can be computed from the CANDECOMP/PARAFAC
decomposition factor matrix of the approximated tensor. The
CANDECOMP/PARAFAC decomposition can be achieved
using nonlinear least squares, which is often efficient for
small- and medium-sized tensors. However, for large-sized
tensors, the computational burden can be substantial.

These algorithms enable us to over-approximate the reach-
able sets of odeco HPDSs both with and without constant
control. The level of over-approximation can be adjusted by
tuning the value of £ in the box decompositions of non-
axis-aligned initial sets, as this is the only approximation
made in our algorithm. This provides us with control over
the trade-off between the accuracy of the solution and the
computational time required.



TABLE I: Volumes of reachable sets for systems with different dimensions. RSE represents failure due to a reachable set explosion.

5 timesteps 10 timesteps

15 Timesteps

30 Timesteps

Dimension 5 e T Method | CORA | Proposed Mcthod | CORA | Proposed Method | CORA | Proposed Method | CORA
3 26.53 5T 9.14 24 328 2 0.40 24
5 11.24 53 2.37 27 2.82 3T 33 RSE
7 0.10 032 0.34 RSE 1.10 RSE 28 RSE
25 0.20 RSE 158 RSE 82 RSE 326 RSE
50 0.67 RSE 352 RSE 10.86 RSE 146 RSE
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Fig. 2: Projection of the reachable sets on the X-Z plane for odeco HPDS
generated by Algorithm 1 and CORA.

IV. RESULTS

We simulated a variety of odeco-HPDS with and without
control over a range of state-space dimensions and evolution
times. For each simulation, we noted the volumes of the
reachable set generated by CORA and the reachable set
generated by our method. We observed a significant improve-
ment that scaled up with both the system’s dimension and
the evolution time. As a proxy to the ground truth reachable
set, we randomly initialized and integrated points within the
initial set according to system dynamics. The accuracy of our
method was validated by ensuring that the terminal states of
these simulations lay within the reachable set generated by
our method for all initial points.

A. Simulation Results

We demonstrate our method through the following exam-
ples. In the first example, we simulated an axis-aligned 3-
dimensional odeco-HPDS with no control over 15 timesteps.
As this set is already aligned with the Z-eigenvectors of the
state tensor, there was no need to conduct box decomposition
of the initial set, and we could directly utilize Algorithm 1.
The projections of the simulation on the X-Z plane are shown
in Fig. 2.

In the second example, we considered an odeco-HPDS with
constant control. The initial set we considered isa 5 x5 x5
box centered at (10,20, 30). This set is not aligned to the
Z-eigenvectors of the state tensor, so we used Algorithm 4
to compute the reach set. We set a threshold of £ = 0.1 for
the box decomposition of the initial set and simulated over 5

Fig. 3: Projection of the reachable sets on the X-Y plane for odeco HPDS
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with constant control generated by Algorithm 4 and CORA.

TABLE II: Computational time vs CORA in seconds

Method runtime | CORA [3]
Algorithm 1 0.01 2.66
Algorithm 2 28 3.6
Algorithm 3 2.93 4.07
Algorithm 4 687 4.08

timesteps. CORA overapproximated the volume by a factor
of 1.94 even with such a low-resolution box decomposition,
validating our method. As mentioned in Section III B, odeco-
HPDS with constant controls have a singularity. There was
a significant propagation of errors in CORA that led to a
reachable set explosion, preventing us from comparing our
method for longer evolution times. Results are displayed in
Fig. 3.

B. Performance Comparison

We tested our methods against CORA for several high-
dimensional systems and for different evolution times (rep-
resented as timesteps). CORA performs poorly on these
systems, as is seen from the results in Table I. There
is a significant difference in the volumes generated that
increases with the dimension of the system and the timesteps.
Eventually, CORA fails because the propagated errors cause
the reachable set to grow unbounded, which is represented
using RSE (reachable set explosion). CORA fails at smaller
evolution times for larger dimensional systems and does
not work at all for systems greater than 10 dimensions.
Our methods continue to give results that closely match the
random simulations.



We parallelized and ran our experiments using 8 cores of
an AMD Ryzen 7 5800H processor. The simulation runtimes
are reported in Table II. Algorithms 1 and 3 require less com-
putational time than CORA. Algorithm 4 requires a nonlinear
solver to find a root of (6) for each box in the decomposition,
which leads to a larger computational time. In Algorithm
2, the primary contribution to the computational time is
the recursive box-decomposition algorithm [5, Algorithm 6].
Based on these results, our methods often represent the sole
feasible approach for determining reachable sets in systems
exceeding 10 dimensions or longer evolution times.

C. Autocatalytic Reactions

Autocatalytic reactions are chemical reactions in which the
product acts as a catalyst in the reaction to produce more of
itself. These reactions find widespread use in the study of
evolution and biochemistry. In this example, we considered
a chained autocatalytic reaction in which S acts as a catalyst
to convert R into S through the following reversible reaction:

2R=R+S=2S.
The kinetics of this reaction can be represented as

[R] = —0.0419[R]2 + 0.075[R][S] — 0.0915[5]2
[S] = 0.0435[R]? — 0.212[R][S] + 0.1938[S]?

I

where [R] and [S] represent the concentrations of the species
R and S, respectively.
We converted the HPDS into the tensor form (1) with

—-0.042 0.038 0.044 0.106}

A1 = [ 0.038  —0.092 ] Az = [ ~0.106  0.194

It can be shown that 4 is not odeco, but it can be transformed
into an odeco tensor using the method shown in Section III
C. We verified that this transformation can be done using

7T 2 —-0.5 0
P_{Zl 1}’A_{ 0 0.2]'
We simulated this system using Algorithm 5 based on an
initial set over 15 time steps. Here, CORA overapproximated

the reachable set by a factor of 2.7 at the final timestep. The
results of the simulation are displayed in Fig. 4.

V. CONCLUSION

This article describes how to perform the reachability
analysis of odeco HPDSs and certain general HPDSs. The
proposed method improves accuracy over existing methods
for the reachability analysis of dynamical systems. Overly
conservative estimates may lead to unnecessary design con-
straints, increased computational complexity, and missed
opportunities for system optimization. The proposed method
represents a significant step toward mitigating these chal-
lenges. To expand the applicability of this method, one could
explore the possibility of approximating general HPDSs and
general polynomial systems as odeco HPDSs while ensuring
that the safety guarantees are not violated. Investigating the
performance of this method using various set representations,
such as star sets, could be explored in future work. Finally,

Concentration of Species

Simulation
RS-Cora

Proposed algorithm
Initial set
N

45 50 55 60 65 70
[R]

Fig. 4: Reachable sets representing chemical concentrations generated by
Algorithm 5 and CORA.

one could explore the possibility of applying this method to
other systems that have exact solutions and similar ordering
properties as shown in Section III.
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